1
|
Yamaguchi-Takegami N, Takahashi A, Mitsui J, Sugiyama Y, Chikada A, Porto KJL, Takegami N, Sakuishi K, Ishiura H, Yamada K, Shimizu J, Tsuji S, Toda T. Late-onset Myoclonic Seizure in a 78-year-old Woman with Gaucher Disease. Intern Med 2024; 63:861-865. [PMID: 37558486 PMCID: PMC11008993 DOI: 10.2169/internalmedicine.1699-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
We herein report a 78-year-old woman with Gaucher disease (GD) who was initially diagnosed with GD type 1, had been receiving long-term enzyme replacement therapy since 58 years old, and developed neurological manifestations in her 70s. The neurological manifestations included myoclonic seizures and progressive cognitive decline. Although it is rare for GD patients to first develop neurologic manifestations at such an advanced age, physicians engaged in long-term care for GD patients should be alert for this possibility.
Collapse
Affiliation(s)
| | - Akiko Takahashi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yusuke Sugiyama
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Health Administration/Prevention Medicine, Sanraku Hospital, Japan
| | - Ayaka Chikada
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Neurology, National Center for Global Health and Medicine, Japan
| | | | - Naoki Takegami
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kaori Sakuishi
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Neurology, Teikyo University Chiba Medical Center, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Kaoru Yamada
- Department of Health Administration/Prevention Medicine, Sanraku Hospital, Japan
| | - Jun Shimizu
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Physical Therapy, Faculty of Medical Health, Tokyo University of Technology, Japan
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Molecular Neurology, Graduate School of Medicine, The University of Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
2
|
Racki V, Papic E, Almahariq F, Chudy D, Vuletic V. The Successful Three-Year Outcome of Deep Brain Stimulation in Gaucher Disease Type 1 Associated Parkinson's Disease: A Case Report. Mov Disord Clin Pract 2021; 8:604-606. [PMID: 33981795 DOI: 10.1002/mdc3.13185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Valentino Racki
- Clinic of Neurology Clinical Hospital Center Rijeka Rijeka Croatia.,Department of Neurology, Faculty of Medicine University of Rijeka Rijeka Croatia
| | - Elisa Papic
- Clinic of Neurology Clinical Hospital Center Rijeka Rijeka Croatia
| | - Fadi Almahariq
- Department of Neurosurgery Clinical Hospital Dubrava Zagreb Croatia
| | - Darko Chudy
- Department of Neurosurgery Clinical Hospital Dubrava Zagreb Croatia
| | - Vladimira Vuletic
- Clinic of Neurology Clinical Hospital Center Rijeka Rijeka Croatia.,Department of Neurology, Faculty of Medicine University of Rijeka Rijeka Croatia
| |
Collapse
|
3
|
Sawangareetrakul P, Ngiwsara L, Champattanachai V, Chokchaichamnankit D, Saharat K, Ketudat Cairns JR, Srisomsap C, Khwanraj K, Dharmasaroja P, Pulkes T, Svasti J. Aberrant proteins expressed in skin fibroblasts of Parkinson's disease patients carrying heterozygous variants of glucocerebrosidase and parkin genes. Biomed Rep 2021; 14:36. [PMID: 33732455 PMCID: PMC7907964 DOI: 10.3892/br.2021.1412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects movement, and its development is associated with environmental and genetic factors. Genetic variants in GBA and PARK2 are important risk factors implicated in the development of PD; however, their precise roles have yet to be elucidated. The present study aimed to identify and analyse proteins from the skin fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants, and from healthy controls. Liquid chromatography coupled with tandem mass spectrometry and label-free quantitative proteomics were performed to identify and compare differential protein expression levels. Moreover, protein-protein interaction networks were assessed using Search Tool for Retrieval of Interacting Genes analysis. Using these proteomic approaches, 122 and 119 differentially expressed proteins from skin fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants, respectively, were identified and compared. According to the results of protein-protein interaction and Gene Ontology analyses, 14 proteins involved in the negative regulation of macromolecules and mRNA metabolic processes, and protein targeting to the membrane exhibited the largest degree of differential expression in the fibroblasts of patients with PD with a GBA variant, whereas 20 proteins involved in the regulation of biological quality, NAD metabolic process and cytoskeletal organization exhibited the largest degree of differential expression in the fibroblasts of patients with PD with a PARK2 variant. Among these, the expression levels of annexin A2 and tubulin β chain, were most strongly upregulated in the fibroblasts of patients with GBA-PD and PARK2-PD, respectively. Other predominantly expressed proteins were confirmed by western blotting, and the results were consistent with those of the quantitative proteomic analysis. Collectively, the results of the present study demonstrated that the proteomic patterns of fibroblasts of patients with PD carrying heterozygous GBA and PARK2 variants are different and unique. Aberrant expression of the proteins affected by these variants may reflect physiological changes that also occur in neurons, resulting in PD development and progression.
Collapse
Affiliation(s)
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | | | | | - Kittirat Saharat
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - James R. Ketudat Cairns
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Kawinthra Khwanraj
- Faculty of Science, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Permphan Dharmasaroja
- Faculty of Science, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Teeratorn Pulkes
- Division of Neurology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
4
|
Blumenreich S, Jenkins BJ, Barav OB, Milenkovic I, Futerman AH. The Lysosome and Nonmotor Symptoms: Linking Parkinson's Disease and Lysosomal Storage Disorders. Mov Disord 2020; 35:2150-2155. [PMID: 32986899 DOI: 10.1002/mds.28232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 11/07/2022] Open
Affiliation(s)
- Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bethan J Jenkins
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Or B Barav
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ivan Milenkovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Blumenreich S, Barav OB, Jenkins BJ, Futerman AH. Lysosomal Storage Disorders Shed Light on Lysosomal Dysfunction in Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21144966. [PMID: 32674335 PMCID: PMC7404170 DOI: 10.3390/ijms21144966] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The lysosome is a central player in the cell, acting as a clearing house for macromolecular degradation, but also plays a critical role in a variety of additional metabolic and regulatory processes. The lysosome has recently attracted the attention of neurobiologists and neurologists since a number of neurological diseases involve a lysosomal component. Among these is Parkinson’s disease (PD). While heterozygous and homozygous mutations in GBA1 are the highest genetic risk factor for PD, studies performed over the past decade have suggested that lysosomal loss of function is likely involved in PD pathology, since a significant percent of PD patients have a mutation in one or more genes that cause a lysosomal storage disease (LSD). Although the mechanistic connection between the lysosome and PD remains somewhat enigmatic, significant evidence is accumulating that lysosomal dysfunction plays a central role in PD pathophysiology. Thus, lysosomal dysfunction, resulting from mutations in lysosomal genes, may enhance the accumulation of α-synuclein in the brain, which may result in the earlier development of PD.
Collapse
Affiliation(s)
- Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
| | - Or B. Barav
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
| | - Bethan J. Jenkins
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
- Department of Neurobiology, Max Planck Institute of Neurobiology, 82152 Planegg, Germany
| | - Anthony H. Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel; (S.B.); (O.B.B.); (B.J.J.)
- Correspondence: ; Tel.: +972-8-9342704; Fax: +972-8-9344112
| |
Collapse
|
6
|
Aasly JO. Long-Term Outcomes of Genetic Parkinson's Disease. J Mov Disord 2020; 13:81-96. [PMID: 32498494 PMCID: PMC7280945 DOI: 10.14802/jmd.19080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects 1–2% of people by the age of 70 years. Age is the most important risk factor, and most cases are sporadic without any known environmental or genetic causes. Since the late 1990s, mutations in the genes SNCA, PRKN, LRRK2, PINK1, DJ-1, VPS35, and GBA have been shown to be important risk factors for PD. In addition, common variants with small effect sizes are now recognized to modulate the risk for PD. Most studies in genetic PD have focused on finding new genes, but few have studied the long-term outcome of patients with the specific genetic PD forms. Patients with known genetic PD have now been followed for more than 20 years, and we see that they may have distinct and different prognoses. New therapeutic possibilities are emerging based on the genetic cause underlying the disease. Future medication may be based on the pathophysiology individualized to the patient’s genetic background. The challenge is to find the biological consequences of different genetic variants. In this review, the clinical patterns and long-term prognoses of the most common genetic PD variants are presented.
Collapse
Affiliation(s)
- Jan O Aasly
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway.,Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
7
|
Kartha RV, Joers J, Terluk MR, Travis A, Rudser K, Tuite PJ, Weinreb NJ, Jarnes JR, Cloyd JC, Öz G. Neurochemical abnormalities in patients with type 1 Gaucher disease on standard of care therapy. J Inherit Metab Dis 2020; 43:564-573. [PMID: 31613991 PMCID: PMC7156305 DOI: 10.1002/jimd.12182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Type 1 Gaucher disease (GD1), a glycosphingolipid storage disorder caused by deficient activity of lysosomal glucocerebrosidase, is classically considered non-neuronopathic. However, current evidence challenges this view. Multiple studies show that mutations in GBA1 gene and decreased glucocerebrosidase activity are associated with increased risk for Parkinson disease. We tested the hypothesis that subjects with GD1 will show neurochemical abnormalities consistent with cerebral involvement. We performed Magnetic Resonance Spectroscopy at 7 T to quantify neurochemical profiles in participants with GD1 (n = 12) who are on stable therapy. Age and gender matched healthy participants served as controls (n = 13). Neurochemical profiles were obtained from parietal white matter (PWM), posterior cingulate cortex (PCC), and putamen. Further, in the GD1 group, the neurochemical profiles were compared between individuals with and without a single L444P allele. We observed significantly lower levels of key neuronal markers, N-acetylaspartate, γ-aminobutyric acid, glutamate and glutamate-to-glutamine ratio in PCC of participants with GD1 compared to healthy controls (P < .015). Glutamate concentration was also lower in the putamen in GD1 (P = .01). Glucose + taurine concentration was significantly higher in PWM (P = .04). Interestingly, individuals without L444P had significantly lower aspartate and N-acetylaspartylglutamate in PCC (both P < .001), although this group was 7 years younger than those with an L444P allele. This study demonstrates neurochemical abnormalities in individuals with GD1, for which clinical and prognostic significance remains to be determined. Further studies in a larger cohort are required to confirm an association of neurochemical levels with mutation status and glucocerebrosidase structure and function. SYNOPSIS: Ultrahigh field magnetic resonance spectroscopy reveals abnormalities in neurochemical profiles in patients with GD1 compared to matched healthy controls.
Collapse
Affiliation(s)
- Reena V. Kartha
- Center for Orphan Drug Research; University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - James Joers
- Center for Magnetic Resonance Research, Department of Radiology; University of Minnesota, Minneapolis, MN 55455
| | - Marcia R. Terluk
- Center for Orphan Drug Research; University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Abigail Travis
- Center for Orphan Drug Research; University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Kyle Rudser
- Division of Biostatistics; University of Minnesota, Minneapolis, MN 55455
| | - Paul J. Tuite
- Department of Neurology; University of Minnesota, Minneapolis, MN 55455
| | - Neal J. Weinreb
- Department of Human Genetics and Medicine (Hematology), Leonard Miller School of Medicine of University of Miami, Miami, Florida USA
| | - Jeanine R. Jarnes
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
- University of Minnesota Medical Center/Fairview Health Systems, Minneapolis, Minnesota, United States, 55455
| | - James C. Cloyd
- Center for Orphan Drug Research; University of Minnesota, Minneapolis, MN 55455
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
- Department of Human Genetics and Medicine (Hematology), Leonard Miller School of Medicine of University of Miami, Miami, Florida USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology; University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW GBA1 mutations, which result in the lysosomal disorder Gaucher disease, are the most common known genetic risk factor for Parkinson disease and Dementia with Lewy Bodies (DLB). The pathogenesis of this association is not fully understood, but further elucidation of this link could lead to new therapeutic options. RECENT FINDINGS The characteristic clinical phenotype of GBA1-PD resembles sporadic Parkinson disease, but with an earlier onset and more severe course. Many different GBA1 mutations increase the risk of Parkinson disease, some primarily detected in specific populations. Glucocerebrosidase deficiency appears to be associated with increased α-synuclein aggregation and accumulation, mitochondrial dysfunction because of impaired autophagy, and increased endoplasmic reticulum stress. SUMMARY As our understanding of GBA1-associated Parkinson disease increases, new treatment opportunities emerge. MicroRNA profiles are providing examples of both up-regulated and down-regulated proteins related to GBA1 and may provide new therapeutic targets. Chaperone therapy, directed at either misfolded glucocerebrosidase or α-synuclein aggregation, is currently under development and there are several early clinical trials ongoing. Substrate reduction therapy, aimed at lowering the accumulation of metabolic by-products, especially glucosylsphingosine, is also being explored. Basic science insights from the rare disorder Gaucher disease are serving to catapult drug discovery for parkinsonism.
Collapse
|
9
|
Mullin S, Beavan M, Bestwick J, McNeill A, Proukakis C, Cox T, Hughes D, Mehta A, Zetterberg H, Schapira AHV. Evolution and clustering of prodromal parkinsonian features in GBA1 carriers. Mov Disord 2019; 34:1365-1373. [PMID: 31251436 PMCID: PMC6790937 DOI: 10.1002/mds.27775] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background Five to 25% of patients with PD carry glucocerebrosidase gene mutations, and 10% to 30% of glucocerebrosidase carriers will develop PD by age 80. Stratification of PD risk in glucocerebrosidase carriers provides an opportunity to target disease‐modifying therapies. Objective Cross‐sectional and longitudinal survey of prodromal PD signs among glucocerebrosidase carriers. Design Prospective assessment of 82 glucocerebrosidase mutation carriers and 35 controls over 4 to 5 years for prodromal clinical PD features. Results At all time points, olfactory (measured using University of Pennsylvania Smell Identification Test) and cognitive (Montreal Cognitive Assessment) function and the International Parkinson and Movement Disorder Society UPDRS parts II and III scores were significantly worse amongst glucocerebrosidase mutation carriers. Progression to microsmia (odds ratio: 8.5; 95% confidence interval: 2.6–28.2; P < 0.05) and mild cognitive impairment (odds ratio: 4.2; 95% confidence interval: 1.1–16.6; P < 0.05) were more rapid compared to controls. Those with worse olfaction also had worse cognition (OR, 1.5; 95% CI: 0.0–2.8; P < 0.05) and depression (OR, 1.3; 95% CI: 0.6–2.8; P < 0.05). No participants reached the MDS prodromal PD diagnostic criteria before PD diagnosis. One participant developed PD. He did not fulfill the International Parkinson and Movement Disorder Society prodromal PD criteria before diagnosis. Conclusion Assessment of individual and clustered PD prodromal features may serve as a useful tool to identify high‐risk subjects for conversion to PD. As a result of the low conversion rate in our glucocerebrosidase mutation carriers to date, prospective validation is needed in larger cohorts to establish the profile of these features in PD convertors. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stephen Mullin
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.,Institute of Translational and Stratified medicine, Plymouth University Peninsular School of Medicine, Plymouth, United Kingdom
| | - Michelle Beavan
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Jonathan Bestwick
- Wolfson Institute of Preventive Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alisdair McNeill
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Cambridge, United Kingdom
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - Timothy Cox
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, and Department of Haematology, University College London, London, United Kingdom
| | - Atul Mehta
- Lysosomal Storage Disorders Unit, Royal Free Hospital, Royal Free London NHS Foundation Trust, and Department of Haematology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, London, United Kingdom
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
10
|
Wilke MVMB, Dornelles AD, Schuh AS, Vairo FP, Basgalupp SP, Siebert M, Nalin T, Piltcher OB, Schwartz IVD. Evaluation of the frequency of non-motor symptoms of Parkinson's disease in adult patients with Gaucher disease type 1. Orphanet J Rare Dis 2019; 14:103. [PMID: 31077260 PMCID: PMC6509774 DOI: 10.1186/s13023-019-1079-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023] Open
Abstract
Background Gaucher disease (GD) is caused by deficiency of beta-glucocerebrosidase (GCase) due to biallelic variations in the GBA1 gene. Parkinson’s disease (PD) is the second most common neurodegenerative condition. The classic motor symptoms of PD may be preceded by many non-motor symptoms (NMS), which include hyposmia, rapid eye movement (REM) sleep behavior disorder, constipation, cognitive impairment, and depression. Population studies have identified mutations in GBA1 as the main risk factor for idiopathic PD. The present study sought to evaluate the prevalence of NMS in a cohort of patients with GD type 1 from Southern Brazil. Methodology This is an observational, cross-sectional study, with a convenience sampling strategy. Cognition was evaluated by the Montreal Cognitive assessment (MoCa), daytime sleepiness by the Epworth Scale, depression by the Beck Inventory, constipation by the Unified Multiple System Atrophy Rating Scale, and REM sleep behavior disorder by the Single-Question Screen; hyposmia by the Sniffin’ Sticks. Motor symptoms were assessed with part III of the Unified Parkinson’s Disease Rating Scale. All patients were also genotyped for the GBA1 3′-UTR SNP (rs708606). Results Twenty-three patients (female = 13; on enzyme replacement therapy = 21, substrate reduction therapy = 2) with a mean age of 41.45 ± 15.3 years (range, 22–67) were included. Eight patients were found to be heterozygous for the 3′-UTR SNP (rs708606). Fourteen patients (8 over age 40 years) presented at least one NMS; daytime sleepiness was the most frequent (n = 10). Two patients (aged 63 and 64, respectively) also presented motor symptoms, probably drug-related. Conclusions NMS were prevalent in this cohort. We highlight the importance of a multidisciplinary follow-up focusing on earlier diagnosis of PD, especially for patients with GD type 1 over the age of 40.
Collapse
Affiliation(s)
- Matheus V M B Wilke
- Postgraduate Program in Medical Sciences, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Alícia D Dornelles
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Artur S Schuh
- Postgraduate Program in Medical Sciences, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Filippo P Vairo
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Suelen P Basgalupp
- Postgraduate Program in Medical Sciences, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marina Siebert
- Graduate Program in Sciences of Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratory Research Unit, Experimental Research Center, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tatiele Nalin
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Otavio B Piltcher
- Department of Ophthalmology and Otorhinolaryngology, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Ida V D Schwartz
- Postgraduate Program in Medical Sciences, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.,Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,BRAIN Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Greenland JC, Williams-Gray CH, Barker RA. The clinical heterogeneity of Parkinson's disease and its therapeutic implications. Eur J Neurosci 2019; 49:328-338. [PMID: 30059179 DOI: 10.1111/ejn.14094] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/29/2018] [Accepted: 07/24/2018] [Indexed: 02/02/2023]
Abstract
Although Parkinson's disease (PD) is primarily a movement disorder, there are a range of associated nonmotor symptoms, including cognitive impairment, depression and sleep disturbance. These can occur throughout the disease course, even predating the motor syndrome. However, both motor and nonmotor symptoms are variable between individual patients. Rate of disease progression is also heterogenous: although 50% have reached key milestones of either postural instability or dementia within 4 years from diagnosis, almost a quarter have a good prognosis at 10 years. In this review we discuss how a range of different factors including clinical features, pathology and genetics, have been used to describe the heterogeneity of PD. We explore the value of longitudinal studies of incident PD cohorts, based on our own experience in Cambridgeshire, to define differences in rates of disease progression and predictors of outcome, including how such studies have informed the development of prognostic models which can be used at an individual patient level. Finally, we discuss the benefits of better understanding the basis of heterogeneity of PD in terms of implications for the development and trialling of more targeted therapies for different subgroups of patients, including regenerative approaches.
Collapse
Affiliation(s)
- Julia C Greenland
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Caroline H Williams-Gray
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| |
Collapse
|