1
|
Wang X, Wang M, Liu H, Mercieca K, Prinz J, Feng Y, Prokosch V. The Association between Vascular Abnormalities and Glaucoma-What Comes First? Int J Mol Sci 2023; 24:13211. [PMID: 37686017 PMCID: PMC10487550 DOI: 10.3390/ijms241713211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. While intraocular pressure (IOP) presents a major risk factor, the underlying pathophysiology still remains largely unclear. The correlation between vascular abnormalities and glaucoma has been deliberated for decades. Evidence for a role played by vascular factors in the pathogenesis of glaucomatous neurodegeneration has already been postulated. In addition, the fact that glaucoma causes both structural and functional changes to retinal blood vessels has been described. This review aims to investigate the published evidence concerning the relationship between vascular abnormalities and glaucoma, and to provide an overview of the "chicken or egg" dilemma in glaucoma. In this study, several biomarkers of glaucoma progression from a vascular perspective, including endothelin-1 (ET-1), nitric oxide, vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs), were identified and subsequently assessed for their potential as pharmacological intervention targets.
Collapse
Affiliation(s)
- Xiaosha Wang
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Maoren Wang
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Karl Mercieca
- Glaucoma Section, University Hospital Eye Clinic, 53127 Bonn, Germany;
- Faculty of Biology, Medicine and Health, School of Health Sciences, University of Manchester, Manchester M13 9WH, UK
| | - Julia Prinz
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Yuan Feng
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (X.W.); (M.W.); (H.L.); (J.P.); (Y.F.)
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
2
|
Justić H, Barić A, Šimunić I, Radmilović M, Ister R, Škokić S, Dobrivojević Radmilović M. Redefining the Koizumi model of mouse cerebral ischemia: A comparative longitudinal study of cerebral and retinal ischemia in the Koizumi and Longa middle cerebral artery occlusion models. J Cereb Blood Flow Metab 2022; 42:2080-2094. [PMID: 35748043 PMCID: PMC9580169 DOI: 10.1177/0271678x221109873] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral and retinal ischemia share similar pathogenesis and epidemiology, each carrying both acute and prolonged risk of the other and often co-occurring. The most used preclinical stroke models, the Koizumi and Longa middle cerebral artery occlusion (MCAO) methods, have reported retinal damage with great variability, leaving the disruption of retinal blood supply via MCAO poorly investigated, even providing conflicting assumptions on the origin of the ophthalmic artery in rodents. The aim of our study was to use longitudinal in vivo magnetic resonance assessment of cerebral and retinal vascular perfusion after the ischemic injury to clarify whether and how the Koizumi and Longa methods induce retinal ischemia and how they differ in terms of cerebral and retinal lesion evolution. We provided anatomical evidence of the origin of the ophthalmic artery in mice from the pterygopalatine artery. Following the Koizumi surgery, retinal responses to ischemia overlapped with those in the brain, resulting in permanent damage. In contrast, the Longa method produced only extensive cerebral lesions, with greater tissue loss than in the Koizumi method. Additionally, our data suggests the Koizumi method should be redefined as a model of ischemia with chronic hypoperfusion rather than of ischemia and reperfusion.
Collapse
Affiliation(s)
- Helena Justić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Anja Barić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Iva Šimunić
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marin Radmilović
- Department of Ophthalmology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia *These authors contributed equally to this work
| | - Rok Ister
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Siniša Škokić
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
3
|
Pigment Epithelium-Derived Factor Protects Retinal Neural Cells and Prevents Pathological Angiogenesis in an Ex Vivo Ischemia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4199394. [PMID: 36035211 PMCID: PMC9410835 DOI: 10.1155/2022/4199394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022]
Abstract
Ocular ischemia/hypoxia is a severe problem in ophthalmology that can cause vision impairment and blindness. However, little is known about the changes occurring in the existing fully formed choroidal blood vessels. We developed a new whole organ culture model for ischemia/hypoxia in rat eyes and investigate the effects of pigment epithelium derived factor (PEDF) protein on the eye tissues. The concentration of oxygen within the vitreous was measured in the enucleated rat eyes and living rats. Then, ischemia was mimicked by incubating the freshly enucleated eyes in medium at 4°C for 14 h. Eyes were fixed immediately after enucleation or were intravitreally injected with PEDF protein or with vehicle before incubation. After incubation, light and electron microscopy (EM) as well as Tunel staining was performed. In the living rats, the intravitreal oxygen concentration was on average at 16.4% of the oxygen concentration in the air and did not change throughout the experiment whereas it was ca. 28% at the beginning of the experiment and gradually decreased over time in the enucleated eyes. EM analysis revealed that the shape of the choriocapillaris changed dramatically after 14 h incubation in the enucleated eyes. The endothelial cells made filopodia-like projections into the vessel lumen. They appeared identical to the labyrinth capillaries found in surgically extracted choroidal neovascular membranes from patients with wet age-related macular degeneration (AMD). These filopodia-like projections nearly closed the vessel lumen and showed open gaps between neighboring endothelial cells. PEDF significantly inhibited labyrinth capillary formation and kept the capillary lumen open. The number of TUNEL-positive ganglion cells and inner nuclear layer cells was significantly reduced in the PEDF-treated eyes compared to the vehicle-treated eyes. The structural changes in the chroidal vessels observed under ischemia/hypoxia conditions can mimic early changes in the process of pathological angiogenesis as observed in wet AMD patients. This new model can be used to investigate short-term drug effects on the choriocapillaris after ischemia/hypoxia and it highlighted the potential of PEDF as a promising candidate for treating wet AMD.
Collapse
|
4
|
Ocular Ischemic Syndrome and Its Related Experimental Models. Int J Mol Sci 2022; 23:ijms23095249. [PMID: 35563640 PMCID: PMC9100201 DOI: 10.3390/ijms23095249] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 12/17/2022] Open
Abstract
Ocular ischemic syndrome (OIS) is one of the severe ocular disorders occurring from stenosis or occlusion of the carotid arteries. As the ophthalmic artery is derived from the branch of the carotid artery, stenosis or occlusion of the carotid arteries could induce chronic ocular hypoperfusion, finally leading to the development of OIS. To date, the pathophysiology of OIS is still not clearly unraveled. To better explore the pathophysiology of OIS, several experimental models have been developed in rats and mice. Surgical occlusion or stenosis of common carotid arteries or internal carotid arteries was conducted bilaterally or unilaterally for model development. In this regard, final ischemic outcomes in the eye varied depending on the surgical procedure, even though similar findings on ocular hypoperfusion could be observed. In the current review, we provide an overview of the pathophysiology of OIS from various experimental models, as well as several clinical cases. Moreover, we cover the status of current therapies for OIS along with promising preclinical treatments with recent advances. Our review will enable more comprehensive therapeutic approaches to prevent the development and/or progression of OIS.
Collapse
|
5
|
Pemafibrate Prevents Retinal Dysfunction in a Mouse Model of Unilateral Common Carotid Artery Occlusion. Int J Mol Sci 2021; 22:ijms22179408. [PMID: 34502311 PMCID: PMC8431531 DOI: 10.3390/ijms22179408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases lead to retinal ischemia, one of the leading causes of blindness. Retinal ischemia triggers pathological retinal glial responses and functional deficits. Therefore, maintaining retinal neuronal activities and modulating pathological gliosis may prevent loss of vision. Previously, pemafibrate, a selective peroxisome proliferator-activated receptor alpha modulator, was nominated as a promising drug in retinal ischemia. However, a protective role of pemafibrate remains untouched in cardiovascular diseases-mediated retinal ischemia. Therefore, we aimed to unravel systemic and retinal alterations by treating pemafibrate in a new murine model of retinal ischemia caused by cardiovascular diseases. Adult C57BL/6 mice were orally administered pemafibrate (0.5 mg/kg) for 4 days, followed by unilateral common carotid artery occlusion (UCCAO). After UCCAO, pemafibrate was continuously supplied to mice until the end of experiments. Retinal function (a-and b-waves and the oscillatory potentials) was measured using electroretinography on day 5 and 12 after UCCAO. Moreover, the retina, liver, and serum were subjected to qPCR, immunohistochemistry, or ELISA analysis. We found that pemafibrate enhanced liver function, elevated serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the eye, and protected against UCCAO-induced retinal dysfunction, observed with modulation of retinal gliosis and preservation of oscillatory potentials. Our current data suggest a promising pemafibrate therapy for the suppression of retinal dysfunction in cardiovascular diseases.
Collapse
|
6
|
Lee D, Jeong H, Miwa Y, Shinojima A, Katada Y, Tsubota K, Kurihara T. Retinal dysfunction induced in a mouse model of unilateral common carotid artery occlusion. PeerJ 2021; 9:e11665. [PMID: 34221738 PMCID: PMC8223895 DOI: 10.7717/peerj.11665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
Background Retinal ischemic stresses are associated with the pathogenesis of various retinal vascular diseases. To investigate pathological mechanisms of retinal ischemia, reproducible, robust and clinically significant experimental rodent models are highly needed. Previously, we established a stable murine model of chronic hypoperfusion retinal injuries by permanent unilateral common carotid artery occlusion (UCCAO) and demonstrated chronic pathological processes in the ischemic retina after the occlusion; however, retinal functional deficits and other acute retinal ischemic injuries by UCCAO still remain obscure. In this study, we attempted to examine retinal functional changes as well as acute retinal ischemic alterations such as retinal thinning, gliosis and cell death after UCCAO. Methods Adult mice (male C57BL/6, 6–8 weeks old) were subjected to UCCAO in the right side, and retinal function was primarily measured using electroretinography for 14 days after the surgery. Furthermore, retinal thinning, gliosis and cell death were investigated using optical coherence tomography, immunohistochemistry and TUNEL assay, respectively. Results Functional deficits in the unilateral right retina started to be seen 7 days after the occlusion. Specifically, the amplitude of b-wave dramatically decreased while that of a-wave was slightly affected. 14 days after the occlusion, the amplitudes of both waves and oscillatory potentials were significantly detected decreased in the unilateral right retina. Even though a change in retinal thickness was not dramatically observed among all the eyes, retinal gliosis and cell death in the unilateral right retina were substantially observed after UCCAO. Conclusions Along with previous retinal ischemic results in this model, UCCAO can stimulate retinal ischemia leading to functional, morphological and molecular changes in the retina. This model can be useful for the investigation of pathological mechanisms for human ischemic retinopathies and furthermore can be utilized to test new drugs for various ischemic ocular diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Animal eye-care, Tokyo Animal Eye Clinic, Tokyo, Japan
| | - Ari Shinojima
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yusaku Katada
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Tsubota Laboratory, Inc., Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Lee D, Tomita Y, Miwa Y, Jeong H, Mori K, Tsubota K, Kurihara T. Fenofibrate Protects against Retinal Dysfunction in a Murine Model of Common Carotid Artery Occlusion-Induced Ocular Ischemia. Pharmaceuticals (Basel) 2021; 14:ph14030223. [PMID: 33799938 PMCID: PMC7999063 DOI: 10.3390/ph14030223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Ocular ischemia is a common cause of blindness and plays a detrimental role in various diseases such as diabetic retinopathy, occlusion of central retinal arteries, and ocular ischemic syndrome. Abnormalities of neuronal activities in the eye occur under ocular ischemic conditions. Therefore, protecting their activities may prevent vision loss. Previously, peroxisome proliferator-activated receptor alpha (PPARα) agonists were suggested as promising drugs in ocular ischemia. However, the potential therapeutic roles of PPARα agonists in ocular ischemia are still unknown. Thus, we attempted to unravel systemic and ocular changes by treatment of fenofibrate, a well-known PPARα agonist, in a new murine model of ocular ischemia. Adult mice were orally administered fenofibrate (60 mg/kg) for 4 days once a day, followed by induction of ocular ischemia by unilateral common carotid artery occlusion (UCCAO). After UCCAO, fenofibrate was continuously supplied to mice once every 2 days during the experiment period. Electroretinography was performed to measure retinal functional changes. Furthermore, samples from the retina, liver, and blood were subjected to qPCR, Western blot, or ELISA analysis. We found that fenofibrate boosted liver function, increased serum levels of fibroblast growth factor 21 (FGF21), one of the neuroprotective molecules in the central nervous system, and protected against UCCAO-induced retinal dysfunction. Our current data suggest a promising fenofibrate therapy in ischemic retinopathies.
Collapse
Affiliation(s)
- Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yohei Tomita
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Boston Children’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Animal Eye Care, Tokyo Animal Eye Clinic, Tokyo 158-0093, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Tsubota Laboratory, Inc., Tokyo 160-0016, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo 160-8582, Japan; (D.L.); (Y.T.); (Y.M.); (H.J.); (K.M.)
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: (K.T.); (T.K.); Tel.: +81-3-5636-3269 (K.T.); +81-3-5636-3204 (T.K.)
| |
Collapse
|
8
|
Lee D, Kang H, Yoon KY, Chang YY, Song HB. A mouse model of retinal hypoperfusion injury induced by unilateral common carotid artery occlusion. Exp Eye Res 2020; 201:108275. [PMID: 32991884 DOI: 10.1016/j.exer.2020.108275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Retina, one of the highest oxygen demanding tissues, is vulnerable to vascular insufficiencies, and various ocular vascular disorders can cause chronic retinal ischemia. To investigate the pathophysiology, rodent models developed by bilateral common carotid artery occlusion (BCCAO) have been utilized. However, mice lack posterior communicating arteries in the circle of Willis and cannot endure the brain ischemia induced by the bilateral occlusion. A mouse model to better reflect the localized ischemic stress in the retina without affecting the brain is still needed. Here, we established a mouse model of ischemic injury by permanent unilateral common carotid artery occlusion (UCCAO). Adult male mice were subjected to UCCAO, and changes in the ipsilateral retina were examined in comparison with the contralateral retina. Delayed perfusion was observed in the ipsilateral retina right after the occlusion and was not recovered later on. Common features of retinal ischemia were observed: hypoxia-inducible factor (HIF) stabilization; upregulation of hypoxia-responsive genes; altered levels of cytokines and chemokines. Activation of astrocytes and Müller cells in the inner retina was detected at day 2, and thinning of the inner retinal layer became significant at week 10. Together, our model can simulate retinal ischemia with morphological and molecular changes. It can be utilized to investigate pathophysiology of ischemic retinopathies.
Collapse
Affiliation(s)
- Deokho Lee
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heekyoung Kang
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki Young Yoon
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yuan Yi Chang
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Beom Song
- Department of Tropical Medicine and Parasitology and Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Retinal Oxygen Delivery, Metabolism, and Extraction Fraction during Long-Term Bilateral Common Carotid Artery Occlusion in Rats. Sci Rep 2020; 10:10371. [PMID: 32587289 PMCID: PMC7316776 DOI: 10.1038/s41598-020-67255-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/27/2020] [Indexed: 12/04/2022] Open
Abstract
Retinal functional, biochemical, and anatomical changes have been previously reported in long-term experimental permanent bilateral common carotid artery occlusion (BCCAO). The purpose of the current study was to investigate progressive reductions in retinal oxygen metabolism (MO2) due to inadequate compensation by oxygen delivery (DO2) and extraction fraction (OEF) after BCCAO. Twenty-nine rats were subjected to BCCAO and were imaged after 3 hours, 3 days, 7 days, or 14 days. Six rats underwent a sham procedure. Phosphorescence lifetime and blood flow imaging were performed in both eyes to measure retinal oxygen contents and total retinal blood flow, respectively. DO2, MO2, and OEF were calculated from these measurements. Compared to the sham group, DO2 and MO2 were reduced after all BCCAO durations. OEF was increased after 3 hours and 3 days of BCCAO, but was not different from the sham group after 7 and 14 days. Between 3 and 7 days of BCCAO, DO2 increased, OEF decreased, and there was no significant difference in MO2. These findings may be useful to understand the pathophysiology of retinal ischemia.
Collapse
|
10
|
Blair NP, Leahy S, Nathanael Matei, Shahidi M. Control of retinal blood flow levels by selected combinations of cervical arterial ligations in rat. Exp Eye Res 2020; 197:108088. [PMID: 32502531 DOI: 10.1016/j.exer.2020.108088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 10/24/2022]
Abstract
The effect of various combinations of cervical arterial ligations (Combinations) on retinal blood flow (RBF) levels is not known in rats. We hypothesized: 1) No artery exists between the Circle of Willis and the eye, 2) Selective Combinations enable varying RBF levels between normal and zero, 3) In certain Combinations, the capillary bed of the head participates in supplying the eye. Twenty-six Combinations were studied in one eye of 20 Long-Evans rats under general anesthesia. RBF was quantitatively evaluated with our published imaging methods based on direct measurements of venous diameter and blood velocity from the displacement of fluorescent microspheres over time. For each Combination, one or more RBF values (runs) were measured. Data were obtained from 59 runs (2.9 ± 2.7 runs/rat). Levels of RBF ranged from normal to zero. An artery between the Circle of Willis and the eye was excluded. With some Combinations, flow traversed the capillary bed. Combinations were consolidated into five Groups based on the blood flow paths remaining after the ligations. A mixed linear model accounting for multiple measurements in the same eye demonstrated an effect of Group on RBF (P < 0.0005). By major source of ocular blood supply, the trend of RBF levels was: ipsilateral carotid artery > contralateral carotid artery > ipsilateral distal internal carotid artery retrograde from Circle of Willis. The findings advanced knowledge of the sources of blood supply to the rat eye and demonstrated a method of selective cervical arterial ligations for varying RBF levels with potential to impact future retinal ischemia research.
Collapse
Affiliation(s)
- Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, United States.
| | - Sophie Leahy
- Department of Ophthalmology, University of Southern California, United States.
| | - Nathanael Matei
- Department of Ophthalmology, University of Southern California, United States.
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, United States.
| |
Collapse
|
11
|
Auchter AM, Barrett DW, Monfils MH, Gonzalez-Lima F. Methylene Blue Preserves Cytochrome Oxidase Activity and Prevents Neurodegeneration and Memory Impairment in Rats With Chronic Cerebral Hypoperfusion. Front Cell Neurosci 2020; 14:130. [PMID: 32508596 PMCID: PMC7251060 DOI: 10.3389/fncel.2020.00130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Chronic cerebral hypoperfusion in neurocognitive disorders diminishes cytochrome oxidase activity leading to neurodegenerative effects and impairment of learning and memory. Methylene blue at low doses stimulates cytochrome oxidase activity and may thus counteract the adverse effects of cerebral hypoperfusion. However, the effects of methylene blue on cytochrome oxidase activity during chronic cerebral hypoperfusion have not been described before. To test this hypothesis, rats underwent bilateral carotid artery occlusion or sham surgery, received daily 4 mg/kg methylene blue or saline injections, and learned a visual water task. Brain mapping of cytochrome oxidase activity was done by quantitative enzyme histochemistry. Permanent carotid occlusion for 1 month resulted in decreased cytochrome oxidase activity in visual cortex, prefrontal cortex, perirhinal cortex, hippocampus and amygdala, and weaker interregional correlation of cytochrome oxidase activity between these regions. Methylene blue preserved cytochrome oxidase activity in regions affected by carotid occlusion and strengthened their interregional correlations of cytochrome oxidase activity, which prevented neurodegenerative effects and facilitated task-specific learning and memory. Brain-behavior correlations revealed positive correlations between performance and brain regions in which cytochrome oxidase activity was preserved by methylene blue. These results are the first to demonstrate that methylene blue prevents neurodegeneration and memory impairment by preserving cytochrome oxidase activity and interregional correlation of cytochrome oxidase activity in brain regions susceptible to chronic hypoperfusion. This demonstration provides further support for the hypothesis that lower cerebral blood flow results in an Alzheimer's-like syndrome and that stimulating cytochrome oxidase activity with low-dose methylene blue is neuroprotective.
Collapse
Affiliation(s)
| | | | | | - F. Gonzalez-Lima
- Department of Psychology, Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
12
|
Karamian P, Burford J, Farzad S, Blair NP, Shahidi M. Alterations in Retinal Oxygen Delivery, Metabolism, and Extraction Fraction During Bilateral Common Carotid Artery Occlusion in Rats. Invest Ophthalmol Vis Sci 2019; 60:3247-3253. [PMID: 31343655 PMCID: PMC6660186 DOI: 10.1167/iovs.19-27227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose The purpose of the current study was to investigate alterations in retinal oxygen delivery, metabolism, and extraction fraction and elucidate their relationships in an experimental model of retinal ischemia. Methods We subjected 14 rats to permanent bilateral common carotid artery occlusion using clamp or suture ligation, or they underwent sham procedure. Within 30 minutes of the procedure, phosphorescence lifetime imaging was performed to measure retinal vascular oxygen tension and derive arterial and venous oxygen contents, and arteriovenous oxygen content difference. Fluorescent microsphere and red-free retinal imaging were performed to measure total retinal blood flow. Retinal oxygen delivery rate (DO2), oxygen metabolism rate (MO2), and oxygen extraction fraction (OEF) were calculated. Results DO2 and MO2 were lower in ligation and clamp groups compared to the sham group, and also lower in the ligation group compared to the clamp group (P ≤ 0.05). OEF was higher in the ligation group compared to clamp and sham groups (P ≤ 0.03). The relationships of MO2 and OEF with DO2 were mathematically modeled by exponential functions. With moderate DO2 reductions, OEF increased while MO2 minimally decreased. Under severe DO2 reductions, OEF reached a maximum value and subsequently MO2 decreased with DO2. Conclusions The findings improve knowledge of mechanisms that can maintain MO2 and may clarify the pathophysiology of retinal ischemic injury.
Collapse
Affiliation(s)
- Preny Karamian
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - James Burford
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Shayan Farzad
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
13
|
Hei Y, Zhang X, Chen R, Zhou Y, Gao D, Liu W. High-Mobility Group Box 1 Neutralization Prevents Chronic Cerebral Hypoperfusion-Induced Optic Tract Injuries in the White Matter Associated with Down-regulation of Inflammatory Responses. Cell Mol Neurobiol 2019; 39:1051-1060. [PMID: 31197745 DOI: 10.1007/s10571-019-00702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Chronic cerebral hypoperfusion (CCH)-induced white matter lesions (WMLs) are region-specific with the optic tract (OT) displaying the most severe damages and leading to visual-based behavioral impairment. Previously we have demonstrated that anti-high-mobility group box 1 (HMGB1) neutralizing antibody (Ab) prevents CCH-induced hippocampal damages via inhibition of neuroinflammation. Here we tested the protective role of the Ab on CCH-induced OT injuries. Rats were treated with permanent occlusion of common carotid arteries (2-VO) or a sham surgery, and then administered with PBS, anti-HMGB1 Ab, or paired control Ab. Pupillary light reflex examination, visual water maze, and tapered beam-walking were performed 28 days post-surgery to investigate the behavioral deficits. Meanwhile, WMLs were measured by Klüver-Barrera (KB) and H&E staining, and glial activation was further assessed to evaluate inflammatory responses in OT. Results revealed that anti-HMGB1 Ab ameliorated the morphological damages (grade scores, vacuoles, and thickness) in OT area and preserved visual abilities. Additionally, the increased levels of inflammatory responses and expressions of TLR4 and NF-κB p65 and phosphorylated NF-κB p65 (p-p65) in OT area were partly down-regulated after anti-HMGB1 treatment. Taken together, these findings suggested that HMGB1 neutralization could ease OT injuries and visual-guided behavioral deficits via suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
14
|
Qin Y, Ji M, Deng T, Luo D, Zi Y, Pan L, Wang Z, Jin M. Functional and morphologic study of retinal hypoperfusion injury induced by bilateral common carotid artery occlusion in rats. Sci Rep 2019; 9:80. [PMID: 30643163 PMCID: PMC6331588 DOI: 10.1038/s41598-018-36400-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022] Open
Abstract
Retinal hypoperfusion injury is the pathophysiologic basis of ocular ischemic syndrome (OIS) which often leads to severe visual loss. In this study, we aimed to establish a rat model of retinal chronic hypoperfusion by bilateral common carotid artery occlusion (BCCAO) and observe changes in the retinal function and morphology. We found that model rats showed retinal arteriosclerosis, slight dilated retinal vein, small hemangiomas, hemorrhages, vascular segmental filling, and nonperfused areas after 2 weeks of BCCAO. In the model rats, the retinal circulation time was significantly prolonged by fluorescein fundus angiography (FFA), the latency of a and b waves was delayed and the amplitude was decreased significantly at each time point by electroretinogram (ERG), and the perfusion of the eyes continued to reduced. Morphologic and ultrastructural changes covered that the retinal ganglion cells (RGCs) presented obvious apoptosis and the thickness in the retinal layers were significantly thinner. Collectively, these findings suggested that BCCAO induced retinal hypoperfusion injury in the model rats, thus providing an ideal animal model for the study of OIS.
Collapse
Affiliation(s)
- Yali Qin
- Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Meiqi Ji
- Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Tingting Deng
- Clinical Medical Research Institute, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Dan Luo
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yingxin Zi
- Beijing University of Chinese Medicine, Beijing, 100029, China.,Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lin Pan
- Clinical Medical Research Institute, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhijun Wang
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ming Jin
- Department of Ophthalmology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
15
|
Blair NP, Felder AE, Tan MR, Shahidi M. A Model for Graded Retinal Ischemia in Rats. Transl Vis Sci Technol 2018; 7:10. [PMID: 29881647 PMCID: PMC5989761 DOI: 10.1167/tvst.7.3.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/25/2018] [Indexed: 11/25/2022] Open
Abstract
Purpose Retinal ischemic injury depends on grade and duration of an ischemic insult. We developed a method to induce ischemic injury in rats permitting: (1) Variable grades of retinal blood flow (F) reduction, (2) controllable duration of F reduction, (3) injury without collateral neural damage, and (4) optical measurements of F and O2-related factors: O2 delivery (DO2), O2 extraction fraction (OEF), and metabolic rate of O2 (MO2). Methods In five anesthetized rats the left common carotid artery (CA) was ligated and the right CA was exposed. A variable clamp having a backstop and a rod mounted on a micromanipulator straddled the right CA. Advancing the rod with the micromanipulator produced graded compressions of the CA. F and O2-related factors were measured with established optical techniques. Results Four to seven grades of F for at least 10 minutes were achieved per rat. F decreased only with compressions of over 60%. DO2 changed in proportion to F, particularly at low F. As F decreased, OEF initially changed little, but then rose steeply to its maximum of 1 when F was approximately 4 μL/min. MO2 was stable with reduced F until OEF maximized, after which it decreased progressively. Conclusions This model in rats permits acute, graded inner retinal ischemia that is reversible after prescribed durations, does not otherwise injure the eye and allows optical measurement of important physiologic factors during ischemia. Translational Relevance This model will allow improved understanding of retinal ischemic injury and enable better management of this common, sight-threatening affliction.
Collapse
Affiliation(s)
- Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Anthony E Felder
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael R Tan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahnaz Shahidi
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Efficacy of Osthole in Management of Hypoperfused Retina. J Ophthalmol 2018; 2018:6178347. [PMID: 29713525 PMCID: PMC5866862 DOI: 10.1155/2018/6178347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 02/04/2023] Open
Abstract
Purpose To determine the effect of osthole on the retina in a chronic cerebral hypoperfusion (CCH) rat model and to investigate its therapeutic activity. Methods Seventy-two rats were randomly allocated into 6 groups. CCH was induced by permanent bilateral common carotid artery occlusion (BCCAO) in five groups. Sham surgery was performed without occlusion of the artery in the sixth group (control group). Animals were administered with saline (model group), osthole (osthole-IG group), aspirin (aspirin group), or ginaton (ginaton group); the osthole-PI group was performed with peribulbar injection of osthole. Four rats in each group were sacrificed every 5 days after drug administration, and histopathology along with morphology of retina were observed. Fundus fluorescein angiography was performed before the animals were sacrificed at day 15. Retinal Akt, NF-κB, Bax, and Bcl-2 levels were assessed using immunohistochemistry, immunofluorescence, and reverse-transcription PCR; retinal injury was assessed using TUNEL in situ; retinal levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were measured. Results Fundus fluorescein angiography revealed the retinal vascular diameter in the osthole-IG group rats to be wider than that in the model, osthole-PI, aspirin, or ginaton group rats. Histological analysis of retinal tissue revealed an increase in retinal thickness in all treatment groups, and significant improvement was noticed in the osthole-IG group. TUNEL staining revealed fewer apoptotic cells in the osthole-IG and osthole-PI groups than in the other groups. For immunohistochemistry results, in the osthole-IG group, levels of NF-κB and Akt were lower than those in the other treated groups, while levels of the ratio Bcl-2/Bax were higher. Levels of MDA were lower and levels of SOD were higher in the osthole-IG group than in the other groups. Conclusions Osthole protects the retina from ischemia injury secondary to CCH induced by BCCAO, mainly through anti-inflammatory, antioxidant, and antiapoptotic effects.
Collapse
|
17
|
Individual and temporal variability of the retina after chronic bilateral common carotid artery occlusion (BCCAO). PLoS One 2018; 13:e0193961. [PMID: 29547662 PMCID: PMC5856268 DOI: 10.1371/journal.pone.0193961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/21/2018] [Indexed: 11/19/2022] Open
Abstract
Animal models of disease are an indispensable element in our quest to understand pathophysiology and develop novel therapies. Ex vivo studies have severe limitations, in particular their inability to study individual disease progression over time. In this respect, non-invasive in vivo technologies offer multiple advantages. We here used bilateral common carotid artery occlusion (BCCAO) in mice, an established model for ischemic retinopathy, and performed a multimodal in vivo and ex vivo follow-up. We used scanning laser ophthalmoscopy (SLO), ocular coherence tomography (OCT) and electroretinography (ERG) over 6 weeks followed by ex vivo analyses. BCCAO leads to vascular remodeling with thickening of veins starting at 4 weeks, loss of photoreceptor synapses with concomitant reduced b-waves in the ERG and thinning of the retina. Mononuclear phagocytes showed fluctuation of activity over time. There was large inter-individual variation in the severity of neuronal degeneration and cellular inflammatory responses. Ex vivo analysis confirmed these variable features of vascular remodeling, neurodegeneration and inflammation. In summary, we conclude that multimodal follow-up and subgroup analysis of retinal changes in BCCAO further calls into question the use of ex vivo studies with distinct single end-points. We propose that our approach can foster the understanding of retinal disease as well as the clinical translation of emerging therapeutic strategies.
Collapse
|
18
|
Wang Y, Wang XL, Xie GL, Li HY, Wang YL. Collapsin Response Mediator Protein-2-induced Retinal Ischemic Injury in a Novel Mice Model of Ocular Ischemia Syndrome. Chin Med J (Engl) 2018; 130:1342-1351. [PMID: 28524835 PMCID: PMC5455045 DOI: 10.4103/0366-6999.206340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Collapsin response mediator protein-2 (CRMP2) has been shown to be involved in ischemia/hypoxia (IH) injury. We determined whether CRMP2 modulates ischemic injury in the retinal of Ocular ischemic syndrome (OIS). This study was to explore the molecular mechanisms underlying OIS in a novel mice model. METHODS Experiments were performed on adult male C57/BL6 mice that received bilateral internal carotid arteries ligation for 1, 2, or 4 weeks. The mice received injection of calpeptin group before occlusion for 4 weeks or not. The expression of CRMP2 in the retinal was examined by western blotting (WB) analysis and immunohistochemical analysis (IHC). The effects of ischemic injury on retinal were evaluated by fundus examination, fundus fluorescein angiography, electroretinogram, cell counting of retinal ganglion cell (RGC), and measurement of the thickness of the retina. RESULTS The veins dilated after chronic ischemia. In the electroretinography, the amplitudes of a- and b-waves kept diminishing in an ischemia time-dependent manner. Moreover, the tail vein-retinal circulation time prolonged in the 1- and 2-week group. In comparison, thickness of the retina decreased gradually with the ischemia time elapsed. WB analysis showed the CRMP2 and p-CRMP2 levels decreased in the 2- and 4-week groups. The results of IHC analysis were compatible with our results of WB. The loss of RGCs, decrease of the total reaction time and reduction of CRMP2 was alleviated by intravitreal injection of calpeptin. CONCLUSIONS These results revealed that bilateral ligation of the internal carotid artery causes retinal ischemia in mice. Moreover, CRMP2 might play a pivotal role during the ischemic injury in the retina and inhibit the cleavage of CRMP2 can ameliorate the IH injury.
Collapse
Affiliation(s)
- Yu Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Xiao-Lei Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Guo-Li Xie
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Hong-Yang Li
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
19
|
Podlaha J, Schwanhaeuser K, Kadeřábková T. Bilateral Common Carotid Artery Ligation in Sheep. Could These Animals be Used as Human Models for Vascular and Cerebral Research? ACTA VET-BEOGRAD 2018. [DOI: 10.1515/acve-2017-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Experimental animals are still used in today’s medicine to understand better physiological or pathological processes, or to develop, for example better vascular prostheses. For that reason, these animals must show some similarities with humans, from the anatomical to the physiological point of view. When developing vascular prostheses, we have to evaluate if the graft will react in the expected way and if during experimental research there will be some factors that might influence the proper functioning of vascular prostheses in the human body. We observed the consequences of bilateral common carotid artery ligation (BCCAL) or Sham operation in seventeen healthy Merinolandschaf / Württemberg sheep, aged between 2 and 4 years, after testing new types of carbon-coated ARTECOR® and ADIPOGRAFT Ra 1vk 7/350 vascular prostheses. After the follow-up period the prostheses were extirpated, so the blood supply was provided from the vertebral arteries. Sheep in both groups were not sacrificed, but were observed for 18 months. After the observation period all sheep showed no physical or neurological changes and all are still alive. Animal responses to BCCAL are different, depending on the animal species, age, and condition. In sheep, bilateral blocking of the blood fl ow in the carotid bed seems to be conceivable since the brain was sufficiently supplied with blood from the vertebral arteries.
Collapse
Affiliation(s)
- Jiří Podlaha
- Department of Surgery, University Hospital Brno Bohunice, Faculty of Medicine, Masaryk University, Brno , Czech Republic
| | - Kräuff Schwanhaeuser
- Department of Preventive Medicine / Public Health, Faculty of Medicine, Masaryk University, Brno , Czech Republic
| | - Tereza Kadeřábková
- Department of Anaesthesiology Resuscitation and Intensive Care Medicine, University Hospital Brno Bohunice, Brno , Czech Republic
| |
Collapse
|
20
|
Lim SH, Lee J. Protection of the brain through supplementation with larch arabinogalactan in a rat model of vascular dementia. Nutr Res Pract 2017; 11:381-387. [PMID: 28989574 PMCID: PMC5621360 DOI: 10.4162/nrp.2017.11.5.381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND/OBJECTIVES Vascular dementia (VaD) caused by reduced blood supply to the brain manifests as white matter lesions accompanying demyelination and glial activation. We previously showed that arabinoxylan consisting of arabinose and xylose, and arabinose itself attenuated white matter injury in a rat model of VaD. Here, we investigated whether larch arabinogalactan (LAG) consisting of arabinose and galactose could also reduce white matter injury. MATERIALS/METHODS We used a rat model of bilateral common carotid artery occlusion (BCCAO), in which the bilateral common carotid arteries were exposed and ligated permanently with silk sutures. The rats were fed a modified AIN-93G diet supplemented with LAG (100 mg/kg/day) for 5 days before and 4 weeks after being subjected to BCCAO. Four weeks after BCCAO, the pupillary light reflex (PLR) was measured to assess functional consequences of injury in the corpus callosum (cc). Additionally, Luxol fast blue staining and immunohistochemical staining were conducted to assess white matter injury, and astrocytic and microglial activation, respectively. RESULTS We showed that white matter injury in the the cc and optic tract (opt) was attenuated in rats fed diet supplemented with LAG. Functional consequences of injury reduction in the opt manifested as improved PLR. Overall, these findings indicate that LAG intake protects against white matter injury through inhibition of glial activation. CONCLUSIONS The results of this study support our hypothesis that cell wall polysaccharides consisting of arabinose are effective at protecting white matter injury, regardless of their origin. Moreover, LAG has the potential for development as a functional food to prevent vascular dementia.
Collapse
Affiliation(s)
- Sun Ha Lim
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea
| | - Jongwon Lee
- Department of Biochemistry, School of Medicine, Catholic University of Daegu, 33 Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Korea
| |
Collapse
|
21
|
Du R, Wang JL, Wang YL. Role of RhoA/MERK1/ERK1/2/iNOS signaling in ocular ischemic syndrome. Graefes Arch Clin Exp Ophthalmol 2016; 254:2217-2226. [DOI: 10.1007/s00417-016-3456-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/18/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022] Open
|
22
|
Wang Y, Fan Y, Zhang L, Wang YXJ, Qi W, Liang W, Wang C, T W Yew D, Ye C, Sha O. Bilateral Common Carotid Artery Occlusion in Spontaneously Hypertensive Rats: A Feasible Animal Model for Ocular Ischemic Syndrome. Anat Rec (Hoboken) 2016; 299:806-14. [PMID: 26917224 DOI: 10.1002/ar.23336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to investigate the feasibility of inducing ocular ischemic syndrome in spontaneously hypertensive rats. Hypertensive and normotensive Wistar-Kyoto rats had bilateral occlusion or sham surgery. They were divided into 4 groups: (1) hypertensive-ischemia, (2) hypertensive-sham, (3) normotensive-ischemia, and (4) normotensive-sham. Four months after the operation, the global changes of the eye and pupillary light reflex were assessed. Then each rat was perfused, and randomly one of the bulbuses oculi was prepared as retinal flat mounts for investigation of vascular changes. The opposite eyeball was prepared as a paraffin section for observation of the linear density of retinal ganglion cells and for thickness measurement. One hypertensive-ischemia rat had a cataract in one eye and another rat in the same group had bulbus oculi collapse in one eye. The light reflex disappeared in 13.33% of hypertensive-ischemia rats, and the rest of the hypertensive-ischemia rats and normotensive-ischemia rats had slow reflex. Compared with the respective controls, the peripheral retinal vascular network in hypertensive-ischemia and normotensive-ischemia rats was sparse; linear density of the retinal ganglion cells was significantly reduced; and the retinal thickness was reduced. Compared with normotensive-ischemia rats, the hypertensive-ischemia rats demonstrated more severe changes. After bilateral common carotic artery occlusion, the eyes of hypertensive rats developed various pathological changes similar to those of ocular ischemic syndrome. In conclusion, an animal model for ocular ischemic syndrome can be created by bilateral common carotid artery occlusion in spontaneously hypertensive rats. Anat Rec, 299:806-814, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yacong Wang
- Department of Ophthalmology, the Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei Province, 050011, China
| | - Yuhua Fan
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, 510080, China
| | - Lihong Zhang
- Department of Neurology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wei Qi
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei Province, 050000, China
| | - Willmann Liang
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Chunmei Wang
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - David T W Yew
- Institute of Chinese Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Cunxi Ye
- Department of Ophthalmology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China
| | - Ou Sha
- Department of Medicine, Shenzhen University Health Science Centre, Shenzhen, 518060, China
| |
Collapse
|
23
|
Kwon KJ, Lee EJ, Kim MK, Kim SY, Kim JN, Kim JO, Kim HJ, Kim HY, Han JS, Shin CY, Han SH. Diabetes augments cognitive dysfunction in chronic cerebral hypoperfusion by increasing neuronal cell death: implication of cilostazol for diabetes mellitus-induced dementia. Neurobiol Dis 2014; 73:12-23. [PMID: 25281785 DOI: 10.1016/j.nbd.2014.08.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023] Open
Abstract
Many patients with diabetes are at increased risk of cognitive dysfunction and dementia. Diabetes mellitus is a vascular risk factor that may increase the risk of dementia through its associations with vascular dementia. We tested whether cognitive impairment could be exacerbated in combined injury using a rat model of chronic cerebral hypoperfusion with diabetes. We also determined whether a potent inhibitor of type III phosphodiesterase could prevent the cognitive decline caused by this combined injury. We used Otsuka Long-Evans Tokushima Fatty (OLETF) rats as a model of type II diabetes (T2DM) and Long-Evans Tokushima Otsuka (LETO) rats as a control. Chronic cerebral hypoperfusion was modeled by permanent bilateral common carotid artery occlusion (BCCAO). At 24weeks, the non-diabetic and T2DM rats were randomly assigned into groups for the following experiments: analysis I (1) sham non-diabetic rats (n=8); (2) hypoperfused non-diabetic rats (n=9); (3) sham T2DM rats (n=8); (4) hypoperfused T2DM rats (n=9); analysis II- (1) sham T2DM rats without treatment (n=8); (2) cilostazol-treated T2DM rats (n=8); (3) hypoperfused T2DM rats (n=9); and (4) hypoperfused T2DM rats and cilostazol treatment (n=9). The rats were orally administered cilostazol (50mg/kg) or vehicle once a day for 2weeks after 24weeks. Rats performed Morris water maze tasks, and neuronal cell death and neuroinflammation were investigated via Western blots and histological investigation. Spatial memory impairment was exacerbated synergistically in the hypoperfused T2DM group compared with the hypoperfused non-diabetic group and sham T2DBM group (P<0.05). Compared with the control group, neuronal cell death was increased in the hippocampus of the hypoperfused T2DM group. Cilostazol, a PDE-3 inhibitor, improved the memory impairments through inhibition of neuronal cell death, activation of CREB phosphorylation and BDNF expression in the hypoperfused T2DM group. Our experimental results support the hypothesis that there are deleterious interactions between chronic cerebral hypoperfusion and T2DM. That is, metabolic diseases such as diabetes may exacerbate cognitive impairment in a rat model of vascular dementia. We also suggest that surprisingly, the phosphodiesterase III inhibitor, cilostazol may be useful for the treatment of cognitive impairment in diabetes mellitus-induced dementia. In conclusion, diabetes can aggravate cognitive dysfunction in vascular dementia, and PDE-3 inhibitors, such as cilostazol, may form the basis of a novel therapeutic strategy for diabetes-associated cognitive impairment or vascular dementia.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea
| | - Eun Joo Lee
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea
| | - Min Kyeong Kim
- Department of Pharmacology, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea
| | - Soo Young Kim
- Department of Pharmacology, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea
| | - Jung Nam Kim
- Department of Pharmacology, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea
| | - Jin Ok Kim
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea; Department of Neurology, Konkuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, 17 Heangdang-dong, Seongdong-gu, Seoul, Republic of Korea
| | - Hahn Young Kim
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea; Department of Neurology, Konkuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Sciences, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea
| | - Chan Young Shin
- Department of Pharmacology, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea
| | - Seol-Heui Han
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Republic of Korea; Department of Neurology, Konkuk University Medical Center, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| |
Collapse
|
24
|
Tian XS, Guo XJ, Ruan Z, Lei Y, Chen YT, Zhang HY. Long-term vision and non-vision dominant behavioral deficits in the 2-VO rats are accompanied by time and regional glial activation in the white matter. PLoS One 2014; 9:e101120. [PMID: 24968196 PMCID: PMC4072762 DOI: 10.1371/journal.pone.0101120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/03/2014] [Indexed: 11/19/2022] Open
Abstract
The permanent occlusion of common carotid arteries (2-VO) in rats has been shown to induce progressive and long-lasting deficits in cognitive performance, however, whether these aberrant behaviors are attributed to visual dysfunction or cognitive impairment and what are the underlying mechanisms, remain controversial. In the present study, vision dominant (Morris water maze) and non-vision dominant (voice-cued fear conditioning) behavioral tests were assigned to comprehensively evaluate the influence of 2-VO lesion on cognitive behaviors. In the Morris water maze test, escape latencies of 2-VO rats were markedly increased in both hidden and unfixed visible platform tasks, which were accompanied by severe retinal damage. In the voice-cued fear conditioning test, significant reduction in the percentage of freezing behavior was observed at 60 days after 2-VO lesion. Chronic lesion by 2-VO failed to cause noticeable changes in the grey matter, as indicated by intact hippocampal and prefrontal cortical structures, sustained synaptic protein levels and glial cell numbers. In contrast, aberrant arrangement of myelinated axons was observed in the optic tract, but not in the corpus callosum and inner capsule of 2-VO rats. Concurrently, marked astrocyte proliferation and microglia activation in the optic tract occurred at 3 days after 2-VO lesion, and continued for up to 60 days. Differently, robust glial activation was observed in the corpus callosum at 3 days after 2-VO surgery, and then gradually returned to the baseline level at 14 and 60 days. Our study reported for the first time about the effect of 2-VO on the long-term cognitive impairment in the non-vision dominant fear conditioning test, which may be more applicable than the Morris water maze test for assessing 2-VO associated cognitive function. The time and region specific glial activation in the white matter may relate to retinal impairment, even behavioral deficits, in the setting of chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Xue Song Tian
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xian Jun Guo
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Ruan
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun Lei
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Ting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hai Yan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
25
|
Huang Y, Fan S, Li J, Wang YL. Bilateral Common Carotid Artery Occlusion in the Rat as a Model of Retinal Ischaemia. Neuroophthalmology 2014; 38:180-188. [PMID: 27928297 DOI: 10.3109/01658107.2014.908928] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 11/13/2022] Open
Abstract
Ocular ischaemic syndrome is a devastating eye disease caused by severe carotid artery stenosis. The purpose of the study was to develop a reliable rat model for this syndrome by means of common carotid artery occlusion and a controllable needle suture method. Adult Wistar rats were subjected to common carotid artery occlusion and sham surgery. The common carotid artery was ligated unilaterally or bilaterally with needles of different diameters, and ocular arterial filling time was examined by fluorescein fundus angiography at different time points. Haematoxylin-eosin staining of vessels and degree of stenosis were considered outcome measures. The ocular blood flow was monitored and measured by laser doppler flowmetry. Needles with a diameter of 0.4 mm were more effective in developing severe stenosis of the common carotid arteries compared with needles of other diameters. Bilateral common carotid artery occlusion was a more effective model than unilateral occlusion. The arterial filling time was significantly increased at 14 and 21 days after ligation (5.75 ± 0.45 and 6.27 ± 0.95 s, respectively) compared with arterial filling time before surgery (5.22 ± 0.64 s). The total blood flow in the sham surgery group was significantly higher than in the bilateral common carotid artery occlusion group. The fundus blood flow was statistically different between the two groups, whereas that of the anterior segment was not. In conclusion, the authors have established a rat model of ocular ischaemic syndrome via a controllable needle suture method, which was reliable up to 2-3 weeks after surgery.
Collapse
Affiliation(s)
- Yingxiang Huang
- Department of Ophthalmology, Beijing Friendship Hospital affiliated to Capital Medical University Beijing China
| | - Shichao Fan
- Department of Ophthalmology, Beijing Friendship Hospital affiliated to Capital Medical University Beijing China
| | - Jun Li
- Peking University Laboratory Animal Centre, Peking University China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital affiliated to Capital Medical University Beijing China
| |
Collapse
|
26
|
Changes in retinal morphology, electroretinogram and visual behavior after transient global ischemia in adult rats. PLoS One 2013; 8:e65555. [PMID: 23776500 PMCID: PMC3679137 DOI: 10.1371/journal.pone.0065555] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/25/2013] [Indexed: 12/26/2022] Open
Abstract
The retina is a light-sensitive tissue of the central nervous system that is vulnerable to ischemia. The pathological mechanism underlying retinal ischemic injury is not fully understood. The purpose of this study was to investigate structural and functional changes of different types of rat retinal neurons and visual behavior following transient global ischemia. Retinal ischemia was induced using a 4-vessel occlusion model. Compared with the normal group, the number of βIII-tubulin positive retinal ganglion cells and calretinin positive amacrine cells were reduced from 6 h to 48 h following ischemia. The number of recoverin positive cone bipolar cells transiently decreased at 6 h and 12 h after ischemia. However, the fluorescence intensity of rhodopsin positive rod cells and fluorescent peanut agglutinin positive cone cells did not change after reperfusion. An electroretinogram recording showed that the a-wave, b-wave, oscillatory potentials and the photopic negative response were completely lost during ischemia. The amplitudes of the a- and b-waves were partially recovered at 1 h after ischemia, and returned to the control level at 48 h after reperfusion. However, the amplitudes of oscillatory potentials and the photopic negative response were still reduced at 48 h following reperfusion. Visual behavior detection showed there was no significant change in the time spent in the dark chamber between the control and 48 h group, but the distance moved, mean velocity in the black and white chambers and intercompartmental crosses were reduced at 48 h after ischemia. These results indicate that transient global ischemia induces dysfunction of retinal ganglion cells and amacrine cells at molecular and ERG levels. However, transient global ischemia in a 17 minute duration does not appear to affect photoreceptors.
Collapse
|
27
|
Wang H, Yang X, Wang Z, Deng Z, Gong H, Luo Q. Early monitoring of cerebral hypoperfusion in rats by laser speckle imaging and functional photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:061207. [PMID: 22734737 DOI: 10.1117/1.jbo.17.6.061207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Because cerebral hypoperfusion brings damage to the brain, prevention of cerebrovascular diseases correlative to hypoperfusion by studying animal models makes great sense. Since complicated cerebrovascular adaptive changes in hypoperfusion could not be revealed only by cerebral blood flow (CBF) velocity imaging, we performed multi-parameter imaging by combining laser speckle imaging and functional photoacoustic microscopy. The changes in CBF, hemoglobin oxygen saturation (SO(2)), and total hemoglobin concentration (HbT) in single blood vessels of ipsilateral cortex were observed during transient cerebral hypoperfusion by ligating the unilateral common carotid artery in rats. CBF, SO(2), and HbT, respectively, decreased to 37 ± 3%, 71 ± 7.5%, and 92 ± 1.3% of baseline in 6 s immediately after occlusion, and then recovered to 77 ± 4.8%, 84 ± 8%, and 96 ± 2% of baseline in 60 s. These parameters presented the decrease with different degree and the following recovery over time after ligation, the recovery of SO(2) lagged behind those of CBF and HbT, which had the similar response. The results demonstrated that complete monitoring of both cerebral hemodynamic response and oxygen metabolic changes occurred at the earliest period of cerebral hypoperfusion was possible by using the two image modalities with high temporal and spatial resolution.
Collapse
Affiliation(s)
- Hui Wang
- Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
28
|
Minhas G, Morishita R, Anand A. Preclinical models to investigate retinal ischemia: advances and drawbacks. Front Neurol 2012; 3:75. [PMID: 22593752 PMCID: PMC3350026 DOI: 10.3389/fneur.2012.00075] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022] Open
Abstract
Retinal ischemia is a major cause of blindness worldwide. It is associated with various disorders such as diabetic retinopathy, glaucoma, optic neuropathies, stroke, and other retinopathies. Retinal ischemia is a clinical condition that occurs due to lack of appropriate supply of blood to the retina. As the retina has a higher metabolic demand, any hindrance in the blood supply to it can lead to decreased supply of oxygen, thus causing retinal ischemia. The pathology of retinal ischemia is still not clearly known. To get a better insight into the pathophysiology of retinal ischemia, the role of animal models is indispensable. The standard treatment care for retinal ischemia has limited potential. Transplantation of stem cells provide neuroprotection and to replenish damaged cells is an emerging therapeutic approach to treat retinal ischemia. In this review we provide an overview of major animal models of retinal ischemia along with the current and preclinical treatments in use.
Collapse
Affiliation(s)
- Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Ryuichi Morishita
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University Medical SchoolOsaka, Japan
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| |
Collapse
|
29
|
Nakamachi T, Matkovits A, Seki T, Shioda S. Distribution and protective function of pituitary adenylate cyclase-activating polypeptide in the retina. Front Endocrinol (Lausanne) 2012; 3:145. [PMID: 23189073 PMCID: PMC3504973 DOI: 10.3389/fendo.2012.00145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP), which is found in 27- or 38-amino acid forms, belongs to the VIP/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert a protective effect against several types of neural damage. The retina is considered to be part of the central nervous system, and retinopathy is a common cause of profound and intractable loss of vision. This review will examine the expression and morphological distribution of PACAP and its receptors in the retina, and will summarize the current state of knowledge regarding the protective effect of PACAP against different kinds of retinal damage, such as that identified in association with diabetes, ultraviolet light, hypoxia, optic nerve transection, and toxins. This article will also address PACAP-mediated protective pathways involving retinal glial cells.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- Center for Biotechnology, Showa UniversityTokyo, Japan
| | - Attila Matkovits
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- Center for Biotechnology, Showa UniversityTokyo, Japan
| | - Tamotsu Seki
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- Center for Biotechnology, Showa UniversityTokyo, Japan
| | - Seiji Shioda
- Department of Anatomy, Showa University School of MedicineTokyo, Japan
- *Correspondence: Seiji Shioda, Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan. e-mail:
| |
Collapse
|
30
|
Chronic brain hypoperfusion causes early glial activation and neuronal death, and subsequent long-term memory impairment. Brain Res Bull 2011; 87:109-16. [PMID: 22040859 DOI: 10.1016/j.brainresbull.2011.10.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 11/22/2022]
Abstract
Reduction of cerebral blood flow is an important risk factor for dementia states and other brain dysfunctions. In present study, the effects of permanent occlusion of common carotid arteries (2VO), a well established experimental model of brain ischemia, on memory function were investigated, as assessed by reference and working spatial memory protocols and the object recognition task; cell damage to the hippocampus, as measured through changes in immunoreactivity for GFAP and the neuronal marker NeuN was also studied. The working hypothesis is that metabolic impairment following hypoperfusion will affect neuron and glial function and result in functional damage. Adult male Wistar rats were submitted to the modified 2VO method, with the right common carotid artery being occluded first and the left one week later, and tested seven days, three and six months after the ischemic event. A significant cognitive deficit was found in both reference and working spatial memory, as well as in the object recognition task, three and six months after surgery. Neuronal death and reactive astrogliosis were already present at 7 days and continued for up to 3 months after the occlusion; interestingly, there was no significant reduction in hippocampal volume. Present data suggests that cognitive impairment caused by brain hypoperfusion is long - lasting and persists beyond the time point of recovery from glial activation and neuronal loss.
Collapse
|
31
|
Szabadfi K, Mester L, Reglodi D, Kiss P, Babai N, Racz B, Kovacs K, Szabo A, Tamas A, Gabriel R, Atlasz T. Novel neuroprotective strategies in ischemic retinal lesions. Int J Mol Sci 2010; 11:544-561. [PMID: 20386654 PMCID: PMC2852854 DOI: 10.3390/ijms11020544] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Retinal ischemia can be effectively modeled by permanent bilateral common carotid artery occlusion, which leads to chronic hypoperfusion-induced degeneration in the entire rat retina. The complex pathways leading to retinal cell death offer a complex approach of neuroprotective strategies. In the present review we summarize recent findings with different neuroprotective candidate molecules. We describe the protective effects of intravitreal treatment with: (i) urocortin 2; (ii) a mitochondrial ATP-sensitive K+ channel opener, diazoxide; (iii) a neurotrophic factor, pituitary adenylate cyclase activating polypeptide; and (iv) a novel poly(ADP-ribose) polymerase inhibitor (HO3089). The retinoprotective effects are demonstrated with morphological description and effects on apoptotic pathways using molecular biological techniques.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Laszlo Mester
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Peter Kiss
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Norbert Babai
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Boglarka Racz
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(L.M.);
(B.R.);
(K.K.);
(A.S.)
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(D.R.);
(P.K.);
(A.T.)
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
| | - Tamas Atlasz
- Department of Experimental Zoology and Neurobiology, University of Pecs, H-7624 Pecs, Hungary; E-Mails:
(K.S.);
(N.B.);
(R.G.)
- Department of Sportbiology, University of Pecs, H-7624 Pecs, Hungary
- Author to whom correspondence should be addressed; E-Mail:
; Tel.: +36-72-503-600/4613; Fax: +36-72-501-517
| |
Collapse
|
32
|
|
33
|
Atlasz T, Szabadfi K, Kiss P, Tamas A, Toth G, Reglodi D, Gabriel R. Evaluation of the protective effects of PACAP with cell-specific markers in ischemia-induced retinal degeneration. Brain Res Bull 2009; 81:497-504. [PMID: 19751807 DOI: 10.1016/j.brainresbull.2009.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/08/2009] [Indexed: 01/26/2023]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide that has been shown to exert protective effects in different neuronal injuries, such as traumatic brain injury, models of neurodegenerative diseases and cerebral ischemia. We have provided evidence that PACAP is neuroprotective in several models of retinal degeneration in vivo. In our previous studies we showed that PACAP treatment significantly ameliorated the damaging effects of permanent bilateral common carotid artery occlusion (BCCAO). In the present study cell-type-specific markers were used in the same models in order to further specify the protective effects of PACAP. In rats BCCAO led to severe degeneration of all retinal layers that was attenuated by PACAP (100 pmol) administered unilaterally immediately following BCCAO into the vitreous body of one eye. Retinas were processed for immunohistochemistry after 3 weeks. Immunolabeling was executed for vesicular glutamate transporter 1 (VGLUT 1), vesicular gamma-aminobutyric acid transporter (VGAT), protein kinase Calpha (PKCalpha), glial fibrillary acidic protein (GFAP) and calcium-binding proteins, such as calbindin, calretinin, parvalbumin. In BCCAO retinas, intensity of immunopositivity for all antisera was dramatically decreased, except in the case of GFAP. In PACAP-treated retinas, immunostaining was similar to that of the control animals. In summary, our study presented immunohistochemical identification of cell types sensitive to chronic retinal hypoperfusion and the protective effects of PACAP. This analysis revealed that the retinoprotective effects of PACAP are not phenotype-specific, but it rather influences general cytoprotective pathways irrespective of the neuronal subtypes in the retina subjected to chronic hypoperfusion.
Collapse
Affiliation(s)
- Tamas Atlasz
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary.
| | | | | | | | | | | | | |
Collapse
|
34
|
Sivilia S, Giuliani A, Fernández M, Turba ME, Forni M, Massella A, De Sordi N, Giardino L, Calzà L. Intravitreal NGF administration counteracts retina degeneration after permanent carotid artery occlusion in rat. BMC Neurosci 2009; 10:52. [PMID: 19473529 PMCID: PMC2699342 DOI: 10.1186/1471-2202-10-52] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 05/27/2009] [Indexed: 01/19/2023] Open
Abstract
Background The neurotrophin nerve growth factor (NGF) is produced by different cell types in the anterior and posterior eye, exerting a neuroprotective role in the adult life. The visual system is highly sensitive to NGF and the retina and optic nerve provides suitable subjects for the study of central nervous system degeneration. The model of bilateral carotid occlusion (two-vessel occlusion, 2VO) is a well-established model for chronic brain hypoperfusion leading to brain capillary pathology, to retina and optic nerve degeneration. In order to study if a single intravitreal injection of NGF protects the retina and the optic nerve from degeneration during systemic circulatory diseases, we investigated morphological and molecular changes occurring in the retina and optic nerve of adult rats at different time-points (8, 30 and 75 days) after bilateral carotid occlusion. Results We demonstrated that a single intravitreal injection of NGF (5 μg/3 μl performed 24 hours after 2VO ligation) has a long-lasting protective effect on retina and optic nerve degeneration. NGF counteracts retinal ganglion cells degeneration by early affecting Bax/Bcl-2 balance- and c-jun- expression (at 8 days after 2VO). A single intravitreal NGF injection regulates the demyelination/remyelination balance after ischemic injury in the optic nerve toward remyelination (at 75 days after 2VO), as indicated by the MBP expression regulation, thus preventing optic nerve atrophy and ganglion cells degeneration. At 8 days, NGF does not modify 2VO-induced alteration in VEFG and related receptors mRNA expression. Conclusion The protective effect of exogenous NGF during this systemic circulatory disease seems to occur also by strengthening the effect of endogenous NGF, the synthesis of which is increased by vascular defect and also by the mechanical lesion associated with NGF or even vehicle intraocular delivery.
Collapse
|
35
|
Protection against chronic hypoperfusion-induced retinal neurodegeneration by PARP inhibition via activation of PI-3-kinase Akt pathway and suppression of JNK and p38 MAP kinases. Neurotox Res 2009; 16:68-76. [PMID: 19526300 DOI: 10.1007/s12640-009-9049-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 12/11/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation is considered as a major regulator of cell death in various pathophysiological conditions, however, no direct information is available about its role in chronic hypoperfusion-induced neuronal death. Here, we provide evidence for the protective effect of PARP inhibition on degenerative retinal damage induced by bilateral common carotid artery occlusion (BCCAO), an adequate chronic hypoperfusion murine model. We found that BCCAO in adult male Wistar rats led to severe degeneration of all retinal layers that was attenuated by a carboxaminobenzimidazol-derivative PARP inhibitor (HO3089) administered unilaterally into the vitreous body immediately following carotid occlusion and then 4 times in a 2-week-period. Normal morphological structure of the retina was preserved and the thickness of the retinal layers was increased in HO3089-treated eyes compared to the BCCAO eyes. For Western blot studies, HO3089 was administered immediately after BCCAO and retinas were removed 4 h later. According to Western blot analysis utilizing phosphorylation-specific primary antibodies, besides activating poly-ADP-ribose (PAR) synthesis, BCCAO induced phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). HO3089 inhibited PAR synthesis, and decreased the phosphorylation of these proapoptotic MAPKs. In addition, HO3089 treatment induced phosphorylation, that is activation, of the protective Akt/glycogen synthase kinase (GSK)-3beta and extracellular signal-regulated kinase (ERK1/2) signaling pathways. These data indicate that PARP activation has a major role in mediating chronic hypoperfusion-induced neuronal death, and inhibition of the enzyme prevents the pathological changes both in the morphology and the kinase signaling cascades involved. These results identify PARP inhibition as a possible molecular target in the clinical management of chronic hypoperfusion-induced neurodegenerative diseases including ocular ischemic syndrome.
Collapse
|
36
|
Vicente E, Degerone D, Bohn L, Scornavaca F, Pimentel A, Leite MC, Swarowsky A, Rodrigues L, Nardin P, de Almeida LMV, Gottfried C, Souza DO, Netto CA, Gonçalves CA. Astroglial and cognitive effects of chronic cerebral hypoperfusion in the rat. Brain Res 2008; 1251:204-12. [PMID: 19056357 DOI: 10.1016/j.brainres.2008.11.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 10/24/2008] [Accepted: 11/08/2008] [Indexed: 01/08/2023]
Abstract
The permanent occlusion of common carotid arteries (2VO) causes a significant reduction of cerebral blood flow (hypoperfusion) in rats and constitutes a well established experimental model to investigate neuronal damage and cognitive impairment that occurs in human ageing and Alzheimer's disease. In the present study, we evaluated two astroglial proteins--S100B and glial fibrillary acidic protein (GFAP)--in cerebral cortex and hippocampus tissue, glutamate uptake and glutamine synthetase activity in hippocampus tissue, as well as S100B in cerebrospinal fluid. Cognition, as assessed by reference and working spatial memory protocols, was also investigated. Adult male Wistar rats were submitted to 10 weeks of chronic cerebral hypoperfusion by the 2VO method. A significant increase of S100B and GFAP in hippocampus tissue was observed, as well a significant decrease in glutamate uptake. Interestingly, we observed a decrease in S100B in cerebrospinal fluid. As for the cognitive outcome, there was an impairment of both reference and working spatial memory in the water maze; positive correlation between cognitive impairment and glutamate uptake decrease was evidenced in hypoperfused rats. These data support the hypothesis that astrocytes play a crucial role in the mechanisms of experimental neurodegeneration and that hippocampal pathology arising after chronic hypoperfusion gives rise to memory deficits.
Collapse
Affiliation(s)
- Evelin Vicente
- Post-graduation Program of Neurocience, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kalesnykas G, Tuulos T, Uusitalo H, Jolkkonen J. Neurodegeneration and cellular stress in the retina and optic nerve in rat cerebral ischemia and hypoperfusion models. Neuroscience 2008; 155:937-47. [DOI: 10.1016/j.neuroscience.2008.06.038] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 11/30/2022]
|
38
|
Kim SK, Cho KO, Kim SY. White Matter Damage and Hippocampal Neurodegeneration Induced by Permanent Bilateral Occlusion of Common Carotid Artery in the Rat: Comparison between Wistar and Sprague-Dawley Strain. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:89-94. [PMID: 20157400 DOI: 10.4196/kjpp.2008.12.3.89] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In order to reproduce chronic cerebral hypoperfusion as it occurs in human aging and Alzheimer's disease, we introduced permanent, bilateral occlusion of the common carotid arteries (BCCAO) in rats (Farkas et al, 2007). Here, we induced BCCAO in two different rat strains in order to determine whether there was a strain difference in the pathogenic response to BCCAO. Male Wistar and Sprague-Dawley (SD) rats (250-270 g) were subjected to BCCAO for three weeks. Klüver-Barrera and cresyl violet staining were used to evaluate white matter and gray matter damage, respectively. Wistar rats had a considerably higher mortality rate (four of 14 rats) as compared to SD rats (one of 15 rats) following BCCAO. Complete loss of pupillary light reflex occurred in all Wistar rats that survived, but loss of pupillary light reflex did not occur at all in SD rats. Moreover, BCCAO induced marked vacuolation in the optic tract of Wistar rats as compared to SD rats. In contrast, SD rats showed fewer CA1 hippocampal neurons than Wistar rats following BCCAO. These results suggest that the neuropathological process induced by BCCAO takes place in a region-specific pattern that varies according to the strain of rat involved.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pharmacology, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | |
Collapse
|
39
|
Farkas E, Luiten PGM, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. ACTA ACUST UNITED AC 2007; 54:162-80. [PMID: 17296232 DOI: 10.1016/j.brainresrev.2007.01.003] [Citation(s) in RCA: 526] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 12/30/2006] [Accepted: 01/03/2007] [Indexed: 11/16/2022]
Abstract
Chronic cerebral hypoperfusion has been associated with cognitive decline in aging and Alzheimer's disease. Moreover, the pattern of cerebral blood flow in mild cognitive impairment has emerged as a predictive marker for the progression into Alzheimer's disease. The reconstruction of a pathological condition in animal models is a suitable approach to the unraveling of causal relationships. For this reason, permanent, bilateral occlusion of the common carotid arteries (2VO) in rats has been established as a procedure to investigate the effects of chronic cerebral hypoperfusion on cognitive dysfunction and neurodegenerative processes. Over the years, the 2VO model has generated a large amount of data, revealing the 2VO-related pattern of cerebral hypoperfusion and metabolic changes, learning and memory disturbances, failure of neuronal signaling, and the neuropathological changes in the hippocampus. In addition, the model has been introduced in research into ischemic white matter injury and ischemic eye disease. The present survey sets out to provide a comprehensive summary of the achievements made with the 2VO model, and a critical evaluation and integration of the various results, and to relate the experimental data to human diseases. The data that have accumulated from use of the 2VO model in the rat permit an understanding of the causative role played by cerebral hypoperfusion in neurodegenerative diseases. Thorough characterization of the model suggests that 2VO in the rat is suitable for the development of potentially neuroprotective strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Eszter Farkas
- Department of Anatomy, School of Medicine, University of Szeged, H-6701 Szeged, P.O. Box 427, Hungary.
| | | | | |
Collapse
|