1
|
Liu W, Yan K, Xu S, Li L, Zhong M, Liu J, Li G, Yang J. ATP8A2 expression is reduced in the mPFC of offspring mice exposed to maternal immune activation and its upregulation ameliorates synapse-associated protein loss and behavioral abnormalities. Brain Behav Immun 2025; 124:409-430. [PMID: 39681198 DOI: 10.1016/j.bbi.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/18/2024] Open
Abstract
Prenatal virus infection-induced maternal immune activation (MIA) is linked to a greater risk of neurodevelopmental disorders in offspring. Prenatal exposure to poly(I:C) in pregnant mice is a well-established approach to mimic virus infection-induced MIA, leading to neuropsychiatric disorders and aberrant brain development, especially in the medial prefrontal cortex (mPFC). ATPase phospholipid flippase 8A2 (ATP8A2) is the main phospholipid lipase, expressed in the mPFC and is crucial for maintaining cell membrane stability by flipping phosphatidylserine from the outer leaflet to the inner leaflet of the cell membrane. Atp8a2 knockout or mutation causes a series of phenotypes, including impaired neuronal cell survival, neuroinflammation, altered synaptic plasticity, and behavioral abnormalities. These findings suggest that ATP8A2 expression in the mPFC may be impaired in MIA offspring and that the decrease in ATP8A2 expression may be involved in the development of MIA-induced neuropsychiatric disorders in offspring. No reports addressing this issue have been published. Here, after confirming abnormal affective-/social-related behaviors in adulthood and reduced synapse-associated protein expression on the birth day (P0) and the fourth postnatal day (P4) in the mPFC of MIA offspring that were born to dams exposed prenatally to a single dose of poly(I:C) (10 mg/kg, i.p.), decreased ATP8A2 expression was also observed in the mPFC of MIA offspring at P0 and P4.Upregulating ATP8A2 in the mPFC restored synapse-associated protein levels, along with a partial improvement in the behavioral performance of MIA offspring. Upregulation of ATP8A2 also blocked neuronal phosphatidylserine externalization and eliminated the excitation/inhibition (E/I) imbalance in the mPFC of MIA offspring. This study revealed that the low expression of ATP8A2 following MIA exposure may play a role in mediating abnormal brain development and function in offspring. ATP8A2 potentially represents a novel molecule involved in MIA-induced neuropsychiatric disorders in offspring, and may serve as a novel therapeutic target for the intervention of psychiatric disorders.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kai Yan
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Siqi Xu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lifang Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Mengdan Zhong
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guoying Li
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Medical Association, Guangzhou, Guangdong 510180, China.
| | - Junhua Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Shin HW, Takatsu H. Substrates, regulation, cellular functions, and disease associations of P4-ATPases. Commun Biol 2025; 8:135. [PMID: 39875509 PMCID: PMC11775268 DOI: 10.1038/s42003-025-07549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
P4-ATPases, a subfamily of the P-type ATPase superfamily, play a crucial role in translocating membrane lipids from the exoplasmic/luminal leaflet to the cytoplasmic leaflet. This process generates and regulates transbilayer lipid asymmetry. These enzymes are conserved across all eukaryotes, and the human genome encodes 14 distinct P4-ATPases. Initially identified as aminophospholipid translocases, P4-ATPases have since been found to translocate other phospholipids, including phosphatidylcholine, phosphatidylinositol, and even glycosphingolipids. Recent advances in structural analysis have significantly improved our understanding of the lipid transport machinery associated with P4-ATPases, as documented in recent reviews. In this review, we highlight the emerging evidence related to substrate diversity, the regulation of cellular localization, enzymatic activities, and their impact on organism homeostasis and diseases.
Collapse
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
3
|
Matsell E, Mazaheri M, Andersen JP, Molday RS. Structural and functional properties of the N- and C-terminal segments of the P4-ATPase phospholipid flippase ATP8A2. J Biol Chem 2025; 301:108065. [PMID: 39662833 PMCID: PMC11750469 DOI: 10.1016/j.jbc.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
ATP8A2 is a P4-ATPase that actively flips phosphatidylserine and to a lesser extent phosphatidylethanolamine across cell membranes to generate and maintain transmembrane phospholipid asymmetry. The importance of this flippase is evident in the finding that loss-of-function mutations in ATP8A2 are known to cause the neurodevelopmental disease known as cerebellar ataxia, intellectual disability, and dysequilibrium syndrome 4 (CAMRQ4) in humans and related neurodegenerative disorders in mice. Although significant progress has been made in understanding mechanisms underlying phospholipid binding and transport across the membrane domain, little is known about the structural and functional properties of the cytosolic N- and C-terminal segments of this flippase. In addition, there has been uncertainty regarding the methionine start site of ATP8A2 and accordingly the size of the N-terminal segment. Here, we have used mass spectrometry to show that bovine ATP8A2 like its human counterpart has an extended N-terminal segment not apparent in the mouse ortholog. This segment greatly enhances the expression of ATP8A2 without affecting its cellular localization or phosphatidylserine-activated ATPase activity. Using a cleavable C-terminal protein and site-directed mutagenesis, we further show that the conserved GYAFS motif in the C-terminal segment plays a role in autoinhibition as well as efficient folding of ATP8A2 into a functional protein.
Collapse
Affiliation(s)
- Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Moloud Mazaheri
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
4
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. Neurogenetics 2024; 25:425-433. [PMID: 39066872 PMCID: PMC11534842 DOI: 10.1007/s10048-024-00773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
ATPase, class 1, type 8 A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, impaired intellectual development, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings born from a consanguineous, first-cousin union from Sudan presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Ahlam A A Hamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Inaam N Mohamed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha A Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E O Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, Riyadh, 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers - Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C, Canada
| | - Mustafa A Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Solna, Sweden
| | - M Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Li Y, Xu S, Luo L, Yang J. Role of Enzymes Capable of Transporting Phosphatidylserine in Brain Development and Brain Diseases. ACS OMEGA 2024; 9:34243-34249. [PMID: 39157110 PMCID: PMC11325426 DOI: 10.1021/acsomega.4c05036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Phosphatidylserine (PS) is a common type of phospholipid, typically located in the inner leaflet of the cell membrane, especially abundant in the nervous system. It is an important component of the neuronal membrane and is considered to play a regulatory role in various brain functions, including memory and emotional stability, because its exposure to the outer leaflet of the neuronal membrane can result in abnormalities in various neurobiological processes such as synaptic transmission and neuronal apoptosis. Recently, research on two types of membrane proteins that synergistically mediate the transmembrane transport of phospholipid molecules in eukaryotic cells has become more in-depth and detailed. This review mainly explores the regulation of the expression of phosphatidylserine transporters and their impact on brain development and diseases.
Collapse
Affiliation(s)
- Yiying Li
- Class
3 Grade 2023, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Siqi Xu
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Li Luo
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Guangdong
Medical Association, Guangzhou, Guangdong 510180, China
| | - Junhua Yang
- Department
of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
- Guangdong
Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
6
|
Matsell E, Andersen JP, Molday RS. Functional and in silico analysis of ATP8A2 and other P4-ATPase variants associated with human genetic diseases. Dis Model Mech 2024; 17:dmm050546. [PMID: 38436085 PMCID: PMC11073571 DOI: 10.1242/dmm.050546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.
Collapse
Affiliation(s)
- Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
7
|
Flannery KP, Safwat S, Matsell E, Battula N, Hamed AAA, Mohamed IN, Elseed MA, Koko M, Abubaker R, Abozar F, Elsayed LEO, Bhise V, Molday RS, Salih MA, Yahia A, Manzini MC. A novel missense variant in the ATPase domain of ATP8A2 and review of phenotypic variability of ATP8A2-related disorders caused by missense changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24306843. [PMID: 38798571 PMCID: PMC11118633 DOI: 10.1101/2024.05.15.24306843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
ATPase, class 1, type 8A, member 2 (ATP8A2) is a P4-ATPase with a critical role in phospholipid translocation across the plasma membrane. Pathogenic variants in ATP8A2 are known to cause cerebellar ataxia, mental retardation, and disequilibrium syndrome 4 (CAMRQ4) which is often associated with encephalopathy, global developmental delay, and severe motor deficits. Here, we present a family with two siblings presenting with global developmental delay, intellectual disability, spasticity, ataxia, nystagmus, and thin corpus callosum. Whole exome sequencing revealed a homozygous missense variant in the nucleotide binding domain of ATP8A2 (p.Leu538Pro) that results in near complete loss of protein expression. This is in line with other missense variants in the same domain leading to protein misfolding and loss of ATPase function. In addition, by performing diffusion-weighted imaging, we identified bilateral hyperintensities in the posterior limbs of the internal capsule suggesting possible microstructural changes in axon tracts that had not been appreciated before and could contribute to the sensorimotor deficits in these individuals.
Collapse
Affiliation(s)
- Kyle P. Flannery
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | - Sylvia Safwat
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Eli Matsell
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Namarata Battula
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| | | | | | - Maha A. Elseed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mahmoud Koko
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Rayan Abubaker
- Sudanese Neurogenetics Research group, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Fatima Abozar
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Liena E. O. Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Vikram Bhise
- Department of Pediatrics and Neurology, Rutgers – Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Robert S. Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, B.C., Canada
| | - Mustafa A. Salih
- Consultant Pediatric Neurologist, Health Sector, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women’s and Children’s Health, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Solna, Sweden
| | - M. Chiara Manzini
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901
| |
Collapse
|
8
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
9
|
Mogensen LS, Mikkelsen SA, Tadini-Buoninsegni F, Holm R, Matsell E, Vilsen B, Molday RS, Andersen JP. On the track of the lipid transport pathway of the phospholipid flippase ATP8A2 - Mutation analysis of residues of the transmembrane segments M1, M2, M3 and M4. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119570. [PMID: 37678495 DOI: 10.1016/j.bbamcr.2023.119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
P4-ATPases, also known as flippases, translocate specific lipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes, thereby generating an asymmetric lipid distribution essential for numerous cellular functions. A debated issue is which pathway within the protein the lipid substrate follows during the translocation. Here we present a comprehensive mutational screening of all amino acid residues in the transmembrane segments M1, M2, M3, and M4 of the flippase ATP8A2, thus allowing the functionally important residues in these transmembrane segments to be highlighted on a background of less important residues. Kinetic analysis of ATPase activity of 130 new ATP8A2 mutants, providing Vmax values as well as apparent affinities of the mutants for the lipid substrate, support a translocation pathway between M2 and M4 ("M2-M4 path"), extending from the entry site, where the lipid substrate binds from the exoplasmic leaflet, to a putative exit site at the cytoplasmic surface, formed by the divergence of M2 and M4. The effects of mutations in the M2-M4 path on the function of the entry site, including loss of lipid specificity in some mutants, suggest that the M2-M4 path and the entry site are conformationally coupled. Many of the residues of the M2-M4 path possess side chains with a potential for interacting with each other in a zipper-like mode, as well as with the head group of the lipid substrate, by ionic/hydrogen bonds. Thus, the translocation of the lipid substrate toward the cytoplasmic bilayer leaflet is comparable to unzipping a zipper of salt bridges/hydrogen bonds.
Collapse
Affiliation(s)
| | | | | | - Rikke Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Eli Matsell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert S Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Department of Ophthalmology and Visual Sciences, Centre for Macular Research, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
10
|
Teov B, Janchevska A, Beqiri-Jasari A, Tasic V, Kungulovski G, Gucev Z. Compound Heterozygosity in Cerebellar Ataxia, Mental Retardation, and Disequilibrium Syndrome Type 4. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2023; 44:85-90. [PMID: 38109455 DOI: 10.2478/prilozi-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Cerebellar ataxia, mental retardation, and disequilibrium syndrome (CAMRQ) is a genetically and clinically heterogeneous disorder with four described subtypes. Autosomal recessive syndrome of cerebellar ataxia, mental retardation, and disequilibrium type 4 (CAMRQ4) is caused by mutations in the ATP8A2 gene. We report an 8-year-old boy with choreoathetosis, hypotonia, without the ability to keep his head up and profound mental retardation. There was quadrupedal locomotion, as well. MRI of the brain revealed a hypotrophy of the corpus callosum, diffuse white matter reduction, widespread delayed myelination and ventriculomegaly. Trio whole-exome sequencing revealed compound heterozygosity in the ATP8A2 gene consisting of a known variant c.1756C>T (p.Arg586*) inherited from the mother and a novel variant c.691_701delCTGATGAAGTT (p.Leu231fs) inherited from the father. CAMRQ type 4 has been found in about 50 patients. To the best of our knowledge, this is the first reported patient with CAMRQ4 with these gene variants. The clinical presentation is severe.
Collapse
Affiliation(s)
- Bojan Teov
- 1University Children's Hospital, Medical Faculty Skopje, North Macedonia
| | | | | | - Velibor Tasic
- 1University Children's Hospital, Medical Faculty Skopje, North Macedonia
| | | | - Zoran Gucev
- 1University Children's Hospital, Medical Faculty Skopje, North Macedonia
| |
Collapse
|
11
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
12
|
Meng T, Chen X, He Z, Huang H, Lin S, Liu K, Bai G, Liu H, Xu M, Zhuang H, Zhang Y, Waqas A, Liu Q, Zhang C, Sun XD, Huang H, Umair M, Yan Y, Feng D. ATP9A deficiency causes ADHD and aberrant endosomal recycling via modulating RAB5 and RAB11 activity. Mol Psychiatry 2023; 28:1219-1231. [PMID: 36604604 PMCID: PMC9816018 DOI: 10.1038/s41380-022-01940-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.
Collapse
Affiliation(s)
- Tian Meng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Xiaoting Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhengjie He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Shiyin Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Kunru Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Guo Bai
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Hao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511500, China
| | - Mindong Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yunlong Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ahmed Waqas
- Department of Zoology, Division of Science and Technology, University of Education, Lahore, 54000, Pakistan
| | - Qian Liu
- Department of Cerebrovascular Disease Center, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Chuan Zhang
- Medical Genetics Center, Gansu Provincial Maternity and Child-care Hospital; Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, 730050, China
| | - Xiang-Dong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGH), Riyadh, 11481, Saudi Arabia. .,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 22209, Pakistan.
| | - Yousheng Yan
- Prenatal Diagnostic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, China. .,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China.
| |
Collapse
|
13
|
Narishige Y, Yaoita H, Shibuya M, Ikeda M, Kodama K, Kawahima A, Okubo Y, Endo W, Inui T, Togashi N, Tanaka S, Kobayashi Y, Onuma A, Takayama J, Tamiya G, Kikuchi A, Kure S, Haginoya K. Two Siblings with Cerebellar Ataxia, Mental Retardation, and Disequilibrium Syndrome 4 and a Novel Variant of ATP8A2. TOHOKU J EXP MED 2022; 256:321-326. [PMID: 35321980 DOI: 10.1620/tjem.2022.j010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yuta Narishige
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Hisao Yaoita
- Department of Pediatrics, Tohoku University School of Medicine
| | - Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Miki Ikeda
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | | | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Soichiro Tanaka
- Department of Pediatric Neurology, Miyagi Children's Hospital.,Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| | - Yasuko Kobayashi
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| | - Akira Onuma
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| | - Jun Takayama
- Tohoku University Graduate School of Medicine.,Tohoku Medical Megabank Organization, Tohoku University.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project
| | - Gen Tamiya
- Tohoku University Graduate School of Medicine.,Tohoku Medical Megabank Organization, Tohoku University.,Statistical Genetics Team, RIKEN Center for Advanced Intelligence Project
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital.,Department of Pediatric Neurology, Takuto Rehabilitation Center for Children
| |
Collapse
|
14
|
Zhang X, Dong W, Zhang J, Liu W, Yin J, Shi D, Ma W. A Novel Mitochondrial-Related Nuclear Gene Signature Predicts Overall Survival of Lung Adenocarcinoma Patients. Front Cell Dev Biol 2021; 9:740487. [PMID: 34760888 PMCID: PMC8573348 DOI: 10.3389/fcell.2021.740487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Lung cancer is the leading cause of cancer-related death worldwide, of which lung adenocarcinoma (LUAD) is one of the main histological subtypes. Mitochondria are vital for maintaining the physiological function, and their dysfunction has been found to be correlated with tumorigenesis and disease progression. Although, some mitochondrial-related genes have been found to correlate with the clinical outcomes of multiple tumors solely. The integrated relationship between nuclear mitochondrial genes (NMGs) and the prognosis of LUAD remains unclear. Methods: The list of NMGs, gene expression data, and related clinical information of LUAD were downloaded from public databases. Bioinformatics methods were used and obtained 18 prognostic related NMGs to construct a risk signature. Results: There were 18 NMGs (NDUFS2, ATP8A2, SCO1, COX14, COA6, RRM2B, TFAM, DARS2, GARS, YARS2, EFG1, GFM1, MRPL3, MRPL44, ISCU, CABC1, HSPD1, and ETHE1) identified by LASSO regression analysis. The mRNA expression of these 18 genes was positively correlated with their relative linear copy number alteration (CNA). Meanwhile, the established risk signature could effectively distinguish high- and low-risk patients, and its predictive capacity was validated in three independent gene expression omnibus (GEO) cohorts. Notably, a significantly lower prevalence of actionable EGFR alterations was presented in patients with high-risk NMGs signature but accompanied with a more inflame immune tumor microenvironment. Additionally, multicomponent Cox regression analysis showed that the model was stable when risk score, tumor stage, and lymph node stage were considered, and the 1-, 3-, and 5-year AUC were 0.74, 0.75, and 0.70, respectively. Conclusion: Together, this study established a signature based on NMGs that is a prognostic biomarker for LUAD patients and has the potential to be widely applied in future clinical settings.
Collapse
Affiliation(s)
- Xiangwei Zhang
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Dong
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jishuai Zhang
- Department of General Thoracic, Feicheng Hospital Affiliated to Shandong First Medical University, Feicheng, China
| | - Wenqiang Liu
- Department of General Thoracic, Shenxian County People's Hospital of Shandong Provincial Group, Liaocheng, China
| | - Jingjing Yin
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Duozhi Shi
- Lifehealthcare Clinical Laboratories, Hangzhou, China
| | - Wei Ma
- Department of General Thoracic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
15
|
Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder. NPJ Genom Med 2021; 6:94. [PMID: 34764295 PMCID: PMC8586153 DOI: 10.1038/s41525-021-00255-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a previously described Atp9a−/− mouse model showed behavioral changes.
Collapse
|
16
|
Benkirane M, Marelli C, Guissart C, Roubertie A, Ollagnon E, Choumert A, Fluchère F, Magne FO, Halleb Y, Renaud M, Larrieu L, Baux D, Patat O, Bousquet I, Ravel JM, Cuntz-Shadfar D, Sarret C, Ayrignac X, Rolland A, Morales R, Pointaux M, Lieutard-Haag C, Laurens B, Tillikete C, Bernard E, Mallaret M, Carra-Dallière C, Tranchant C, Meyer P, Damaj L, Pasquier L, Acquaviva C, Chaussenot A, Isidor B, Nguyen K, Camu W, Eusebio A, Carrière N, Riquet A, Thouvenot E, Gonzales V, Carme E, Attarian S, Odent S, Castrioto A, Ewenczyk C, Charles P, Kremer L, Sissaoui S, Bahi-Buisson N, Kaphan E, Degardin A, Doray B, Julia S, Remerand G, Fraix V, Haidar LA, Lazaro L, Laugel V, Villega F, Charlin C, Frismand S, Moreira MC, Witjas T, Francannet C, Walther-Louvier U, Fradin M, Chabrol B, Fluss J, Bieth E, Castelnovo G, Vergnet S, Meunier I, Verloes A, Brischoux-Boucher E, Coubes C, Geneviève D, Lebouc N, Azulay JP, Anheim M, Goizet C, Rivier F, Labauge P, Calvas P, Koenig M. High rate of hypomorphic variants as the cause of inherited ataxia and related diseases: study of a cohort of 366 families. Genet Med 2021; 23:2160-2170. [PMID: 34234304 DOI: 10.1038/s41436-021-01250-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Diagnosis of inherited ataxia and related diseases represents a real challenge given the tremendous heterogeneity and clinical overlap of the various causes. We evaluated the efficacy of molecular diagnosis of these diseases by sequencing a large cohort of undiagnosed families. METHODS We analyzed 366 unrelated consecutive patients with undiagnosed ataxia or related disorders by clinical exome-capture sequencing. In silico analysis was performed with an in-house pipeline that combines variant ranking and copy-number variant (CNV) searches. Variants were interpreted according to American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines. RESULTS We established the molecular diagnosis in 46% of the cases. We identified 35 mildly affected patients with causative variants in genes that are classically associated with severe presentations. These cases were explained by the occurrence of hypomorphic variants, but also rarely suspected mechanisms such as C-terminal truncations and translation reinitiation. CONCLUSION A significant fraction of the clinical heterogeneity and phenotypic overlap is explained by hypomorphic variants that are difficult to identify and not readily predicted. The hypomorphic C-terminal truncation and translation reinitiation mechanisms that we identified may only apply to few genes, as it relies on specific domain organization and alterations. We identified PEX10 and FASTKD2 as candidates for translation reinitiation accounting for mild disease presentation.
Collapse
Affiliation(s)
- Mehdi Benkirane
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Cecilia Marelli
- Expert Centre for Neurogenetic Diseases and Adult Mitochondrial and Metabolic Diseases, Department of Neurology, Gui de Chauliac Hospital, CHU de Montpellier; Molecular Mechanisms of Neurodegenerative Dementia (MMDN), EPHE, INSERM, Université de Montpellier, Montpellier, France
| | - Claire Guissart
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Agathe Roubertie
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France.,INSERM, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Elizabeth Ollagnon
- Department of Medical Genetics and Reference Centre for Neurological and Neuromuscular Diseases, Croix-Rousse Hospital, Lyon, France
| | - Ariane Choumert
- Department of Rare Neurological Diseases, CHU de la Réunion, Saint-Pierre, France
| | - Frédérique Fluchère
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Fabienne Ory Magne
- Department of Neurology, Purpan Hospital, CHU de Toulouse, Toulouse, France
| | - Yosra Halleb
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Mathilde Renaud
- Departments of Genetics and of Neurology, CHU de Nancy, Nancy, France
| | - Lise Larrieu
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - David Baux
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Olivier Patat
- Department of Clinical Genetics, Purpan Hospital, CHU de Toulouse, Toulouse, France
| | - Idriss Bousquet
- Department of Medical Genetics and Reference Centre for Neurological and Neuromuscular Diseases, Croix-Rousse Hospital, Lyon, France
| | - Jean-Marie Ravel
- Departments of Genetics and of Neurology, CHU de Nancy, Nancy, France
| | - Danielle Cuntz-Shadfar
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Catherine Sarret
- Department of Medical Genetics, Estaing Hospital, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Xavier Ayrignac
- Department of Neurology, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Anne Rolland
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Raoul Morales
- Department of Neurology, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Morgane Pointaux
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Cathy Lieutard-Haag
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France
| | - Brice Laurens
- Departement of Neurology, Groupe Hospitalier Pellegrin, CHU de Bordeaux, Institute for Neurodegenerative Diseases, CNRS-UMR, Université de Bordeaux, Bordeaux, France
| | - Caroline Tillikete
- Department of Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Emilien Bernard
- Department of Neurology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène, INSERM-CNRS-UMR, Université Claude Bernard, Lyon, France
| | - Martial Mallaret
- Department of Functional Explorations of the Nervous System, CHU de Grenoble, Grenoble, France
| | | | - Christine Tranchant
- Department of Neurology, Hautepierre Hospital, CHU de Strasbourg, Strasbourg, France
| | - Pierre Meyer
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France.,PhyMedExp, INSERM, University of Montpellier, CNRS, Montpellier, France
| | - Lena Damaj
- Department of Clinical Genetics, Centre de Référence Maladies Rares Anomalies du Développement, CHU de Rennes, Rennes, France
| | - Laurent Pasquier
- Department of Clinical Genetics, Centre de Référence Maladies Rares Anomalies du Développement, CHU de Rennes, Rennes, France
| | - Cecile Acquaviva
- Department of Hereditary Metabolic Diseases, Centre de Biologie et Pathologie Est, CHU de Lyon et UMR, Bron, France
| | - Annabelle Chaussenot
- Department of Medical Genetics, National Centre for Mitochondrial Diseases, CHU de Nice, Nice, France
| | - Bertrand Isidor
- Department of Medical Genetics, CHU de Nantes, Nantes, France
| | - Karine Nguyen
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - William Camu
- Department of Neurology, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Alexandre Eusebio
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Nicolas Carrière
- Department of Neurology, Roger Salengro Hospital, CHU de Lille, Lille, France
| | - Audrey Riquet
- Department of Pediatrics Neurology, Roger Salengro Hospital, CHU de Lille, Lille, France
| | | | - Victoria Gonzales
- Department of Neurology, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Emilie Carme
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Shahram Attarian
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Sylvie Odent
- Department of Clinical Genetics, Centre de Référence Maladies Rares Anomalies du Développement, CHU de Rennes, Rennes, France
| | - Anna Castrioto
- Department of Functional Explorations of the Nervous System, CHU de Grenoble, Grenoble, France
| | - Claire Ewenczyk
- Neurogenetics Reference Centre, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris (AP-HP), Paris, France
| | - Perrine Charles
- Neurogenetics Reference Centre, Hôpital de la Pitié-Salpêtrière, Assistance Publique- Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurent Kremer
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Samira Sissaoui
- Department of Pediatrics, Hôpital Necker-Enfant Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Nadia Bahi-Buisson
- Department of Pediatrics, Hôpital Necker-Enfant Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Elsa Kaphan
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Adrian Degardin
- Department of Neurology, Roger Salengro Hospital, CHU de Lille, Lille, France
| | - Bérénice Doray
- Department of Medical Genetics, CHU de la Réunion, Saint-Denis, France
| | - Sophie Julia
- Department of Clinical Genetics, Purpan Hospital, CHU de Toulouse, Toulouse, France
| | - Ganaëlle Remerand
- Department of Neonatology, Estaing Hospital, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Valerie Fraix
- Department of Functional Explorations of the Nervous System, CHU de Grenoble, Grenoble, France
| | - Lydia Abou Haidar
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Leila Lazaro
- Department of Pediatrics, CH de la Côte Basque-Bayonne, Bayonne, France
| | - Vincent Laugel
- Department of Pediatrics, Hautepierre Hospital, CHU de Strasbourg, Strasbourg, France
| | - Frederic Villega
- Department of Pediatrics, Groupe Hospitalier Pellegrin, CHU de Bordeaux; Institute for Interdisciplinary Neurosciences (IINS), CNRS -UMR, Université de Bordeaux, Bordeaux, France
| | - Cyril Charlin
- Department of Rare Neurological Diseases, CHU de la Réunion, Saint-Pierre, France
| | - Solène Frismand
- Departments of Genetics and of Neurology, CHU de Nancy, Nancy, France
| | - Marinha Costa Moreira
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Tatiana Witjas
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Christine Francannet
- Department of Medical Genetics, Estaing Hospital, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Ulrike Walther-Louvier
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Mélanie Fradin
- Department of Clinical Genetics, Centre de Référence Maladies Rares Anomalies du Développement, CHU de Rennes, Rennes, France
| | - Brigitte Chabrol
- Departement of Pediatrics, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Joel Fluss
- Pediatric Neurology Unit, Geneva Children's Hospital, Genève, Switzerland
| | - Eric Bieth
- Department of Clinical Genetics, Purpan Hospital, CHU de Toulouse, Toulouse, France
| | | | - Sylvain Vergnet
- Departement of Neurology, Groupe Hospitalier Pellegrin, CHU de Bordeaux, Institute for Neurodegenerative Diseases, CNRS-UMR, Université de Bordeaux, Bordeaux, France
| | - Isabelle Meunier
- INSERM, Institut des Neurosciences de Montpellier, Montpellier, France.,Genetics of Sensory Diseases, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Alain Verloes
- Federation of Genetics, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Elise Brischoux-Boucher
- Department of Medical Genetics, Hôpital Saint-Jacques, CHU de Besançon, Centre de Génétique Humaine, Université de Franche-Comté, Besançon, France
| | - Christine Coubes
- Department of Medical Genetics, Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - David Geneviève
- Department of Medical Genetics, Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Nicolas Lebouc
- Department of Neuroradiology, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Jean Phillipe Azulay
- Department of Neurology, La Timone Hospital, CHU de Marseille, Marseille, France
| | - Mathieu Anheim
- Department of Neurology, Hautepierre Hospital, CHU de Strasbourg, Strasbourg, France
| | - Cyril Goizet
- Department of Medical Genetics, Pellegrin Hospital, CHU de Bordeaux, Bordeaux, France
| | - François Rivier
- Department of Pediatrics, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France.,PhyMedExp, INSERM, University of Montpellier, CNRS, Montpellier, France
| | - Pierre Labauge
- Department of Neurology, Gui de Chauliac Hospital, CHU de Montpellier, Montpellier, France
| | - Patrick Calvas
- Department of Clinical Genetics, Purpan Hospital, CHU de Toulouse, Toulouse, France
| | - Michel Koenig
- PhyMedExp, Institut Universitaire de Recherche Clinique, UMR_CNRS-Université de Montpellier, INSERM, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
17
|
Damásio J, Santos D, Morais S, Brás J, Guerreiro R, Sardoeira A, Cavaco S, Carrilho I, Barbot C, Barros J, Sequeiros J. Congenital ataxia due to novel variant in ATP8A2. Clin Genet 2021; 100:79-83. [PMID: 33682124 DOI: 10.1111/cge.13954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/22/2023]
Abstract
Congenital ataxias are a heterogeneous group of disorders characterized by congenital or early-onset ataxia. Here, we describe two siblings with congenital ataxia, who acquired independent gait by age 4 years. After 16 years of follow-up they presented near normal cognition, cerebellar ataxia, mild pyramidal signs, and dystonia. On exome sequencing, a novel homozygous variant (c.1580-18C > G - intron 17) in ATP8A2 was identified. A new acceptor splice site was predicted by bioinformatics tools, and functionally characterized through a minigene assay. Minigene constructs were generated by PCR-amplification of genomic sequences surrounding the variant of interest and cloning into the pCMVdi vector. Altered splicing was evaluated by expressing these constructs in HEK293T cells. The construct with the c.1580-18C > G homozygous variant produced an aberrant transcript, leading to retention of 17 bp of intron 17, by the use of an alternative acceptor splice site, resulting in a premature stop codon by insertion of four amino acids. These results allowed us to establish this as a disease-causing variant and expand ATP8A2-related disorders to include less severe forms of congenital ataxia.
Collapse
Affiliation(s)
- Joana Damásio
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Serviço Neurologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Diana Santos
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sara Morais
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José Brás
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Ana Sardoeira
- Serviço Neurologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Sara Cavaco
- Unidade Neuropsicologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Inês Carrilho
- Unidade Neurologia Pediátrica, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Clara Barbot
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - José Barros
- Serviço Neurologia, Centro Hospitalar Universitário do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jorge Sequeiros
- UnIGENe/CGPP - Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
18
|
Heidari E, Harrison AN, Jafarinia E, Tavasoli AR, Almadani N, Molday RS, Garshasbi M. Novel variants in critical domains of ATP8A2 and expansion of clinical spectrum. Hum Mutat 2021; 42:491-497. [PMID: 33565221 DOI: 10.1002/humu.24180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/17/2021] [Accepted: 02/07/2021] [Indexed: 12/12/2022]
Abstract
ATP8A2 is a P4-ATPase that flips phosphatidylserine across membranes to generate and maintain transmembrane phospholipid asymmetry. Loss-of-function variants cause severe neurodegenerative and developmental disorders. We have identified three ATP8A2 variants in unrelated Iranian families that cause intellectual disability, dystonia, below-average head circumference, mild optic atrophy, and developmental delay. Additionally, all the affected individuals displayed tooth abnormalities associated with defects in teeth development. Two variants (p.Asp825His and p.Met438Val) reside in critical functional domains of ATP8A2. These variants express at very low levels and lack ATPase activity. Inhibitor studies indicate that these variants are misfolded and degraded by the cellular proteasome. We conclude that Asp825, which coordinates with the Mg2+ ion within the ATP binding site, and Met438 are essential for the proper folding of ATP8A2 into a functional flippase. We also provide evidence on the association of tooth abnormalities with defects in ATP8A2, thereby expanding the clinical spectrum of the associated disease.
Collapse
Affiliation(s)
- Erfan Heidari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alexander N Harrison
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ehsan Jafarinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Tavasoli
- Division of Pediatric Neurology, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Robert S Molday
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Mohamadian M, Ghandil P, Naseri M, Bahrami A, Momen AA. A novel homozygous variant in an Iranian pedigree with cerebellar ataxia, mental retardation, and dysequilibrium syndrome type 4. J Clin Lab Anal 2020; 34:e23484. [PMID: 33079427 PMCID: PMC7676196 DOI: 10.1002/jcla.23484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/12/2020] [Accepted: 06/26/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Cerebellar ataxia, mental retardation, and dysequilibrium (CAMRQ) syndrome is a rare and early-onset neurodevelopmental disorder. Four subtypes of this syndrome have been identified, which are clinically and genetically different. To date, altogether 32 patients have been described with ATP8A2 mutations and phenotypic features assigned to CAMRQ type 4. Herein, three additional patients in an Iranian consanguineous family with non-progressive cerebellar ataxia, severe hypotonia, intellectual disability, dysarthria, and cerebellar atrophy have been identified. METHODS Following the thorough clinical examination, consecutive detections including chromosome karyotyping, chromosomal microarray analysis, and whole exome sequencing (WES) were performed on the proband. The sequence variants derived from WES interpreted by a standard bioinformatics pipeline. Pathogenicity assessment of candidate variant was done by in silico analysis. The familial cosegregation of the WES finding was carried out by PCR-based Sanger sequencing. RESULTS A novel homozygous missense variant (c.1339G > A, p.Gly447Arg) in the ATP8A2 gene was identified and completely segregated with the phenotype in the family. In silico analysis and structural modeling revealed that the p.G477R substitution is deleterious and induced undesired effects on the protein stability and residue distribution in the ligand-binding pocket. The novel sequence variant occurred within an extremely conserved subregion of the ATP-binding domain. CONCLUSION Our findings expand the spectrum of ATP8A2 mutations and confirm the reported genotype-phenotype correlation. These results could improve genetic counseling and prenatal diagnosis in families with clinical presentations related to CAMRQ4 syndrome.
Collapse
Affiliation(s)
- Malihe Mohamadian
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Pegah Ghandil
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Akbar Momen
- Department of Paediatric Neurology, Golestan Medical, Educational, and Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|