1
|
Cao C, Litvak V, Zhan S, Liu W, Zhang C, Sun B, Li D, van Wijk BCM. Low-beta versus high-beta band cortico-subcortical coherence in movement inhibition and expectation. Neurobiol Dis 2024; 201:106689. [PMID: 39366457 DOI: 10.1016/j.nbd.2024.106689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Beta band oscillations in the sensorimotor cortex and subcortical structures, such as the subthalamic nucleus (STN) and internal pallidum (GPi), are closely linked to motor control. Recent research suggests that low-beta (14.5-23.5 Hz) and high-beta (23.5-35 Hz) cortico-STN coherence arise through distinct networks, possibly reflecting indirect and hyperdirect pathways. In this study, we sought to probe whether low- and high-beta coherence also exhibit different functional roles in facilitating and inhibiting movement. Twenty patients with Parkinson's disease who had deep brain stimulation electrodes implanted in either STN or GPi performed a classical go/nogo task while undergoing simultaneous magnetoencephalography and local field potentials recordings. Subjects' expectations were manipulated by presenting go- and nogo-trials with varying probabilities. We identified a lateral source in the sensorimotor cortex for low-beta coherence, as well as a medial source near the supplementary motor area for high-beta coherence. Task-related coherence time courses for these two sources revealed that low-beta coherence was more strongly implicated than high-beta coherence in the performance of go-trials. Accordingly, average pre-stimulus low-beta but not high-beta coherence or spectral power correlated with overall reaction time across subjects. High-beta coherence during unexpected nogo-trials was higher compared to expected nogo-trials at a relatively long latency of 3 s after stimulus presentation. Neither low- nor high-beta coherence showed a significant correlation with patients' symptom severity at baseline assessment. While low-beta cortico-subcortical coherence appears to be related to motor output, the role of high-beta coherence requires further investigation.
Collapse
Affiliation(s)
- Chunyan Cao
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Shikun Zhan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bernadette C M van Wijk
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK; Department of Human Movement Sciences, Vrije Universiteit Amsterdam, 1081, BT, Amsterdam, the Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, 1105, AZ, Amsterdam, the Netherlands.
| |
Collapse
|
2
|
Iwasa SN, Liu X, Naguib HE, Kalia SK, Popovic MR, Morshead CM. Electrical Stimulation for Stem Cell-Based Neural Repair: Zapping the Field to Action. eNeuro 2024; 11:ENEURO.0183-24.2024. [PMID: 39256040 PMCID: PMC11391505 DOI: 10.1523/eneuro.0183-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/12/2024] Open
Affiliation(s)
- Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
| | - Xilin Liu
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Hani E Naguib
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario M5T 2S8, Canada
- Krembil Research Institute, Toronto, Ontario M5T 2S8, Canada
| | - Milos R Popovic
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Cindi M Morshead
- The KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario M5G 2A2, Canada
- CRANIA, University Health Network and University of Toronto, Toronto, Ontario M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
3
|
Fasano A, Mure H, Bick SK, Schiess M, Witt T, Kimura K, Singer A, Sannelli C, Morelli N, Oyama G. Real-world local field potential recordings in patients with deep brain stimulation for Parkinson's disease. Parkinsonism Relat Disord 2024; 125:106090. [PMID: 38538474 DOI: 10.1016/j.parkreldis.2024.106090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Accepted: 03/03/2024] [Indexed: 07/29/2024]
Affiliation(s)
- Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada; Division of Neurology, University of Toronto, Toronto, Canada; Krembil Brain Institute, University Health Network, Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application, Toronto, Canada.
| | - Hideo Mure
- Center for Neuromodulation, Department of Neurosurgery, Kurashiki Heisei Hospital, Kurashiki, Japan
| | - Sarah Kathleen Bick
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mya Schiess
- Department of Neurology, Movement Disorders and Neurodegenerative Disease Program, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Thomas Witt
- Department of Neurosurgery, Indiana University Medical Center, Indianapolis, IN, USA
| | - Katsuo Kimura
- Department of Neurology, Yokohama City University Medical Center, Kanagawa, Japan
| | - Alexa Singer
- Brain Modulation, Neuromodulation Operating Unit, Medtronic PLC, Minneapolis, MN, USA
| | - Claudia Sannelli
- Brain Modulation, Neuromodulation Operating Unit, Medtronic PLC, Minneapolis, MN, USA
| | - Nathan Morelli
- Brain Modulation, Neuromodulation Operating Unit, Medtronic PLC, Minneapolis, MN, USA
| | - Genko Oyama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
4
|
Siddiqui MS, Mari Z. Fine-tuning the brain: The role of local field potentials in DBS programming. Parkinsonism Relat Disord 2024; 125:106956. [PMID: 38616453 DOI: 10.1016/j.parkreldis.2024.106956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Affiliation(s)
| | - Zoltan Mari
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| |
Collapse
|
5
|
Angelini L, Paparella G, Bologna M. Distinguishing essential tremor from Parkinson's disease: clinical and experimental tools. Expert Rev Neurother 2024; 24:799-814. [PMID: 39016323 DOI: 10.1080/14737175.2024.2372339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Essential tremor (ET) and Parkinson's disease (PD) are the most common causes of tremor and the most prevalent movement disorders, with overlapping clinical features that can lead to diagnostic challenges, especially in the early stages. AREAS COVERED In the present paper, the authors review the clinical and experimental studies and emphasized the major aspects to differentiate between ET and PD, with particular attention to cardinal phenomenological features of these two conditions. Ancillary and experimental techniques, including neurophysiology, neuroimaging, fluid biomarker evaluation, and innovative methods, are also discussed for their role in differential diagnosis between ET and PD. Special attention is given to investigations and tools applicable in the early stages of the diseases, when the differential diagnosis between the two conditions is more challenging. Furthermore, the authors discuss knowledge gaps and unsolved issues in the field. EXPERT OPINION Distinguishing ET and PD is crucial for prognostic purposes and appropriate treatment. Additionally, accurate diagnosis is critical for optimizing clinical and experimental research on pathophysiology and innovative therapies. In a few years, integrated technologies could enable accurate, reliable diagnosis from early disease stages or prodromal stages in at-risk populations, but further research combining different techniques is needed.
Collapse
Affiliation(s)
| | - Giulia Paparella
- IRCCS Neuromed, Pozzilli, (IS), Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, (IS), Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Hosny M, Zhu M, Gao W, Elshenhab AM. STN localization using local field potentials based on wavelet packet features and stacking ensemble learning. J Neurosci Methods 2024; 407:110156. [PMID: 38703796 DOI: 10.1016/j.jneumeth.2024.110156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND DBS entails the insertion of an electrode into the patient brain, enabling Subthalamic nucleus (STN) stimulation. Accurate delineation of STN borders is a critical but time-consuming task, traditionally reliant on the neurosurgeon experience in deciphering the intricacies of microelectrode recording (MER). While clinical outcomes of MER have been satisfactory, they involve certain risks to patient safety. Recently, there has been a growing interest in exploring the potential of local field potentials (LFP) due to their correlation with the STN motor territory. METHOD A novel STN detection system, integrating LFP and wavelet packet transform (WPT) with stacking ensemble learning, is developed. Initial steps involve the inclusion of soft thresholding to increase robustness to LFP variability. Subsequently, non-linear WPT features are extracted. Finally, a unique ensemble model, comprising a dual-layer structure, is developed for STN localization. We harnessed the capabilities of support vector machine, Decision tree and k-Nearest Neighbor in conjunction with long short-term memory (LSTM) network. LSTM is pivotal for assigning adequate weights to every base model. RESULTS Results reveal that the proposed model achieved a remarkable accuracy and F1-score of 89.49% and 91.63%. COMPARISON WITH EXISTING METHODS Ensemble model demonstrated superior performance when compared to standalone base models and existing meta techniques. CONCLUSION This framework is envisioned to enhance the efficiency of DBS surgery and reduce the reliance on clinician experience for precise STN detection. This achievement is strategically significant to serve as an invaluable tool for refining the electrode trajectory, potentially replacing the current methodology based on MER.
Collapse
Affiliation(s)
- Mohamed Hosny
- Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha, Egypt.
| | - Minwei Zhu
- First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenpeng Gao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Ahmed M Elshenhab
- Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Liu X, Guang J, Glowinsky S, Abadi H, Arkadir D, Linetsky E, Abu Snineh M, León JF, Israel Z, Wang W, Bergman H. Subthalamic nucleus input-output dynamics are correlated with Parkinson's burden and treatment efficacy. NPJ Parkinsons Dis 2024; 10:117. [PMID: 38879564 PMCID: PMC11180194 DOI: 10.1038/s41531-024-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/31/2024] [Indexed: 06/19/2024] Open
Abstract
The subthalamic nucleus (STN) is pivotal in basal ganglia function in health and disease. Micro-electrode recordings of >25,000 recording sites from 146 Parkinson's patients undergoing deep brain stimulation (DBS) allowed differentiation between subthalamic input, represented by local field potential (LFP), and output, reflected in spike discharge rate (SPK). As with many natural systems, STN neuronal activity exhibits power-law dynamics characterized by the exponent α. We, therefore, dissected STN data into aperiodic and periodic components using the Fitting Oscillations & One Over F (FOOOF) tool. STN LFP showed significantly higher aperiodic exponents than SPK. Additionally, SPK beta oscillations demonstrated a downward frequency shift compared to LFP. Finally, the STN aperiodic and spiking parameters explained a significant fraction of the variance of the burden and treatment efficacy of Parkinson's disease. The unique STN input-output dynamics may clarify its role in Parkinson's physiology and can be utilized in closed-loop DBS therapy.
Collapse
Affiliation(s)
- Xiaowei Liu
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Guoxue Lane No. 37, Chengdu, 610041, Sichuan, China
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - Jing Guang
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - Stefanie Glowinsky
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - Hodaya Abadi
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel
| | - David Arkadir
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Eduard Linetsky
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Muneer Abu Snineh
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | - Juan F León
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Zvi Israel
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, West China School of Medicine, Sichuan University, Guoxue Lane No. 37, Chengdu, 610041, Sichuan, China
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University, Jerusalem, Israel.
- Department of Neurosurgery, Hadassah University Hospital, Jerusalem, Israel.
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
8
|
Swinnen BEKS, Hoy CW, Pegolo E, Matzilevich EU, Sun J, Ishihara B, Morgante F, Pereira E, Baig F, Hart M, Tan H, Sawacha Z, Beudel M, Wang S, Starr P, Little S, Ricciardi L. Basal ganglia theta power indexes trait anxiety in people with Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.04.24308449. [PMID: 38883720 PMCID: PMC11177918 DOI: 10.1101/2024.06.04.24308449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background Neuropsychiatric symptoms are common and disabling in Parkinson's disease (PD), with troublesome anxiety occurring in one-third of patients. Management of anxiety in PD is challenging, hampered by insufficient insight into underlying mechanisms, lack of objective anxiety measurements, and largely ineffective treatments.In this study, we assessed the intracranial neurophysiological correlates of anxiety in PD patients treated with deep brain stimulation (DBS) in the laboratory and at home. We hypothesized that low-frequency (theta-alpha) activity would be associated with anxiety. Methods We recorded local field potentials (LFP) from the subthalamic nucleus (STN) or the globus pallidus pars interna (GPi) DBS implants in three PD cohorts: 1) patients with recordings (STN) performed in hospital at rest via perioperatively externalized leads, without active stimulation, both ON or OFF dopaminergic medication; 2) patients with recordings (STN or GPi) performed at home while resting, via a chronically implanted commercially available sensing-enabled neurostimulator (Medtronic Percept™ device), ON dopaminergic medication, with stimulation both ON or OFF; 3) patients with recordings performed at home while engaging in a behavioral task via STN and GPi leads and electrocorticography paddles (ECoG) over premotor cortex connected to an investigational sensing-enabled neurostimulator, ON dopaminergic medication, with stimulation both ON or OFF.Trait anxiety was measured with validated clinical scales in all participants, and state anxiety was measured with momentary assessment scales at multiple time points in the two at-home cohorts. Power in theta (4-8 Hz) and alpha (8-12 Hz) ranges were extracted from the LFP recordings, and their relation with anxiety ratings was assessed using linear mixed-effects models. Results In total, 33 PD patients (59 hemispheres) were included. Across three independent cohorts, with stimulation OFF, basal ganglia theta power was positively related to trait anxiety (all p<0.05). Also in a naturalistic setting, with individuals at home at rest with stimulation and medication ON, basal ganglia theta power was positively related to trait anxiety (p<0.05). This relationship held regardless of the hemisphere and DBS target. There was no correlation between trait anxiety and premotor cortical theta-alpha power. There was no within-patient association between basal ganglia theta-alpha power and state anxiety. Conclusion We showed that basal ganglia theta activity indexes trait anxiety in PD. Our data suggest that theta could be a possible physiomarker of neuropsychiatric symptoms and specifically of anxiety in PD, potentially suitable for guiding advanced DBS treatment tailored to the individual patient's needs, including non-motor symptoms.
Collapse
Affiliation(s)
- Bart E K S Swinnen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin W Hoy
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Elena Pegolo
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, United Kingdom
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Julia Sun
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Bryony Ishihara
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, United Kingdom
| | - Francesca Morgante
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, United Kingdom
| | - Erlick Pereira
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, United Kingdom
| | - Fahd Baig
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, United Kingdom
| | - Michael Hart
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, United Kingdom
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Zimi Sawacha
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Martijn Beudel
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Wang
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Philip Starr
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Lucia Ricciardi
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, United Kingdom
| |
Collapse
|
9
|
Dong W, Qiu C, Chang L, Sun J, Yan J, Luo B, Lu Y, Liu W, Zhang L, Zhang W. The guiding effect of local field potential during deep brain stimulation surgery for programming in Parkinson's disease patients. CNS Neurosci Ther 2024; 30:e14501. [PMID: 37830232 PMCID: PMC11017450 DOI: 10.1111/cns.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) surgery require subsequent programming, which is complex and cumbersome. The local field potential (LFP) in the deep brain is associated with motor symptom improvement. The current study aimed to identify LFP biomarkers correlated with improved motor symptoms in PD patients after DBS and verify their guiding role in postoperative programming. METHODS Initially, the study included 36 PD patients undergoing DBS surgery. Temporary external electrical stimulation was performed during electrode implantation, and LFP signals around the electrode contacts were collected before and after stimulation. The stimulating contact at 6 months of programming was regarded as the optimal and effective stimulating contact. The LFP signal of this contact during surgery was analyzed to identify potential LFP biomarkers. Next, we randomly assigned another 30 PD patients who had undergone DBS to physician empirical programming and LFP biomarker-guided programming groups and compared the outcomes. RESULTS In the first part of the study, LFP signals of electrode contacts changed after electrical stimulation. Electrical stimulation reduced gamma energy and the beta/alpha oscillation ratio. The different programming method groups were compared, indicating the superiority of beta/alpha oscillations ratio-guided programming over physician experience programming for patients' improvement rate (IR) of UPDRS-III. There were no significant differences in the IR of UPDRS-III, post-LED, IR-PDQ39, number of programmings, and the contact change rate between the gamma oscillations-guided programming and empirical programming groups. CONCLUSION Overall, the findings reveal that gamma oscillations and the beta/alpha oscillations ratio are potential biomarkers for programming in PD patients after DBS. Instead of relying solely on spike action potential signals from single neurons, LFP biomarkers can provide the appropriate depth for electrode placement.
Collapse
Affiliation(s)
- Wenwen Dong
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Chang Qiu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Lei Chang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jian Sun
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiuqi Yan
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Bei Luo
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Yue Lu
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Weiguo Liu
- Department of NeurologyThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Zhang
- Department of geriatric medicineThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| | - Wenbin Zhang
- Department of Functional NeurosurgeryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
10
|
Pereira FES, Jagatheesaperumal SK, Benjamin SR, Filho PCDN, Duarte FT, de Albuquerque VHC. Advancements in non-invasive microwave brain stimulation: A comprehensive survey. Phys Life Rev 2024; 48:132-161. [PMID: 38219370 DOI: 10.1016/j.plrev.2024.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
This survey provides a comprehensive insight into the world of non-invasive brain stimulation and focuses on the evolving landscape of deep brain stimulation through microwave research. Non-invasive brain stimulation techniques provide new prospects for comprehending and treating neurological disorders. We investigate the methods shaping the future of deep brain stimulation, emphasizing the role of microwave technology in this transformative journey. Specifically, we explore antenna structures and optimization strategies to enhance the efficiency of high-frequency microwave stimulation. These advancements can potentially revolutionize the field by providing a safer and more precise means of modulating neural activity. Furthermore, we address the challenges that researchers currently face in the realm of microwave brain stimulation. From safety concerns to methodological intricacies, this survey outlines the barriers that must be overcome to fully unlock the potential of this technology. This survey serves as a roadmap for advancing research in microwave brain stimulation, pointing out potential directions and innovations that promise to reshape the field.
Collapse
Affiliation(s)
| | - Senthil Kumar Jagatheesaperumal
- Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, 60455-970, Ceará, Brazil; Department of Electronics and Communication Engineering, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamilnadu, India
| | - Stephen Rathinaraj Benjamin
- Department of Pharmacology and Pharmacy, Laboratory of Behavioral Neuroscience, Faculty of Medicine, Federal University of Ceará, Fortaleza, 60430-160, Ceará, Brazil
| | | | | | | |
Collapse
|
11
|
Bertrand M, Chabardes S, Fontanier V, Procyk E, Bastin J, Piallat B. Contribution of the subthalamic nucleus to motor, cognitive and limbic processes: an electrophysiological and stimulation study in monkeys. Front Neurosci 2024; 18:1257579. [PMID: 38456146 PMCID: PMC10918855 DOI: 10.3389/fnins.2024.1257579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
Deep brain stimulation of the subthalamic nucleus (STN) has become the gold standard surgical treatment for Parkinson's disease and is being investigated for obsessive compulsive disorders. Even if the role of the STN in the behavior is well documented, its organization and especially its division into several functional territories is still debated. A better characterization of these territories and a better knowledge of the impact of stimulation would address this issue. We aimed to find specific electrophysiological markers of motor, cognitive and limbic functions within the STN and to specifically modulate these components. Two healthy non-human primates (Macaca fascicularis) performed a behavioral task allowing the assessment of motor, cognitive and limbic reward-related behavioral components. During the task, four contacts in the STN allowed recordings and stimulations, using low frequency stimulation (LFS) and high frequency stimulation (HFS). Specific electrophysiological functional markers were found in the STN with beta band activity for the motor component of behavior, theta band activity for the cognitive component, and, gamma and theta activity bands for the limbic component. For both monkeys, dorsolateral HFS and LFS of the STN significantly modulated motor performances, whereas only ventromedial HFS modulated cognitive performances. Our results validated the functional overlap of dorsal motor and ventral cognitive subthalamic territories, and, provide information that tends toward a diffuse limbic territory sensitive to the reward within the STN.
Collapse
Affiliation(s)
- Mathilde Bertrand
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
- Univ. Grenoble Alpes, Department of Neurosurgery, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Grenoble, France
- Clinatec-CEA Leti, Grenoble, France
| | - Vincent Fontanier
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
- Medinetic Learning, Research Department, Paris, France
| | - Emmanuel Procyk
- Univ. Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| | - Brigitte Piallat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institute of Neurosciences, Grenoble, France
| |
Collapse
|
12
|
Bočková M, Lamoš M, Chrastina J, Daniel P, Kupcová S, Říha I, Šmahovská L, Baláž M, Rektor I. Coupling between beta band and high frequency oscillations as a clinically useful biomarker for DBS. NPJ Parkinsons Dis 2024; 10:40. [PMID: 38383550 PMCID: PMC10882016 DOI: 10.1038/s41531-024-00656-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Beta hypersynchrony was recently introduced into clinical practice in Parkinson's disease (PD) to identify the best stimulation contacts and for adaptive deep brain stimulation (aDBS) sensing. However, many other oscillopathies accompany the disease, and beta power sensing may not be optimal for all patients. The aim of this work was to study the potential clinical usefulness of beta power phase-amplitude coupling (PAC) with high frequency oscillations (HFOs). Subthalamic nucleus (STN) local field potentials (LFPs) from externalized DBS electrodes were recorded and analyzed in PD patients (n = 19). Beta power and HFOs were evaluated in a resting-state condition; PAC was then studied and compared with the electrode contact positions, structural connectivity, and medication state. Beta-HFO PAC (mainly in the 200-500 Hz range) was observed in all subjects. PAC was detectable more specifically in the motor part of the STN compared to beta power and HFOs. Moreover, the presence of PAC better corresponds to the stimulation setup based on the clinical effect. PAC is also sensitive to the laterality of symptoms and dopaminergic therapy, where the greater PAC cluster reflects the more affected side and medication "off" state. Coupling between beta power and HFOs is known to be a correlate of the PD "off" state. Beta-HFO PAC seems to be more sensitive than beta power itself and could be more helpful in the selection of the best clinical stimulation contact and probably also as a potential future input signal for aDBS.
Collapse
Affiliation(s)
- Martina Bočková
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jan Chrastina
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Pavel Daniel
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Silvia Kupcová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivo Říha
- Department of Neurosurgery, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Lucia Šmahovská
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Baláž
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic
| | - Ivan Rektor
- Brain and Mind Research Program, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- First Department of Neurology, Masaryk University School of Medicine, St. Anne's Hospital, Brno, Czech Republic.
| |
Collapse
|
13
|
Özkurt TE. Abnormally low sensorimotor α band nonlinearity serves as an effective EEG biomarker of Parkinson's disease. J Neurophysiol 2024; 131:435-445. [PMID: 38230880 DOI: 10.1152/jn.00272.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
Biomarkers obtained from the neurophysiological signals of patients with Parkinson's disease (PD) have objective value in assessing their motor condition for effective diagnosis, monitoring, and clinical intervention. Prominent cortical biomarkers of PD have typically been derived from various β band wave features. This study approached the topic from an alternative perspective and attempted to estimate a recently suggested measure representing α band nonlinear autocorrelative memory from a publicly available EEG dataset that involves 15 patients with earlier-stage PD (dopaminergic medication OFF and ON states) and 16 age-matched healthy controls. The cortical nonlinearity was elevated for the PD ON state compared with the OFF state for bilateral sensorimotor channels C3 and C4 (n = 26; P = 0.003). A similar statistical difference was also identified between PD OFF state and healthy subjects (n = 26; P = 0.049). Analysis over all channels revealed that the α band nonlinearity induced upon medication was constrained to sensorimotor regions. The α nonlinearity measure was compared with a well-accepted cortical biomarker of β-γ phase-amplitude coupling (PAC). They were in moderate negative correlation (r = -0.412; P = 0.036) for only healthy subjects, but not for the patients. The nonlinearity measure was found to be insusceptible to the nonstationary variations within the particular data. Our study provides further evidence that the α band nonlinearity measure can serve as a promising cortical biomarker of PD. The suggested measure can be estimated from a noninvasive low-resolution single scalp EEG channel of patients with relatively early-stage PD, who did not yet need to undergo deep brain stimulation operation.NEW & NOTEWORTHY This study suggests a nonlinearity measure that differentiates Parkinson's disease (PD) dopamine OFF-state scalp EEG data from those of dopamine ON-state patients and healthy subjects. Unlike typical PD cortical biomarkers based on β band activity, this metric shows elevation upon dopaminergic medication in the α band. We provide evidence supporting its potential as an early-stage promising PD biomarker that can be estimated from noninvasive EEG recordings with low resolution and SNR.
Collapse
Affiliation(s)
- Tolga Esat Özkurt
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University (METU), Ankara, Turkey
| |
Collapse
|
14
|
Contaldi E, Leogrande G, Fornaro R, Comi C, Magistrelli L. Menstrual-Related Fluctuations in a Juvenile-Onset Parkinson's Disease Patient Treated with STN-DBS: Correlation with Local Field Potentials. Mov Disord Clin Pract 2024; 11:101-104. [PMID: 38291836 PMCID: PMC10828624 DOI: 10.1002/mdc3.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 02/01/2024] Open
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
- Present address:
Parkinson InstituteASST G. Pini‐CTO, Via Emilio Bignami 120126MilanItaly
| | | | - Riccardo Fornaro
- Department of NeurosurgeryUniversity Hospital “Maggiore Della Carità”NovaraItaly
| | - Cristoforo Comi
- Neurology Unit, S. Andrea Hospital, Department of Translational MedicineUniversity of Piemonte OrientaleVercelliItaly
| | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| |
Collapse
|
15
|
Ochoa JÁ, Gonzalez-Burgos I, Nicolás MJ, Valencia M. Open Hardware Implementation of Real-Time Phase and Amplitude Estimation for Neurophysiologic Signals. Bioengineering (Basel) 2023; 10:1350. [PMID: 38135941 PMCID: PMC10740741 DOI: 10.3390/bioengineering10121350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Adaptive deep brain stimulation (aDBS) is a promising concept in the field of DBS that consists of delivering electrical stimulation in response to specific events. Dynamic adaptivity arises when stimulation targets dynamically changing states, which often calls for a reliable and fast causal estimation of the phase and amplitude of the signals. Here, we present an open-hardware implementation that exploits the concepts of resonators and Hilbert filters embedded in an open-hardware platform. To emulate real-world scenarios, we built a hardware setup that included a system to replay and process different types of physiological signals and test the accuracy of the instantaneous phase and amplitude estimates. The results show that the system can provide a precise and reliable estimation of the phase even in the challenging scenario of dealing with high-frequency oscillations (~250 Hz) in real-time. The framework might be adopted in neuromodulation studies to quickly test biomarkers in clinical and preclinical settings, supporting the advancement of aDBS.
Collapse
Affiliation(s)
- José Ángel Ochoa
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
| | - Irene Gonzalez-Burgos
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
| | - María Jesús Nicolás
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
| | - Miguel Valencia
- Biomedical Engineering Program, Physiological Monitoring and Control Laboratory, CIMA, Universidad de Navarra, Avda Pio XII 55, 31080 Pamplona, Spain; (J.Á.O.); (I.G.-B.); (M.J.N.)
- IdiSNA, Navarra Institute for Health Research, C/Irunlarrea, 31008 Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Campus Universitario, 31009 Pamplona, Spain
| |
Collapse
|
16
|
Radcliffe EM, Baumgartner AJ, Kern DS, Al Borno M, Ojemann S, Kramer DR, Thompson JA. Oscillatory beta dynamics inform biomarker-driven treatment optimization for Parkinson's disease. J Neurophysiol 2023; 129:1492-1504. [PMID: 37198135 DOI: 10.1152/jn.00055.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 05/19/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons and dysregulation of the basal ganglia. Cardinal motor symptoms include bradykinesia, rigidity, and tremor. Deep brain stimulation (DBS) of select subcortical nuclei is standard of care for medication-refractory PD. Conventional open-loop DBS delivers continuous stimulation with fixed parameters that do not account for a patient's dynamic activity state or medication cycle. In comparison, closed-loop DBS, or adaptive DBS (aDBS), adjusts stimulation based on biomarker feedback that correlates with clinical state. Recent work has identified several neurophysiological biomarkers in local field potential recordings from PD patients, the most promising of which are 1) elevated beta (∼13-30 Hz) power in the subthalamic nucleus (STN), 2) increased beta synchrony throughout basal ganglia-thalamocortical circuits, notably observed as coupling between the STN beta phase and cortical broadband gamma (∼50-200 Hz) amplitude, and 3) prolonged beta bursts in the STN and cortex. In this review, we highlight relevant frequency and time domain features of STN beta measured in PD patients and summarize how spectral beta power, oscillatory beta synchrony, phase-amplitude coupling, and temporal beta bursting inform PD pathology, neurosurgical targeting, and DBS therapy. We then review how STN beta dynamics inform predictive, biomarker-driven aDBS approaches for optimizing PD treatment. We therefore provide clinically useful and actionable insight that can be applied toward aDBS implementation for PD.
Collapse
Affiliation(s)
- Erin M Radcliffe
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Alexander J Baumgartner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Mazen Al Borno
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Computer Science and Engineering, University of Colorado Denver, Denver, Colorado, United States
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Daniel R Kramer
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - John A Thompson
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
17
|
Wang S, Zhu G, Shi L, Zhang C, Wu B, Yang A, Meng F, Jiang Y, Zhang J. Closed-Loop Adaptive Deep Brain Stimulation in Parkinson's Disease: Procedures to Achieve It and Future Perspectives. JOURNAL OF PARKINSON'S DISEASE 2023:JPD225053. [PMID: 37182899 DOI: 10.3233/jpd-225053] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease with a heavy burden on patients, families, and society. Deep brain stimulation (DBS) can improve the symptoms of PD patients for whom medication is insufficient. However, current open-loop uninterrupted conventional DBS (cDBS) has inherent limitations, such as adverse effects, rapid battery consumption, and a need for frequent parameter adjustment. To overcome these shortcomings, adaptive DBS (aDBS) was proposed to provide responsive optimized stimulation for PD. This topic has attracted scientific interest, and a growing body of preclinical and clinical evidence has shown its benefits. However, both achievements and challenges have emerged in this novel field. To date, only limited reviews comprehensively analyzed the full framework and procedures for aDBS implementation. Herein, we review current preclinical and clinical data on aDBS for PD to discuss the full procedures for its achievement and to provide future perspectives on this treatment.
Collapse
Affiliation(s)
- Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanyu Zhu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunkui Zhang
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Bing Wu
- Center of Cognition and Brain Science, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fangang Meng
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Yin Jiang
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
18
|
Adaptive Stimulations in a Biophysical Network Model of Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24065555. [PMID: 36982630 PMCID: PMC10053455 DOI: 10.3390/ijms24065555] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Deep brain stimulation (DBS)—through a surgically implanted electrode to the subthalamic nucleus (STN)—has become a widely used therapeutic option for the treatment of Parkinson’s disease and other neurological disorders. The standard conventional high-frequency stimulation (HF) that is currently used has several drawbacks. To overcome the limitations of HF, researchers have been developing closed-loop and demand-controlled, adaptive stimulation protocols wherein the amount of current that is delivered is turned on and off in real-time in accordance with a biophysical signal. Computational modeling of DBS in neural network models is an increasingly important tool in the development of new protocols that aid researchers in animal and clinical studies. In this computational study, we seek to implement a novel technique of DBS where we stimulate the STN in an adaptive fashion using the interspike time of the neurons to control stimulation. Our results show that our protocol eliminates bursts in the synchronized bursting neuronal activity of the STN, which is hypothesized to cause the failure of thalamocortical neurons (TC) to respond properly to excitatory cortical inputs. Further, we are able to significantly decrease the TC relay errors, representing potential therapeutics for Parkinson’s disease.
Collapse
|
19
|
Morelli N, Summers RLS. Association of subthalamic beta frequency sub-bands to symptom severity in patients with Parkinson's disease: A systematic review. Parkinsonism Relat Disord 2023; 110:105364. [PMID: 36997437 DOI: 10.1016/j.parkreldis.2023.105364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Local field potentials (LFP), specifically beta (13-30Hz) frequency measures, have been found to be associated with motor dysfunction in people with Parkinson's disease (PwPD). A consensus on beta subband (low- and high-beta) relationships to clinical state or therapy response has yet to be determined. The objective of this review is to synthesize literature reporting the association of low- and high-beta characteristics to clinical ratings of motor symptoms in PwPD. METHODS A systematic search of existing literature was completed using EMBASE. Articles which collected subthalamic nucleus (STN) LFPs using macroelectrodes in PwPD, analyzed low- (13-20 Hz) and high-beta (21-35 Hz) bands, collected UPDRS-III, and reported correlational strength or predictive capacity of LFPs to UPDRS-III scores. RESULTS The initial search yielded 234 articles, with 11 articles achieving inclusion. Beta measures included power spectral density, peak characteristics, and burst characteristics. High-beta was a significant predictor of UPDRS-III responses to therapy in 5 (100%) articles. Low-beta was significantly associated with UPDRS-III total score in 3 (60%) articles. Low- and high-beta associations to UPDRS-III subscores were mixed. CONCLUSION This systematic review reinforces previous reports that beta band oscillatory measures demonstrate a consistent relationship to Parkinsonian motor symptoms and ability to predict motor response to therapy. Specifically, high-beta, demonstrated a consistent ability to predict UPDRS-III responses to common PD therapies, while low-beta measures were associated with general Parkinsonian symptom severity. Continued research is needed to determine which beta subband demonstrates the greatest association to motor symptom subtypes and potentially offers clinical utility toward LFP-guided DBS programming and adaptive DBS.
Collapse
|