1
|
Ciricugno A, Oldrati V, Cattaneo Z, Leggio M, Urgesi C, Olivito G. Cerebellar Neurostimulation for Boosting Social and Affective Functions: Implications for the Rehabilitation of Hereditary Ataxia Patients. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1651-1677. [PMID: 38270782 PMCID: PMC11269351 DOI: 10.1007/s12311-023-01652-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/26/2024]
Abstract
Beyond motor deficits, spinocerebellar ataxia (SCA) patients also suffer cognitive decline and show socio-affective difficulties, negatively impacting on their social functioning. The possibility to modulate cerebello-cerebral networks involved in social cognition through cerebellar neurostimulation has opened up potential therapeutic applications for ameliorating social and affective difficulties. The present review offers an overview of the research on cerebellar neurostimulation for the modulation of socio-affective functions in both healthy individuals and different clinical populations, published in the time period 2000-2022. A total of 25 records reporting either transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) studies were found. The investigated clinical populations comprised different pathological conditions, including but not limited to SCA syndromes. The reviewed evidence supports that cerebellar neurostimulation is effective in improving social abilities in healthy individuals and reducing social and affective symptoms in different neurological and psychiatric populations associated with cerebellar damage or with impairments in functions that involve the cerebellum. These findings encourage to further explore the rehabilitative effects of cerebellar neurostimulation on socio-affective deficits experienced by patients with cerebellar abnormalities, as SCA patients. Nevertheless, conclusions remain tentative at this stage due to the heterogeneity characterizing stimulation protocols, study methodologies and patients' samples.
Collapse
Affiliation(s)
- Andrea Ciricugno
- IRCCS Mondino Foundation, 27100, Pavia, Italy.
- Department of Brain and Behavioral Science, University of Pavia, 27100, Pavia, Italy.
| | - Viola Oldrati
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
| | - Zaira Cattaneo
- IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Human and Social Sciences, University of Bergamo, 24129, Bergamo, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS Eugenio Medea, 23842, Bosisio Parini, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, 33100, Udine, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185, Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179, Rome, Italy
| |
Collapse
|
2
|
Kumar M, Tyagi N, Faruq M. The molecular mechanisms of spinocerebellar ataxias for DNA repeat expansion in disease. Emerg Top Life Sci 2023; 7:289-312. [PMID: 37668011 DOI: 10.1042/etls20230013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of neurodegenerative disorders which commonly inherited in an autosomal dominant manner. They cause muscle incoordination due to degeneration of the cerebellum and other parts of nervous system. Out of all the characterized (>50) SCAs, 14 SCAs are caused due to microsatellite repeat expansion mutations. Repeat expansions can result in toxic protein gain-of-function, protein loss-of-function, and/or RNA gain-of-function effects. The location and the nature of mutation modulate the underlying disease pathophysiology resulting in varying disease manifestations. Potential toxic effects of these mutations likely affect key major cellular processes such as transcriptional regulation, mitochondrial functioning, ion channel dysfunction and synaptic transmission. Involvement of several common pathways suggests interlinked function of genes implicated in the disease pathogenesis. A better understanding of the shared and distinct molecular pathogenic mechanisms in these diseases is required to develop targeted therapeutic tools and interventions for disease management. The prime focus of this review is to elaborate on how expanded 'CAG' repeats contribute to the common modes of neurotoxicity and their possible therapeutic targets in management of such devastating disorders.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Nishu Tyagi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Mohammed Faruq
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| |
Collapse
|
3
|
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci 2022; 17:1068-1081. [PMID: 35733348 PMCID: PMC9714429 DOI: 10.1093/scan/nsac042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
The cerebellum is one-third the size of the cerebrum yet holds twice the number of neurons. Historically, its sole function was thought to be in the calibration of smooth movements through the creation and ongoing modification of motor programs. This traditional viewpoint has been challenged by findings showing that cerebellar damage can lead to striking changes in non-motor behavior, including emotional changes. In this manuscript, we review the literature on clinical and subclinical affective disturbances observed in individuals with lesions to the cerebellum. Disorders include pathological laughing and crying, bipolar disorder, depression and mixed mood changes. We propose a theoretical model based on cerebellar connectivity to explain how the cerebellum calibrates affect. We conclude with actionable steps for future researchers to test this model and improve upon the limitations of past literature.
Collapse
Affiliation(s)
| | - Linda J Hoffman
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ingrid R Olson
- Correspondence should be addressed to Ingrid R. Olson, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. E-mail:
| |
Collapse
|
4
|
Perez BA, Shorrock HK, Banez‐Coronel M, Zu T, Romano LEL, Laboissonniere LA, Reid T, Ikeda Y, Reddy K, Gomez CM, Bird T, Ashizawa T, Schut LJ, Brusco A, Berglund JA, Hasholt LF, Nielsen JE, Subramony SH, Ranum LPW. CCG•CGG interruptions in high-penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Mol Med 2021; 13:e14095. [PMID: 34632710 PMCID: PMC8573593 DOI: 10.15252/emmm.202114095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8), a dominantly inherited neurodegenerative disorder caused by a CTG•CAG expansion, is unusual because most individuals that carry the mutation do not develop ataxia. To understand the variable penetrance of SCA8, we studied the molecular differences between highly penetrant families and more common sporadic cases (82%) using a large cohort of SCA8 families (n = 77). We show that repeat expansion mutations from individuals with multiple affected family members have CCG•CGG interruptions at a higher frequency than sporadic SCA8 cases and that the number of CCG•CGG interruptions correlates with age at onset. At the molecular level, CCG•CGG interruptions increase RNA hairpin stability, and in cell culture experiments, increase p-eIF2α and polyAla and polySer RAN protein levels. Additionally, CCG•CGG interruptions, which encode arginine interruptions in the polyGln frame, increase toxicity of the resulting proteins. In summary, SCA8 CCG•CGG interruptions increase polyAla and polySer RAN protein levels, polyGln protein toxicity, and disease penetrance and provide novel insight into the molecular differences between SCA8 families with high vs. low disease penetrance.
Collapse
Affiliation(s)
- Barbara A Perez
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Hannah K Shorrock
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Monica Banez‐Coronel
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tao Zu
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lisa EL Romano
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Lauren A Laboissonniere
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Tammy Reid
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
| | - Yoshio Ikeda
- Department of NeurologyGunma UniversityMaebashiJapan
| | - Kaalak Reddy
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | | | - Thomas Bird
- Department of NeurologyUniversity of WashingtonSeattleWAUSA
- Geriatrics Research SectionVA Puget Sound Health Care SystemSeattleWAUSA
| | - Tetsuo Ashizawa
- Department of NeurologyHouston Methodist Research InstituteHoustonTXUSA
| | | | - Alfredo Brusco
- Department of Medical SciencesUniversity of TorinoTorinoItaly
- Medical Genetics Units“Città della Salute e della Scienza” University HospitalTorinoItaly
| | - J Andrew Berglund
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- RNA InstituteUniversity at Albany–SUNYAlbanyNYUSA
| | - Lis F Hasholt
- Institute of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Jorgen E Nielsen
- Department of NeurologyRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - SH Subramony
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
| | - Laura PW Ranum
- Center for NeuroGeneticsUniversity of FloridaGainesvilleFLUSA
- Department of Molecular Genetics and MicrobiologyUniversity of FloridaGainesvilleFLUSA
- McKnight Brain InstituteUniversity of FloridaGainesvilleFLUSA
- Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
5
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2020; 19:102-125. [PMID: 31522332 PMCID: PMC6978293 DOI: 10.1007/s12311-019-01068-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703 Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000 Charleroi, Belgium
- Department of Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | | | | | - Richard B. Ivry
- Department of Psychology, University of California, Berkeley, CA USA
| | - Jeremy D. Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
6
|
Argyropoulos GPD, van Dun K, Adamaszek M, Leggio M, Manto M, Masciullo M, Molinari M, Stoodley CJ, Van Overwalle F, Ivry RB, Schmahmann JD. The Cerebellar Cognitive Affective/Schmahmann Syndrome: a Task Force Paper. CEREBELLUM (LONDON, ENGLAND) 2019. [PMID: 31522332 DOI: 10.1007/s12311‐019‐01068‐8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sporadically advocated over the last two centuries, a cerebellar role in cognition and affect has been rigorously established in the past few decades. In the clinical domain, such progress is epitomized by the "cerebellar cognitive affective syndrome" ("CCAS") or "Schmahmann syndrome." Introduced in the late 1990s, CCAS reflects a constellation of cerebellar-induced sequelae, comprising deficits in executive function, visuospatial cognition, emotion-affect, and language, over and above speech. The CCAS thus offers excellent grounds to investigate the functional topography of the cerebellum, and, ultimately, illustrate the precise mechanisms by which the cerebellum modulates cognition and affect. The primary objective of this task force paper is thus to stimulate further research in this area. After providing an up-to-date overview of the fundamental findings on cerebellar neurocognition, the paper substantiates the concept of CCAS with recent evidence from different scientific angles, promotes awareness of the CCAS as a clinical entity, and examines our current insight into the therapeutic options available. The paper finally identifies topics of divergence and outstanding questions for further research.
Collapse
Affiliation(s)
| | - Kim van Dun
- Rehabilitation Research Center REVAL, UHasselt, Hasselt, Belgium
| | - Michael Adamaszek
- Clinical and Cognitive Neurorehabilitation, Center of Neurology and Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht 1-2, 01703, Kreischa, Germany
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, 6000, Charleroi, Belgium.,Department of Neurosciences, University of Mons, 7000, Mons, Belgium
| | - Marcella Masciullo
- SPInal REhabilitation Lab (SPIRE), IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Marco Molinari
- Neuro-Robot Rehabilitation Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | | | | | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Ayhan F, Perez BA, Shorrock HK, Zu T, Banez-Coronel M, Reid T, Furuya H, Clark HB, Troncoso JC, Ross CA, Subramony SH, Ashizawa T, Wang ET, Yachnis AT, Ranum LP. SCA8 RAN polySer protein preferentially accumulates in white matter regions and is regulated by eIF3F. EMBO J 2018; 37:embj.201899023. [PMID: 30206144 DOI: 10.15252/embj.201899023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 8 (SCA8) is caused by a bidirectionally transcribed CTG·CAG expansion that results in the in vivo accumulation of CUG RNA foci, an ATG-initiated polyGln and a polyAla protein expressed by repeat-associated non-ATG (RAN) translation. Although RAN proteins have been reported in a growing number of diseases, the mechanisms and role of RAN translation in disease are poorly understood. We report a novel toxic SCA8 polySer protein which accumulates in white matter (WM) regions as aggregates that increase with age and disease severity. WM regions with polySer aggregates show demyelination and axonal degeneration in SCA8 human and mouse brains. Additionally, knockdown of the eukaryotic translation initiation factor eIF3F in cells reduces steady-state levels of SCA8 polySer and other RAN proteins. Taken together, these data show polySer and WM abnormalities contribute to SCA8 and identify eIF3F as a novel modulator of RAN protein accumulation.
Collapse
Affiliation(s)
- Fatma Ayhan
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barbara A Perez
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hannah K Shorrock
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tao Zu
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Monica Banez-Coronel
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tammy Reid
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Hirokazu Furuya
- Department of Neurology, Kochi Medical School, Kochi University, Kochi, Japan.,Department of Neurology, Neuro-Muscular Center, NHO Omuta Hospital, Fukuoka, Japan
| | - H Brent Clark
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Juan C Troncoso
- Department of Pathology and Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher A Ross
- Department of Psychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Huntington's Disease Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S H Subramony
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Eric T Wang
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Laura Pw Ranum
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL, USA .,Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.,Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.,Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Lindsay E, Storey E. Cognitive Changes in the Spinocerebellar Ataxias Due to Expanded Polyglutamine Tracts: A Survey of the Literature. Brain Sci 2017; 7:brainsci7070083. [PMID: 28708110 PMCID: PMC5532596 DOI: 10.3390/brainsci7070083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
The dominantly-inherited ataxias characterised by expanded polyglutamine tracts—spinocere bellar ataxias (SCAs) 1, 2, 3, 6, 7, 17, dentatorubral pallidoluysian atrophy (DRPLA) and, in part, SCA 8—have all been shown to result in various degrees of cognitive impairment. We survey the literature on the cognitive consequences of each disorder, attempting correlation with their published neuropathological, magnetic resonance imaging (MRI) and clinical features. We suggest several psychometric instruments for assessment of executive function, whose results are unlikely to be confounded by visual, articulatory or upper limb motor difficulties. Finally, and with acknowledgement of the inadequacies of the literature to date, we advance a tentative classification of these disorders into three groups, based on the reported severity of their cognitive impairments, and correlated with their neuropathological topography and MRI findings: group 1—SCAs 6 and 8—mild dysexecutive syndrome based on disruption of cerebello-cortical circuitry; group 2—SCAs 1, 2, 3, and 7—more extensive deficits based largely on disruption of striatocortical in addition to cerebello-cerebral circuitry; and group 3—SCA 17 and DRPLA—in which cognitive impairment severe enough to cause a dementia syndrome is a frequent feature.
Collapse
Affiliation(s)
- Evelyn Lindsay
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| | - Elsdon Storey
- Department of Medicine (Neuroscience), Monash University (Alfred Hospital Campus), Commercial Road, Melbourne, VIC 3004, Australia.
| |
Collapse
|
9
|
Terada T, Kono S, Konishi T, Miyajima H, Ouchi Y. Altered GABAergic system in the living brain of a patient with spinocerebellar ataxia type 8. J Neurol 2013; 260:3164-6. [PMID: 24162040 DOI: 10.1007/s00415-013-7167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Tatsuhiro Terada
- Department of Biofunctional Imaging, Medical Photonics Research Centre, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan,
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Ikeda Y, Ranum LPW, Day JW. Clinical and genetic features of spinocerebellar ataxia type 8. HANDBOOK OF CLINICAL NEUROLOGY 2012; 103:493-505. [PMID: 21827909 DOI: 10.1016/b978-0-444-51892-7.00031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yoshio Ikeda
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
12
|
O'Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning: a critical review. J Clin Exp Neuropsychol 2011; 34:35-56. [PMID: 22047489 DOI: 10.1080/13803395.2011.614599] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The cerebellum, while once considered a brain region principally involved in motor control and coordination, is increasingly becoming associated with a range of neuropsychological and neuropsychiatric presentations. This paper reviews the dominant neuropsychological domains and neuropsychiatric conditions for which cerebellar involvement has been demonstrated, including visuospatial functioning, learning and memory, language, executive functioning, attention-deficit/hyperactivity disorder, autism spectrum disorders, and schizophrenia. The paper concludes with a discussion of a potential neuropsychological localization model within the cerebellum and a discussion of prognosis and rates of recovery that can be expected, following localized cerebellar lesions.
Collapse
|
13
|
The Recognition of Facial Emotions in Spinocerebellar Ataxia Patients. THE CEREBELLUM 2011; 10:600-10. [DOI: 10.1007/s12311-011-0276-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Orsi L, D'Agata F, Caroppo P, Franco A, Caglio MM, Avidano F, Manzone C, Mortara P. Neuropsychological picture of 33 spinocerebellar ataxia cases. J Clin Exp Neuropsychol 2011; 33:315-25. [DOI: 10.1080/13803395.2010.518139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Orsi
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- c Neurological Clinic II, AOU San Giovanni Battista , Turin, Italy
- e Center for Spinocerebellar Ataxia Diseases, AOU San Giovanni Battista , Turin, Italy
| | - Federico D'Agata
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
- g Department of Psychology , University of Turin , Turin, Italy
| | - Paola Caroppo
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- b Neurological Clinic I, AOU San Giovanni Battista , Turin, Italy
- e Center for Spinocerebellar Ataxia Diseases, AOU San Giovanni Battista , Turin, Italy
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| | - Alessandra Franco
- c Neurological Clinic II, AOU San Giovanni Battista , Turin, Italy
- d Neurological Division ASL 4, Ciriè Hospital , Ciriè, Italy
| | | | - Federica Avidano
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| | - Cristina Manzone
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| | - Paolo Mortara
- a Department of Neuroscience , AOU San Giovanni Battista , Turin, Italy
- b Neurological Clinic I, AOU San Giovanni Battista , Turin, Italy
- f Laboratory of Neuropsychology, AOU San Giovanni Battista , Turin, Italy
| |
Collapse
|
15
|
Hu SH, Wei N, Wang QD, Yan LQ, Wei EQ, Zhang MM, Hu JB, Huang ML, Zhou WH, Xu Y. Patterns of brain activation during visually evoked sexual arousal differ between homosexual and heterosexual men. AJNR Am J Neuroradiol 2008; 29:1890-6. [PMID: 18768725 DOI: 10.3174/ajnr.a1260] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Nowadays the mechanism of homosexuality is little known. Few studies have been carried out to explore the brain functional changes of homosexual men during sexual arousal. We used functional MR imaging (fMRI) to determine whether the patterns of brain activation in homosexual and heterosexual men differed during visually evoked sexual arousal. MATERIALS AND METHODS To all the subjects (10 homosexual and 10 heterosexual), real-time visual stimulation was provided by 3-minute exposure to 3 types of erotic film: heterosexual couples (F-M), male homosexual couples (M-M), and female homosexual couples (F-F) engaged in sexual activity, during which time fMRI was used to determine the patterns of brain activation. Self-reports of level of sexual arousal were collected immediately afterward. RESULTS Statistical parametric mapping showed that viewing erotic film excerpts that induced sexual arousal was associated, in both groups, with activation of the middle prefrontal gyrus, bilateral temporal lobe and postcentral gyrus, thalamus, insula, vermis, left precuneus, occipital cortex, parietal cortex, and cerebellum. In homosexual men, the left angular gyrus, left caudate nucleus, and right pallidum were activated; in contrast, heterosexual men showed no activation in these regions. However, heterosexual men showed activation in the bilateral lingual gyrus, right hippocampus, and right parahippocampal gyrus, areas not activated in homosexual men. In both groups, region-of-interest analysis revealed no correlation between the magnitude of amygdala or thalamus activation and the reported level of sexual arousal. CONCLUSION Our findings indicate that different neural circuits are active during sexual arousal in homosexual and heterosexual men and may contribute to a better understanding of the neural basis of male sexual orientation.
Collapse
Affiliation(s)
- S-H Hu
- Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Torrens L, Burns E, Stone J, Graham C, Wright H, Summers D, Sellar R, Porteous M, Warner J, Zeman A. Spinocerebellar ataxia type 8 in Scotland: frequency, neurological, neuropsychological and neuropsychiatric findings. Acta Neurol Scand 2008; 117:41-8. [PMID: 18095954 DOI: 10.1111/j.1600-0404.2007.00904.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The objectives of this study were to: (i) establish whether the spinocerebellar ataxia type 8 (SCA 8) expansion is associated with ataxia in Scotland; (ii) test the hypothesis that SCA 8 is associated with neuropsychological impairment; and (iii) review neuroradiological findings in SCA 8. METHODS The methods included: (i) measurement of SCA 8 expansion frequencies in ataxic patients and healthy controls; (ii) comprehensive neuropsychological assessment of patients with SCA 8 and matched controls, neuropsychiatric interview; and (iii) comparison of patient and matched control magnetic resonance imaging (MRI) scans. RESULTS (i) 10/694 (1.4%) unrelated individuals with ataxia had combined CTA/CTG repeat expansions >100 compared to 1/1190 (0.08%) healthy controls (P < 0.0005); (ii) neuropsychological assessment revealed a dysexecutive syndrome among SCA 8 patients, not readily explained by motor or mood disturbance; neuropsychiatric symptoms occurred commonly; (iii) cerebellar atrophy was the only salient MRI abnormality in the patient group. CONCLUSIONS The SCA 8 expansion is associated with ataxia in Scotland. The disorder is associated with a dysexecutive syndrome.
Collapse
Affiliation(s)
- L Torrens
- The Robert Fergusson Unit, Royal Edinburgh Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
White matter hyperintense lesions in genetically proven spinocerebellar ataxia 8. Clin Neurol Neurosurg 2007; 110:65-8. [PMID: 17920187 DOI: 10.1016/j.clineuro.2007.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 08/14/2007] [Accepted: 08/18/2007] [Indexed: 11/21/2022]
Abstract
We report two brothers with a progressive cerebellar syndrome due to spinocerebellar ataxia type 8 (SCA8). In addition to severe cerebellar atrophy, both had prominent white matter hyperintensities on cranial MRI. This is the first report of white matter hyperintensities on cranial MRI in patients with SCA8. A disorder due to a similar molecular basis, myotonic dystrophy 1 (DM1), is known to have white matter hyperintensities on cranial MRI. Cognitive impairment is well described in DM1 and is being recognized in SCA8. The significance of these associations is discussed.
Collapse
|
18
|
Lilja A, Hämäläinen P, Kaitaranta E, Rinne R. Cognitive impairment in spinocerebellar ataxia type 8. J Neurol Sci 2005; 237:31-8. [PMID: 15958266 DOI: 10.1016/j.jns.2005.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 01/25/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Only a limited number of studies have investigated the cognitive performances of spinocerebellar ataxia (SCA) patients. In none of the SCA8 studies have the neuropsychological test performances been the primary measures. The objective of the current study was to investigate the characteristics of cognitive deficits in SCA8. METHODS Ten SCA8 patients and ten case-by-case matched control subjects underwent a comprehensive neuropsychological examination evaluating attention and information processing, concept formation, reasoning and executive functions, verbal production, memory and learning and visuoperceptual and -constructive functions. RESULTS SCA8 patients demonstrated deficits primarily in attention and information processing, as well as in concept formation, reasoning, executive functions and verbal production. Visuoperceptual and -constructive functions, as well as most of the performances of memory were unaffected. CONCLUSIONS Cognitive impairments, especially those related to attention, information processing and executive functions, seem to be a clinical feature of SCA8 disease.
Collapse
Affiliation(s)
- Arja Lilja
- Masku Neurological Rehabilitation Centre, P.O. Box 15, FIN-21251 Masku, Finland.
| | | | | | | |
Collapse
|
19
|
Viau M, Boulanger Y. Characterization of ataxias with magnetic resonance imaging and spectroscopy. Parkinsonism Relat Disord 2004; 10:335-51. [PMID: 15261875 DOI: 10.1016/j.parkreldis.2004.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 02/17/2004] [Accepted: 02/26/2004] [Indexed: 11/19/2022]
Abstract
A wide variety of autosomal transmitted ataxias exist and their ultimate characterization requires genetic testing. Common clinical characteristics among different ataxia types complicate the choice of the appropriate genetic test. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) generally show cerebellar or cerebral atrophy and perturbed metabolite levels which differ between ataxias. In order to help the clinician accurately identify the ataxia type, reported MRI and MRS data in different brain regions are summarized for more than 60 different types of autosomal inherited and sporadic ataxias.
Collapse
Affiliation(s)
- Martin Viau
- Département de Radiologie, Hôpital Saint-Luc, Centre Hospitalier de l'Université de Montréal, 1058 St-Denis, Montréal, Québec, Canada H2X 3J4
| | | |
Collapse
|
20
|
Zeman A, Stone J, Porteous M, Burns E, Barron L, Warner J. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry 2004; 75:459-65. [PMID: 14966165 PMCID: PMC1738991 DOI: 10.1136/jnnp.2003.018895] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To establish whether the DNA expansion linked to spinocerebellar ataxia type 8 (SCA 8) is associated with ataxia in Scotland; to clarify the range of associated clinical phenotypes; and to compare the findings with previous reports. METHODS DNA was screened from 1190 anonymised controls, 137 subjects who had tested negative for Huntington's disease, 176 with schizophrenia, and 173 with undiagnosed ataxia. Five unrelated ataxic patients with the SCA 8 expansion and a sixth identified subsequently had clinical and psychometric assessment; the clinical features were available in a seventh. A systematic search for other reports of SCA 8 was undertaken. RESULTS Over 98% of SCA 8 CTA/CTG repeat lengths fell between 14 and 40. Repeat lengths over 91 were observed in three healthy controls (0.12%), two patients with suspected Huntington's disease (0.73%), and six ataxic subjects (1.74%; p<0.0005 v healthy controls). Repeat lengths over 100 occurred in five ataxic subjects but in only one control. All seven symptomatic subjects with the SCA 8 expansion had a cerebellar syndrome; four had upper motor neurone signs; and 5/6 assessed had cognitive complaints. There was personality change in two and mood disturbance in three. In published reports, SCA 8 repeat lengths over 91 occurred in approximately 0.5% of the healthy population but were over-represented among ataxic patients (3.4%; p<0.0001). The predominant clinical phenotype was cerebellar, with pyramidal signs in 50%, and neuropsychiatric features in some cases. CONCLUSIONS SCA 8 expansion is a risk factor for a cerebellar syndrome, often associated with upper motor neurone and neuropsychiatric features. The expansion occurs unexpectedly often in the general population.
Collapse
Affiliation(s)
- A Zeman
- Department of Clinical Neurosciences, University of Edinburgh, Western General Hospital, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Brain mechanisms that control human sexual behavior in general, and ejaculation in particular, are poorly understood. We used positron emission tomography to measure increases in regional cerebral blood flow (rCBF) during ejaculation compared with sexual stimulation in heterosexual male volunteers. Manual penile stimulation was performed by the volunteer's female partner. Primary activation was found in the mesodiencephalic transition zone, including the ventral tegmental area, which is involved in a wide variety of rewarding behaviors. Parallels are drawn between ejaculation and heroin rush. Other activated mesodiencephalic structures are the midbrain lateral central tegmental field, zona incerta, subparafascicular nucleus, and the ventroposterior, midline, and intralaminar thalamic nuclei. Increased activation was also present in the lateral putamen and adjoining parts of the claustrum. Neocortical activity was only found in Brodmann areas 7/40, 18, 21, 23, and 47, exclusively on the right side. On the basis of studies in rodents, the medial preoptic area, bed nucleus of the stria terminalis, and amygdala are thought to be involved in ejaculation, but increased rCBF was not found in any of these regions. Conversely, in the amygdala and adjacent entorhinal cortex, a decrease in activation was observed. Remarkably strong rCBF increases were observed in the cerebellum. These findings corroborate the recent notion that the cerebellum plays an important role in emotional processing. The present study for the first time provides insight into which regions in the human brain play a primary role in ejaculation, and the results might have important implications for our understanding of how human ejaculation is brought about, and for our ability to improve sexual function and satisfaction in men.
Collapse
|