1
|
Bullimore MA, Brennan NA. Efficacy in myopia control-The impact of rebound. Ophthalmic Physiol Opt 2025; 45:100-110. [PMID: 39377894 DOI: 10.1111/opo.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE When myopia control treatment is discontinued, progression will increase, but does it revert to expected values based on the age and race of the child or does it accelerate further? The latter scenario is considered a rebound. METHODS A PubMed search was conducted with the words 'rebound' and 'myopia control', identifying further papers from reviews. Inclusion was limited to prospective studies with ≥6 months of treatment, ≥3 months of data following cessation and with axial length data, which allowed calculation of rebound. Nineteen studies were identified, comprising 24 treatment groups. In 10 studies, untreated control children were followed both throughout the treatment and cessation periods, allowing for a concurrent comparison group. In three studies, a control group was followed for 1 or 2 years and thereafter received the treatment under evaluation. Later, treatment ceased in the originally treated children. Finally, six studies were cross-over designs. For these latter two study designs, initial axial elongation and myopia progression in the control group were extrapolated to the cessation period, accounting for annual slowing. Values from durations of <1 year were annualised. RESULTS The mean annualised rebound was +0.05 ± 0.10 mm and -0.09 ± 0.24 D for axial length and myopia progression, respectively, and these were correlated (r2 = 0.59, p < 0.001). Rebound was associated with 1-year treatment efficacy (r2 = 0.43, p < 0.001). The mean annualised rebound with optical corrections was -0.01 ± 0.03 mm. Five of the six highest rebound values (≥0.14 mm) were from red light therapy and atropine studies. Rebound ranged from +0.03 to +0.14 mm for overnight orthokeratology. CONCLUSIONS Consistent with previous statements, no evidence for rebound was found for myopia control spectacles and soft contact lenses. Future research should explore the influence of age and magnitude of treatment efficacy on rebound.
Collapse
Affiliation(s)
- Mark A Bullimore
- College of Optometry, University of Houston, Houston, Texas, USA
| | | |
Collapse
|
2
|
Chakraborty R, Baranton K, Pic E, Didone J, Kim W, Lam K, Papandrea A, Kousa J, Bhasme T, Edmonds C, Trieu C, Chang E, Coleman A, Hussain A, Lacan P, Spiegel D, Barrau C. Axial length reduction and choroidal thickening with short-term exposure to cyan light in human subjects. Ophthalmic Physiol Opt 2024; 44:1414-1432. [PMID: 39244703 DOI: 10.1111/opo.13390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Given the potential role of light and its wavelength on ocular growth, this study investigated the effect of short-term exposure to red, cyan and blue light on ocular biometry in humans. METHODS Forty-four young adults and 20 children, comprising emmetropes and myopes, underwent 2-h sessions of cyan (507 nm), red (638 nm) and broadband white light on three separate days via light-emitting glasses. Additionally, young adults were exposed to blue light (454 nm) on an additional day. Axial length (AL) and choroidal thickness (CT) were measured in the right eye before the light exposure (0 min), after 60 and 120 min of exposure and 30 min after light offset using an optical biometer and optical coherence tomographer, respectively. RESULTS Compared to broadband light, exposure to red light resulted in a significant increase in AL (mean difference between white and red light at 120 min, +0.007 mm [0.002]), but no significant change in CT, while cyan light caused a significant AL reduction (-0.010 mm [0.003]) and choroidal thickening (+0.008 mm [0.002]) in young adults (p < 0.05). Blue light caused a significant decrease of -0.007 mm (0.002) in young adult eyes at 60 min (p < 0.05). In children, cyan light led to a significant reduction in AL (-0.016 mm [0.004]) and strong sustained choroidal thickening (+0.014 mm [0.004]) compared to broadband light at 120 min (p < 0.05). The effects of cyan light on AL and CT were found to be stronger in myopic young adults and emmetropic children. The opposing effects of red and cyan light on ocular biometry were similar between the two age groups (p > 0.05). CONCLUSIONS Exposure to cyan light resulted in AL reduction and choroidal thickening in both young adults and children. Further research is needed to determine the application of these results in developing interventions for myopia control.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Konogan Baranton
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| | - Eleonore Pic
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| | - Julia Didone
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Wanki Kim
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Kevin Lam
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Alessandro Papandrea
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Jad Kousa
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Tiana Bhasme
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Chloe Edmonds
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Cindy Trieu
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Eunjong Chang
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Alexander Coleman
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Azfira Hussain
- Myopia and Visual Development Lab, College of Nursing and Health Sciences, Caring Futures Institute, Flinders University, Adelaide, South Australia, Australia
| | - Pascale Lacan
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| | - Daniel Spiegel
- Essilor Asia Pacific Pte Ltd, Singapore City, Singapore, Singapore
| | - Coralie Barrau
- Essilor International, Centre of Innovation and Technologies Europe, Paris, France
| |
Collapse
|
3
|
Chen Y, Xiong R, Yang S, Zhu Z, Li H, Xiang K, Congdon N, Wang W, He M. Safety of repeated low-level red-light therapy for myopia: A systematic review. Asia Pac J Ophthalmol (Phila) 2024; 13:100124. [PMID: 39672511 DOI: 10.1016/j.apjo.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024] Open
Abstract
PURPOSE Establishing the safety profile of repeated low-level red-light (RLRL) therapy is necessary prior to its widespread clinical implementation. METHODS We conducted a systematic review (International Prospective Register of Systematic Reviews, CRD42024516676) of articles across seven databases from inception through February 10, 2024, with keywords related to myopia and RLRL therapy. Pooled safety outcomes and risk-to-benefit ratios were reported, and incidence of side effects was compared with other antimyopia interventions. RESULTS Among 689 screened articles, 20 studies (2.90 %; median duration 9 months, longest 24 months) were analysed, encompassing 2380 participants aged 3-18 years and 1436 individuals undergoing RLRL therapy. Two case reports described an identical patient with reversible decline in visual acuity and optical coherence tomography (OCT) abnormalities, completely resolved 4 months after treatment cessation. No cases of permanent vision loss were reported. Temporary afterimage was the most common ocular symptom following treatment, resolving within 6 minutes in reported studies. The number needed to harm outweighed the number needed to treat by a ratio of 12.7-21.4 for a person with -3D to -8D myopia treated with RLRL therapy. Incidence of side effects from RLRL was 0.088 per 100 patient-years (95 % confidence interval, 0.02-0.50). CONCLUSIONS No irreversible visual function loss or ocular structural damage was identified with RLRL. Fundus photography and OCT before and during therapy, alongside home monitoring of visual acuity and duration of afterimages, are necessary to identify side effects. Further adequately powered studies of longer duration are needed to evaluate long-term safety of RLRL.
Collapse
Affiliation(s)
- Yanping Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Shaopeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Ziyu Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Huangdong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Kaidi Xiang
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China; Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Eye Research Institute, Shanghai, China; Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China; Shanghai Key Clinical Specialty, Shanghai, China; Shanghai Clinical Research Center for Eye Diseases, Shanghai, China; National Clinical Research Center for Eye Diseases, Shanghai, China; Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shanghai Eye Research Institute, Shanghai, China
| | - Nathan Congdon
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; Centre for Public Health, Queen's University Belfast, Belfast, United Kingdom; Orbis International, New York, NY, USA.
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Mingguang He
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia; Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| |
Collapse
|
4
|
Zhang J, Zhong M, Fan S, Wang Y, Li X, Chen H, Bao J, Huang Y. Differential impact of combined therapy and monotherapy with 0.05% atropine eyedrops and dual focus contact lenses on choroid. Cont Lens Anterior Eye 2024:102320. [PMID: 39467722 DOI: 10.1016/j.clae.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE To investigate changes in the choroid and axial length (AL) during one month of combined therapy and monotherapy with 0.05% atropine and dual-focus soft contact lens (DFCL), and the impact after discontinuation. METHODS Myopic adults randomly received three interventions: 0.05 % atropine, DFCL, and 0.05 % atropine combined with DFCL. Choroidal thickness (ChT), choroidal vascularity index (CVI) and AL were measured at baseline, 3, 7, 14, and 30 days after intervention, and 1, 2, 7, 14, and 30 days after discontinuation. RESULTS The ChT thickened and AL decreased after one month of combination therapy (24.19 ± 4.13 μm, P = 0.001; -40.35 ± 9.55 μm, P = 0.024) or 0.05 % atropine (20.52 ± 4.35 μm, P = 0.008; -8.07 ± 7.22 μm, P = 0.002) but not DFCL (8.95 ± 4.25 μm, P > 0.999; -14.89 ± 7.28 μm, P > 0.999). The increase in ChT and decrease in AL persisted for 2 days after 0.05 % atropine was discontinued, persisted for 7 days and 14 days after combination therapy was discontinued. There was no significant change in the CVI after one month use or withdrawal of any intervention (P > 0.999). After one month of combination therapy, significant correlations were observed between the baseline CVI and changes in ChT (r = 0.485, P = 0.035) or AL (r = -0.589, P = 0.008). CONCLUSION Monotherapy involving 0.05% atropine or the combination of 0.05% atropine with DFCL significantly affected ChT thickening and AL shortening. These changes were maintained for a longer duration post combination intervention. The baseline CVI was associated with changes in ChT and AL during combination treatment.
Collapse
Affiliation(s)
- Jiali Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Muhan Zhong
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shuqi Fan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yanqing Wang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xue Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jinhua Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Yingying Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Liu G, Liu L, Rong H, Li L, Liu X, Jia Z, Zhang H, Wang B, Song D, Hu J, Shi X, Du B, Wei R. Axial Shortening Effects of Repeated Low-level Red-light Therapy in Children With High Myopia: A Multicenter Randomized Controlled Trial. Am J Ophthalmol 2024; 270:203-215. [PMID: 39424029 DOI: 10.1016/j.ajo.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/26/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE To evaluate the effectiveness and safety of repeated low-level red-light (RLRL) in delaying the progression of high myopes with -6.00 diopters (D) or worse. DESIGN Multicenter, randomized, parallel-group, single-blind clinical trial. A total of 202 high myopic children aged 7 to 12 years with cycloplegia spherical equivalent (SE) refraction ≤-6.00 D, astigmatism less than 2.50 D, and anisometropia of 1.50 D or less were enrolled from March 2022 to December 2022. Follow-up was completed in December 2023. METHODS Eligible participants were randomly allocated to the intervention (RLRL + single vision spectacle) or the control group (single vision spectacle). The RLRL treatment was administered every day for 3 minutes, twice a day, with an interval of at least 4 hours. The primary outcome was the change in axial length (AL) at 12 months compared with baseline. Secondary outcomes included changes in SE, changes in choroidal thickness (ChT), and changes in retinal thickness (RT) in different circle sectors. Outcomes were analyzed by means of intention-to-treat and per-protocol methods. RESULTS After 12 months of treatment, AL and SE changes were -0.11 ± 0.25 mm and 0.18 ± 0.63 D for the RLRL group and 0.32 ± 0.09 mm and -0.80 ± 0.42 D for the control group, respectively. Axial shortening >0.05 mm was 59% in the RLRL and 0% in the control group at 12 months. ChT and RT from a single center were analyzed. In the RLRL group, ChT was thickened in all sectors at 12 months. RT was increased in parafoveal and perifoveal circles. In the control group, all sectors of ChT and only perifoveal RT were significantly thinner at 12 months. The multivariate linear regression model revealed significant correlations between changes in the ChT central foveal circle and RT perifoveal circle at 1 month and AL changes at 12 months. No fundus structure changes, afterimage exceeding 6 minutes, or best-corrected visual acuity decrease were reported. CONCLUSIONS RLRL could effectively shorten the AL and inhibit the progression of myopia in high myopic patients with -6.00 D or worse. AL shortening is sustained over 12 months of treatment. These observed changes appeared to be associated with increases in ChT and RT.
Collapse
Affiliation(s)
- Guihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Hua Rong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Li Li
- Department of Ophthalmology, Beijing Children's Hospital, Capital Medical University, Beijing, China (Li L.)
| | - Xuan Liu
- Department of Ophthalmology, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China (X.L.)
| | - Zhiyang Jia
- Department of Ophthalmology, Hebei Provincial People's Hospital, Shijiazhuang, Hebei, China (Z.J.)
| | - Hua Zhang
- Department of Ophthalmology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (H.Z.)
| | - Biying Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Desheng Song
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Jiamei Hu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Xinrui Shi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.)
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.).
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China (G.L., Lin L., H.R., B.W., D.S., J.H., X.S., B.D., R.W.).
| |
Collapse
|
6
|
Liu Y, Zhu M, Yan X, Li M, Xiang Y. The Effect of Repeated Low-Level Red-Light Therapy on Myopia Control and Choroid. Transl Vis Sci Technol 2024; 13:29. [PMID: 39432402 PMCID: PMC11498649 DOI: 10.1167/tvst.13.10.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Purpose To investigate the long-term effects of repeated low-level red light (RLRL) therapy on the axial length (AL), spherical equivalent (SE), and choroidal parameters. Methods Two hundred eight myopic eyes were recruited. The RLRL group included 100 eyes, whereas the control group included 108 eyes. Throughout the one-year follow-up period, changes in AL and SE were recorded for both groups. The RLRL group underwent additional choroidal imaging, and changes in choroidal thickness (CT), choroidal vascularity (CV), and choriocapillaris luminal area (CLA) were assessed before and after RLRL therapy. Results During the follow-up period, the changing trends in AL and SE differed significantly between the RLRL and control groups. In the RLRL group, AL decreased at three and six months (both P < 0.05) and returned to pretreatment values at 12 months (P = 0.453). In contrast, AL increased significantly throughout the follow-up period (three, six, and 12 months) in the control group (all P < 0.001). The SE increased significantly during the entire follow-up period in the RLRL group (all P < 0.001), whereas it decreased significantly in the control group (all P < 0.05). Regarding choroidal parameters, significant improvements were observed in CT, CV and CLA throughout the follow-up period (all P < 0.05), and changes in most choroidal parameters were significantly correlated with changes in AL and SE during the follow-up period (all P < 0.05). Furthermore, AL, SE, and most choroidal parameters showed significant correlations between changes at three and 12 months (all P < 0.05). Conclusions RLRL therapy significantly improved choroidal blood perfusion and circulation, which may explain the observed slowing or reversal of myopia progression in the RLRL group. Thus RLRL therapy may be a novel and effective method for controlling myopia. Furthermore, the short-term effect of photobiomodulation therapy (i.e., changes at three months) can be used to predict the long-term effects (i.e., changes at 12 months). Translational Relevance In this study, RLRL therapy showed a significant control effect on the development of axial length and spherical equivalent. RLRL therapy also promoted the choroidal blood perfusion and circulation. RLRL therapy could be a novel and effective method for myopia control.
Collapse
Affiliation(s)
- Ying Liu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqin Yan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mu Li
- Department of Ophthalmology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Xiong Y, Liao Y, Zhou W, Sun Y, Zhu M, Wang X. Effectiveness of low-level red light for controlling progression of Myopia in children and adolescents. Photodiagnosis Photodyn Ther 2024; 49:104267. [PMID: 39009205 DOI: 10.1016/j.pdpdt.2024.104267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE To evaluate the effectiveness of low-level red light (LRL) in controlling the progression of myopia in children and adolescents. METHODS A randomized controlled trial was conducted from March 2022 to June 2022 at the Xuzhou First People's Hospital. A total of 73 children and adolescents with myopia, between the ages of 6 and 14, and meeting the inclusion criteria, were randomly divided into two groups. The experimental group wore single vision spectacles with LRL intervention, while the control group wore single vision spectacles alone. Spherical equivalent refraction (SER), axial length (AL), subfoveal choroidal thickness (SFCT), and best-corrected visual acuity (BCVA) were measured for the participants. Data analysis was performed using chi-square test, independent samples t-test, and Mann-Whitney U test. To compare the changes in SER and AL between groups, we utilized the Generalized Estimating Equations (GEE) model. RESULTS The experimental group was composed of 36 individuals, while the control group had 37. The mean age of the participants was 8.9 ± 2.0 years. No statistically significant distinctions in SER, AL and SFCT were observed between the two groups at baseline (P > 0.05). After 6 months of intervention, the experimental group's increase in SER (-0.01D; 95 % CI: -0.09, 0.06) was higher than that of the control group (-0.41D; 95 % CI: -0.51, -0.32), with a significance level of P < 0.001. Furthermore, the changes over time revealed significant differences between the two groups (Wald χ2group×time: 31.576, P < 0.001). The experimental group's AL increase (-0.02 mm; 95 % CI: -0.07, 0.03) was less than the control group's (0.22 mm; 95 % CI: 0.19, 0.25) (P < 0.001), with a significant difference over time between them (wald χ2group×time: 62.305, P < 0.001). SFCT change after 6 months in the experimental group was significantly greater (29.19 μm; 95 % CI: 18.48, 39.91) compared to that of the control group (-6.59 μm; 95 % CI: -14.28, 1.09) (P < 0.001). No adverse events were observed, and there was no evidence of fundus structural damage on OCT imaging. CONCLUSIONS The findings suggest that low-level red light can effectively control myopia progression in children and adolescents within 6 months. No adverse reactions were observed.
Collapse
Affiliation(s)
- Yinghui Xiong
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Ya Liao
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Wen Zhou
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China; First School of Clinical Medicine of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Yanmei Sun
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Mingming Zhu
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Xiaojuan Wang
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| |
Collapse
|
8
|
Liu G, Rong H, Liu Y, Wang B, Du B, Song D, Wei R. Effectiveness of repeated low-level red light in myopia prevention and myopia control. Br J Ophthalmol 2024; 108:1299-1305. [PMID: 38631861 PMCID: PMC11347203 DOI: 10.1136/bjo-2023-324260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/23/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND/AIMS To compare the effects of repeated low-level red light (RLRL) treatment on axial length growth and refractive error changes in myopic and premyopic children. METHODS Subjects were assigned randomly to four subgroups: myopia-RLRL group (M-RL), myopia-control group (M-C), premyopia-RLRL group (PM-RL) and premyopia-control group (PM-C). Subjects in the RLRL group completed a 12-month treatment composed of a 3 min RLRL treatment session twice daily, with an interval of at least 4 hours, for 7 days per week. Visits were scheduled before and at 1-month, 3-month, 6-month, 9-month and 12-month follow-up after the treatment. Repeated-measures analysis of variance was used to compare the spherical equivalent refractive errors (SE) and axial length (AL) changes between the groups across the treatment period. RESULTS After 12 months of treatment, in the myopia group, SE and AL changes were -0.078±0.375 D and 0.033±0.123 mm for M-RL and -0.861±0.556 D and 0.415±0.171 mm for M-C; in the premyopia group, the progression of SE and AL was -0.181±0.417 D and 0.145±0.175 mm for PM-RL and -0.521±0.436 D and 0.292±0.128 mm for PM-C. PM-RL indicated a lower myopia incidence than PM-C (2.5% vs 19.4%). Additionally, the percentage of AL shortening in the M-RL was higher than that in the PM-RL before the 9-month follow-up. CONCLUSION RLRL effectively delayed myopia progression in children with myopia and reduced the incidence of myopia in premyopic children. Moreover, RLRL exhibited a stronger impact on myopic children compared with premyopic individuals.
Collapse
Affiliation(s)
- Guihua Liu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hua Rong
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yipu Liu
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Biying Wang
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bei Du
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Desheng Song
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
9
|
Chang DJ, P. L. S, Jeong J, Saw SM, Sevdalis N, Najjar RP. Light Therapy for Myopia Prevention and Control: A Systematic Review on Effectiveness, Safety, and Implementation. Transl Vis Sci Technol 2024; 13:31. [PMID: 39167378 PMCID: PMC11343011 DOI: 10.1167/tvst.13.8.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Purpose This systematic review focuses on the effectiveness, safety, and implementation outcomes of light therapy as an intervention to prevent or control myopia in children. Methods A systematic literature search was performed in PubMed, EMBASE, CINAHL, SCOPUS, and Web of Science up to January 27, 2024. Effectiveness outcomes included myopia incidence, and changes in axial length (AL), spherical equivalent refraction (SER), and choroidal thickness (CT). Safety outcomes relating to retinal health or damage and implementation outcomes including compliance rates and loss to follow-up were extracted. ROBINS-I, ROB 2, and ROB-2 CRT were used to assess risk of bias. Results Nineteen interventional studies were included. Increased outdoor time (n = 3), red-light therapy (n = 13), and increased classroom lighting (n = 1) had a significant effect on myopia incidence, and changes in AL, SER, and CT. Violet-light therapy (n = 2) was only effective in children aged 8 to 10 years and children without eyeglasses with less than 180 minutes of near-work time daily. Two studies using red-light therapy reported adverse effects. For all studies, only compliance rates and loss to follow-up were reported on implementation effectiveness. Conclusions Evidence is compelling for the effectiveness of red-light therapy and outdoors time; more data are needed to confirm safety. Robust data are still needed to prove the effectiveness of violet-light and increased classroom lighting. Clearer implementation strategies are needed for all light therapies. Translational Relevance Light therapy has emerged as effective for myopia prevention and control. This systematic review summarizes the state of knowledge and highlights gaps in safety and implementation for these strategies.
Collapse
Affiliation(s)
- Dylan James Chang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sriram P. L.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jooyeon Jeong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Nick Sevdalis
- Centre for Behavioural and Implementation Science Interventions (BISI), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Holistic Initiatives for Learning and Development, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Raymond P. Najjar
- Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Science Academic Clinical Program, Duke-NUS Medical School, Singapore
- Eye N' Brain Research Group, Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Centre for Innovation & Precision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Zaabaar E, Zhang XJ, Zhang Y, Bui CHT, Tang FY, Kam KW, Szeto SKH, Young AL, Wong ICK, Ip P, Tham CC, Pang CP, Chen LJ, Yam JC. Light exposure therapy for myopia control: a systematic review and Bayesian network meta-analysis. Br J Ophthalmol 2024; 108:1053-1059. [PMID: 38164527 DOI: 10.1136/bjo-2023-323798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/11/2023] [Indexed: 01/03/2024]
Abstract
AIMS To compare and rank the myopia control effects of different light wavelengths in children using a systematic review and Bayesian network meta-analysis (Bayesian NMA). METHODS The review protocol was registered with PROSPERO. We searched PubMed, EMBASE and MEDLINE for relevant clinical and animal studies published as of 2 February 2023. We included studies comparing red, violet or full-spectrum light with controls. Data extracted included descriptive statistics and study outcomes (axial length (AL) elongation and progression of spherical equivalent (SE) refraction). After quality assessment, estimates of treatment effect outcomes (mean differences (MDs) and 95% CIs) were first pooled for the animal and clinical studies in a traditional meta-analysis. To compare and rank the different light wavelengths, the Bayesian NMA was then conducted for all the included clinical studies (12 studies) and separately for only randomised controlled trials (8 studies). MDs, 95% credible intervals (CrIs) and ranks of the various light wavelengths were estimated in the Bayesian NMA. RESULTS When all clinical studies were included in the Bayesian NMA (12 studies), only red-light significantly slowed AL elongation, MD (95% CrI), -0.38 mm (-0.59 mm to -0.16 mm)/year and SE refraction progression, 0.72D (0.35D to 1.10D)/year compared with controls. It remained the only significant intervention when effect sizes from only RCTs (eight studies) were separately combined, (-0.28 mm (-0.40 mm to -0.15 mm)/year and 0.57D (0.22D to 0.92D)/year, for AL and SE refraction, respectively). CONCLUSION Myopia control efficacy varied among different wavelengths of light, with red light ranked as the most effective. PROSPERO REGISTRATION NUMBER Clinical studies: CRD42022368998; animal studies: CRD42022368671.
Collapse
Affiliation(s)
- Ebenezer Zaabaar
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuzhou Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christine H T Bui
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fang Yao Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
| | - Simon K H Szeto
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Alvin L Young
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
| | - Ian C K Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Patrick Ip
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children Hospital, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children Hospital, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Schaeffel F, Wildsoet CF. Red light therapy for myopia: Merits, risks and questions. Ophthalmic Physiol Opt 2024; 44:801-807. [PMID: 38563650 DOI: 10.1111/opo.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Christine F Wildsoet
- Herbert Wertheim School of Optometry and Vision Science, University California Berkeley, Berkeley, California, USA
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Tapasztó B, Flitcroft DI, Aclimandos WA, Jonas JB, De Faber JTHN, Nagy ZZ, Kestelyn PG, Januleviciene I, Grzybowski A, Vidinova CN, Guggenheim JA, Polling JR, Wolffsohn JS, Tideman JWL, Allen PM, Baraas RC, Saunders KJ, McCullough SJ, Gray LS, Wahl S, Smirnova IY, Formenti M, Radhakrishnan H, Resnikoff S, Németh J. Myopia management algorithm. Annexe to the article titled Update and guidance on management of myopia. European Society of Ophthalmology in cooperation with International Myopia Institute. Eur J Ophthalmol 2024; 34:952-966. [PMID: 38087768 PMCID: PMC11295429 DOI: 10.1177/11206721231219532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/23/2023] [Indexed: 02/06/2024]
Abstract
Myopia is becoming increasingly common in young generations all over the world, and it is predicted to become the most common cause of blindness and visual impairment in later life in the near future. Because myopia can cause serious complications and vision loss, it is critical to create and prescribe effective myopia treatment solutions that can help prevent or delay the onset and progression of myopia. The scientific understanding of myopia's causes, genetic background, environmental conditions, and various management techniques, including therapies to prevent or postpone its development and slow its progression, is rapidly expanding. However, some significant information gaps exist on this subject, making it difficult to develop an effective intervention plan. As with the creation of this present algorithm, a compromise is to work on best practices and reach consensus among a wide number of specialists. The quick rise in information regarding myopia management may be difficult for the busy eye care provider, but it necessitates a continuing need to evaluate new research and implement it into daily practice. To assist eye care providers in developing these strategies, an algorithm has been proposed that covers all aspects of myopia mitigation and management. The algorithm aims to provide practical assistance in choosing and developing an effective myopia management strategy tailored to the individual child. It incorporates the latest research findings and covers a wide range of modalities, from primary, secondary, and tertiary myopia prevention to interventions that reduce the progression of myopia.
Collapse
Affiliation(s)
- Beáta Tapasztó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Daniel Ian Flitcroft
- Temple Street Children's Hospital, Dublin, Ireland
- Centre for Eye Research Ireland (CERI) Technological University, Dublin, Ireland
| | | | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | | | | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland
| | - Christina Nicolaeva Vidinova
- Department of Ophthalmology, Military Medical Academy, Sofia, Bulgaria
- Department of Optometry, Sofia University “St. Kliment Ohridski“, Sofia, Bulgaria
| | | | - Jan Roelof Polling
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Optometry and Orthoptics, University of Applied Science, Utrecht, The Netherlands
| | - James S Wolffsohn
- Optometry and Vision Science Research Group, College of Health and Life Sciences, Aston University, Birmingham, UK
| | - J Willem L Tideman
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department Ophthalmology, Martini Hospital, Groningen, The Netherlands
| | - Peter M Allen
- Vision and Hearing Sciences Research Centre, Anglia Ruskin University, Cambridge, UK
| | - Rigmor C Baraas
- National Centre for Optics, Vision and Eye Care, University of South-Eastern Norway, Kongsberg, Norway
| | - Kathryn J Saunders
- Centre for Optometry and Vision Science, Ulster University, Coleraine, UK
| | - Sara J McCullough
- Centre for Optometry and Vision Science, Ulster University, Coleraine, UK
| | | | - Siegfried Wahl
- Institute for Ophthalmic Research, University Tübingen, Tübingen, Germany
- Carl Zeiss Vision International GmbH, Tübingen, Germany
| | | | - Marino Formenti
- Department of Physics, School of Science, University of Padova, Padova, Italy
| | - Hema Radhakrishnan
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
| | - Serge Resnikoff
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Brien Holden Vision Institute, Sydney, Australia
| | - János Németh
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
13
|
Zhang CX, Fan B, Chi J, Li YL, Jiao Q, Zhang ZY, Li GY. Differences between long- and short-wavelength light-induced retinal damage and the role of PARP-1 in retinal injury induced by blue light. Exp Eye Res 2024; 244:109946. [PMID: 38815794 DOI: 10.1016/j.exer.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Photobiomodulation (PBM) therapy uses light of different wavelengths to treat various retinal degeneration diseases, but the potential damage to the retina caused by long-term light irradiation is still unclear. This study were designed to detect the difference between long- and short-wavelength light (650-nm red light and 450-nm blue light, 2.55 mW/cm2, reference intensity in PBM)-induced injury. In addition, a comparative study was conducted to investigate the differences in retinal light damage induced by different irradiation protocols (short periods of repeated irradiation and a long period of constant irradiation). Furthermore, the protective role of PARP-1 inhibition on the molecular mechanism of blue light-induced injury was confirmed by a gene knockdown technique or a specific inhibitor through in vitro and in vivo experiments. The results showed that the susceptibility to retinal damage caused by irradiation with long- and short-wavelength light is different. Shorter wavelength lights, such as blue light, induce more severe retinal damage, while the retina exhibits better resistance to longer wavelength lights, such as red light. In addition, repeated irradiation for short periods induces less retinal damage than constant exposure over a long period. PARP-1 plays a critical role in the molecular mechanism of blue light-induced damage in photoreceptors and retina, and inhibiting PARP-1 can significantly protect the retina against blue light damage. This study lays an experimental foundation for assessing the safety of phototherapy products and for developing target drugs to protect the retina from light damage.
Collapse
Affiliation(s)
- Chun-Xia Zhang
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Jing Chi
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Yu-Lin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Qing Jiao
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
14
|
Swiatczak B, Schaeffel F. Effects of short-term exposure to red or near-infrared light on axial length in young human subjects. Ophthalmic Physiol Opt 2024; 44:954-962. [PMID: 38557968 DOI: 10.1111/opo.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. METHODS Incoherent narrow-band red (620 ± 10 nm) or near-infrared (NIR, 875 ± 30 nm) light was generated by an array of light-emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non-myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low-coherence interferometry. RESULTS Non-myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (-13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = -0.52, p = 0.03) and induced changes in AL after exposure to red light in non-myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error. CONCLUSIONS Incoherent narrow-band red light at 620 nm induced axial shortening in 77% of non-myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.
Collapse
Affiliation(s)
- Barbara Swiatczak
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Eppenberger LS, Grzybowski A, Schmetterer L, Ang M. Myopia Control: Are We Ready for an Evidence Based Approach? Ophthalmol Ther 2024; 13:1453-1477. [PMID: 38710983 PMCID: PMC11109072 DOI: 10.1007/s40123-024-00951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION Myopia and its vision-threatening complications present a significant public health problem. This review aims to provide an updated overview of the multitude of known and emerging interventions to control myopia, including their potential effect, safety, and costs. METHODS A systematic literature search of three databases was conducted. Interventions were grouped into four categories: environmental/behavioral (outdoor time, near work), pharmacological (e.g., atropine), optical interventions (spectacles and contact lenses), and novel approaches such as red-light (RLRL) therapies. Review articles and original articles on randomized controlled trials (RCT) were selected. RESULTS From the initial 3224 retrieved records, 18 reviews and 41 original articles reporting results from RCTs were included. While there is more evidence supporting the efficacy of low-dose atropine and certain myopia-controlling contact lenses in slowing myopia progression, the evidence about the efficacy of the newer interventions, such as spectacle lenses (e.g., defocus incorporated multiple segments and highly aspheric lenslets) is more limited. Behavioral interventions, i.e., increased outdoor time, seem effective for preventing the onset of myopia if implemented successfully in schools and homes. While environmental interventions and spectacles are regarded as generally safe, pharmacological interventions, contact lenses, and RLRL may be associated with adverse effects. All interventions, except for behavioral change, are tied to moderate to high expenditures. CONCLUSION Our review suggests that myopia control interventions are recommended and prescribed on the basis of accessibility and clinical practice patterns, which vary widely around the world. Clinical trials indicate short- to medium-term efficacy in reducing myopia progression for various interventions, but none have demonstrated long-term effectiveness in preventing high myopia and potential complications in adulthood. There is an unmet need for a unified consensus for strategies that balance risk and effectiveness for these methods for personalized myopia management.
Collapse
Affiliation(s)
- Leila Sara Eppenberger
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrzej Grzybowski
- University of Warmia and Mazury, Olsztyn, Poland
- Institute for Research in Ophthalmology, Poznan, Poland
| | - Leopold Schmetterer
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore
- Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore, Singapore
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, Singapore
- Department of Clinical Pharmacology, Medical University Vienna, Vienna, Austria
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.
- Ophthalmology and Visual Sciences Department, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
16
|
Zhang XJ, Zaabaar E, French AN, Tang FY, Kam KW, Tham CC, Chen LJ, Pang CP, Yam JC. Advances in myopia control strategies for children. Br J Ophthalmol 2024:bjo-2023-323887. [PMID: 38777389 DOI: 10.1136/bjo-2023-323887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/19/2024] [Indexed: 05/25/2024]
Abstract
Myopia has long been a global threat to public health. Timely interventions are likely to reduce the risk of vision-threatening complications. There are both established and rapidly evolving therapeutic approaches to slow myopia progression and/or delay its onset. The effective methods for slowing myopia progression include atropine eye-drops, defocus incorporated multiple segments (DIMS) spectacle lenses, spectacle lenses with highly aspherical lenslets target (HALT), diffusion optics technology (DOT) spectacle lenses, red light therapy (RLT), multifocal soft contact lenses and orthokeratology. Among these, 0.05% atropine, HALT lenses, RLT and +3.00 peripheral addition soft contact lenses yield over 60% reduction in myopia progression, whereas DIMS, DOT and MiSight contact lenses demonstrate at least 50% myopia control efficacy. 0.05% atropine demonstrates a more optimal balance of efficacy and safety than 0.01%. The efficacy of 0.01% atropine has not been consistent and requires further validation across diverse ethnicities. Combining atropine 0.01% with orthokeratology or DIMS spectacles yields better outcomes than using these interventions as monotherapies. Increased outdoor time is an effective public health strategy for myopia prevention while recent studies suggest that 0.05% low-concentration atropine and RLT therapy have promising potential as clinical myopia prevention interventions for high-risk groups. Myopia control spectacle lenses, being the least invasive, are safe for long-term use. However, when considering other approaches, it is essential to ensure proper instruction and regular follow-ups to maintain safety and monitor any potential complications. Ultimately, significant advances have been made in myopia control strategies, many of which have shown meaningful clinical outcomes. However, regular use and adequate safety monitoring over extended durations are imperative to foster confidence that can only come from extensive clinical experience.
Collapse
Affiliation(s)
- Xiu Juan Zhang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ebenezer Zaabaar
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Amanda Nicole French
- Discipline of Orthoptics, University of Sydney, Sydney, New South Wales, Australia
| | - Fang Yao Tang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ka Wai Kam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children Hospital, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Jia Chen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Lam Kin Chung. Jet King-Shing Ho Glaucoma Treatment and Research Centre, Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jason C Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Ophthalmology and Visual Sciences, The Prince of Wales Hospital, Hong Kong SAR, China
- Hong Kong Eye Hospital, Hong Kong SAR, China
- Department of Ophthalmology, Hong Kong Children Hospital, Hong Kong SAR, China
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
17
|
Amaral DC, Batista S, Dos Santos-Neto E, Manso JEF, Rodrigues MPM, Monteiro MLR, Alves MR, Louzada RN. Low-level red-light therapy for myopia control in children: A systematic review and meta-analysis. Clinics (Sao Paulo) 2024; 79:100375. [PMID: 38723579 PMCID: PMC11101697 DOI: 10.1016/j.clinsp.2024.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
INTRODUCTION Low-Level Red-Light (LLRL) Therapy is a safe and natural way to promote healing and reduce inflammation in the body. When it comes to treating myopia in children, LLRL therapy is recent, and its efficacy and safety still are not clear. METHODS A systematic review and meta-analysis of the literature for LLRL was conducted in accordance with the PRISMA guidelines on November 5, 2022. Databases, including PUBMED, Cochrane Library, Web of Science, and Embase were queried. A meta-analysis of random effects was conducted. Inclusion criteria included Randomized Controlled Trials (RCTs) or observational studies where LLRL therapy was used in children (3‒15 years old) with myopia. Exclusion criteria were studies with other ocular abnormalities. Efficacy was evaluated through the mean change in Axial Length (AL) and cycloplegic Spherical Equivalent Error (SER), while safety was evaluated by monitoring adverse effects. RESULTS A total of 5 final studies were included (4 RCTs, and 1 observational), in which 685 total patients were analyzed. The mean age was 9.7 ± 0.66 years, with 48,2% female patients. The number of eyes in the LRLL arm is 714 and, in the control, arm is 656. LLRL showed better results in SER and AL mean change (OR = 0.58; 95% CI 0.33 to 0.83; p < 0.00001, and MD -0.33; 95% CI -0.52 to -0.13; p = 0.001, respectively), in comparison to the control group. There was no significant difference in adverse effects between groups (MD = 5.76; 95% CI 0.66 to 50.14; p = 0.11). CONCLUSION LLRL therapy is a non-invasive, effective, and safe short-term treatment option; however, long-term evaluation, particularly in comparison to other therapies, requires additional investigation.
Collapse
Affiliation(s)
- Dillan Cunha Amaral
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Sávio Batista
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Edson Dos Santos-Neto
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Mário Luiz Ribeiro Monteiro
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Milton Ruiz Alves
- Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Noguera Louzada
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Division of Ophthalmology and the Laboratory for Investigation in Ophthalmology (LIM-33), Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Huang Y, Li X, Zhuo Z, Zhang J, Que T, Yang A, Drobe B, Chen H, Bao J. Effect of spectacle lenses with aspherical lenslets on choroidal thickness in myopic children: a 3-year follow-up study. EYE AND VISION (LONDON, ENGLAND) 2024; 11:16. [PMID: 38659078 PMCID: PMC11044302 DOI: 10.1186/s40662-024-00383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND To investigate the impact of wearing spectacle lenses with highly aspherical lenslets (HAL) for 3 years and the impact of switching from single-vision lenses (SVL) to HAL on choroidal thickness (ChT). METHODS Fifty-one participants who had already worn HAL for 2 years continued wearing them for an additional year (HAL group). Further, 50 and 41 participants who had worn spectacle lenses with slightly aspherical lenslets (SAL) and SVL for 2 years, respectively, switched to wearing HAL for another year (SAL-HAL and SVL-HAL groups). Additionally, 48 new participants aged 10-15 years were enrolled to wear SVL at the third year (new-SVL group). ChT was measured every 6 months throughout the study. RESULTS Significant differences were observed in the changes in ChT among the four groups at the third year (all P < 0.05 except for the outer nasal region: P = 0.09), with the new-SVL group showing larger reductions compared with the other three groups. However, none of the three HAL-wearing groups showed significant changes in ChT at the third year (all P > 0.05). When comparing the changes in ChT for 3 years among the HAL, SAL-HAL, and SVL-HAL groups, significant differences were found before switching to HAL, but these differences were abolished after all participants switched to HAL. CONCLUSIONS Compared to those in the SVL group, choroid thinning was significantly inhibited in all the HAL groups. Wearing HAL for 3 years no longer had a choroidal thickening effect but could still inhibit choroidal thinning compared to wearing SVL. TRIAL REGISTRATION The study was registered at the Chinese Clinical Trial Registry (ChiCTR1800017683), http://www.chictr.org.cn/showproj.aspx?proj=29789 .
Collapse
Affiliation(s)
- Yingying Huang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xue Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zuopao Zhuo
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiali Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
| | - Tianxing Que
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Adeline Yang
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
- R&D Singapore, Essilor International, Singapore, Singapore
| | - Björn Drobe
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China
- R&D Singapore, Essilor International, Singapore, Singapore
| | - Hao Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China.
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jinhua Bao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, 325027, China.
- Wenzhou Medical University - Essilor International Research Center (WEIRC), Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Liu Z, Sun Z, Du B, Gou H, Wang B, Lin Z, Ren N, Pazo EE, Liu L, Wei R. The Effects of Repeated Low-Level Red-Light Therapy on the Structure and Vasculature of the Choroid and Retina in Children with Premyopia. Ophthalmol Ther 2024; 13:739-759. [PMID: 38198054 PMCID: PMC10853097 DOI: 10.1007/s40123-023-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
INTRODUCTION The purpose of this study was to explore the effects of repeated low-level red-light (RLRL) therapy on the structure and vasculature of the choroid and retina in Chinese children with premyopia. METHODS This study was a single-center randomized clinical trial. A total of 94 children with premyopia (- 0.50 D < spherical equivalent [SE] ≤ + 0.75 D) were randomly assigned to either the RLRL therapy or control group. Follow-up visits were planned at 1, 3, 6, 9, and 12 months. Optical coherence biometry was used to measure axial length (AL) and anterior segment parameters. Choroidal thickness (CT), retinal thickness (RT), superficial retinal vascular density (SRVD), deep retinal vascular density (DRVD), choriocapillaris perfusion area (CCPA), and choroidal vessel volume (CVV) were measured by optical coherence tomography angiography, centered on the foveal, parafoveal (ParaF), and perifoveal (PeriF) regions. RESULTS The thickening of the choroid was observed across the entire macular region at different time points in the RLRL therapy group. Relative to the baseline measurement, foveal CT significantly increased at the 1-month follow-up with RLRL therapy, with a mean (± standard deviation [SD]) adjusted change of 16.96 ± 19.87 μm. The greatest magnitude of foveal CT changes was observed at the 3-month visit (an increase of 19.58 ± 20.59 μm), with a slight reduction in the extent of foveal CT increase at the 6-month visit (an increase of 15.85 ± 23.77 μm). The second greatest CT increase was observed at the 9-month visit (an increase of 19.57 ± 35.51 μm), after which the extent of CT increase gradually decreased until the end of the study at the 12-month visit (an increase of 11.99 ± 32.66 μm). We also observed a significant increase in CT in the ParaF and PeriF areas in the RLRL group over 12 months. In contrast, CT across the entire macular region in the control group significantly decreased throughout the follow-up visits (all P < 0.05). Regarding the vascular parameters of the choroid, significant increases in CVV were observed primarily in the ParaF and PeriF regions of the choroid in the RLRL group. In comparison, the control group exhibited decreases in CVV throughout the entire area. Furthermore, notable elevations in CCPA were detected in the PeriF area of the choroid in the RLRL group during the 1-month (an increase of 0.40 mm2), 3-month (an increase of 0.25 mm2), and 12-month visits (an increase of 0.42 mm2) (all P < 0.05). In addition, no notable differences were observed between the groups regarding foveal RT and retinal vascular parameters throughout the 12 months (P > 0.05). Notably, RLRL therapy achieved a notable reduction in SE shift by 73.8%, a substantial decrease in AL change by 67.9%, and a significant reduction in myopia incidence by 45.1% within 1 year. CONCLUSION Our study demonstrated a significant increase in CT and flow in the RLRL-treated eyes throughout the 12-months of the study. Combined with its reduction in spherical equivalent progression and axial elongation, RLRL could be used as an effective therapy for preventing progression in premyopes. TRIAL REGISTRATION ChiCTR2200062028.
Collapse
Affiliation(s)
- Zhuzhu Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ziwen Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Huaixue Gou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Biying Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Zeya Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Nuo Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Emmanuel Eric Pazo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lin Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
20
|
Sánchez-Tena MÁ, Ballesteros-Sánchez A, Martinez-Perez C, Alvarez-Peregrina C, De-Hita-Cantalejo C, Sánchez-González MC, Sánchez-González JM. Assessing the rebound phenomenon in different myopia control treatments: A systematic review. Ophthalmic Physiol Opt 2024; 44:270-279. [PMID: 38193312 DOI: 10.1111/opo.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE To review the rebound effect after cessation of different myopia control treatments. METHODS A systematic review that included full-length randomised controlled studies (RCTs), as well as post-hoc analyses of RCTs reporting new findings on myopia control treatments rebound effect in two databases, PubMed and Web of Science, was performed according to the PRISMA statement. The search period was between 15 June 2023 and 30 June 2023. The Cochrane risk of bias tool was used to analyse the quality of the selected studies. RESULTS A total of 11 studies were included in this systematic review. Unifying the rebound effects of all myopia control treatments, the mean rebound effect for axial length (AL) and spherical equivalent refraction (SER) were 0.10 ± 0.07 mm [-0.02 to 0.22] and -0.27 ± 0.2 D [-0.71 to -0.03] after 10.2 ± 7.4 months of washout, respectively. In addition, spectacles with highly aspherical lenslets or defocus incorporated multiple segments technology, soft multifocal contact lenses and orthokeratology showed lower rebound effects compared with atropine and low-level light therapy, with a mean rebound effect for AL and SER of 0.04 ± 0.04 mm [0 to 0.08] and -0.13 ± 0.07 D [-0.05 to -0.2], respectively. CONCLUSIONS It appears that the different treatments for myopia control produce a rebound effect after their cessation. Specifically, optical treatments seem to produce less rebound effect than pharmacological or light therapies. However, more studies are required to confirm these results.
Collapse
Affiliation(s)
- Miguel Ángel Sánchez-Tena
- Optometry and Vision Department, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
- ISEC LISBOA (Instituto Superior de Educação e Ciências), Lisbon, Portugal
| | - Antonio Ballesteros-Sánchez
- Department of Physics of Condensed Matter, Optics Area, University of Seville, Seville, Spain
- Department of Ophthalmology, Clínica Novovisión, Murcia, Spain
| | | | - Cristina Alvarez-Peregrina
- Optometry and Vision Department, Faculty of Optics and Optometry, Complutense University of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
21
|
Ostrin LA, Schill AW. Red light instruments for myopia exceed safety limits. Ophthalmic Physiol Opt 2024; 44:241-248. [PMID: 38180093 PMCID: PMC10922340 DOI: 10.1111/opo.13272] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE Low-level red light (LLRL) therapy has recently emerged as a myopia treatment in children, with several studies reporting significant reduction in axial elongation and myopia progression. The goal of this study was to characterise the output and determine the thermal and photochemical maximum permissible exposure (MPE) of LLRL devices for myopia control. METHODS Two LLRL devices, a Sky-n1201a and a Future Vision, were examined. Optical power measurements were made using an integrating sphere radiometer through a 7-mm diameter aperture, in accordance with ANSI Z136.1-2014, sections 3.2.3-3.2.4. Retinal spot sizes of the devices were obtained using a model eye and high-resolution beam profiler. Corneal irradiance, retinal irradiance and MPE were calculated for an eye positioned at the oculars of each device. RESULTS Both devices were confirmed to be Class 1 laser products. Findings showed that the Sky-n1201a delivers laser light as a point source with a 654-nm wavelength, 0.2 mW power (Ø 7 mm aperture, 10-cm distance), 1.17 mW/cm2 corneal irradiance and 7.2 W/cm2 retinal irradiance (Ø 2 mm pupil). The MPE for photochemical damage is 0.55-7.0 s for 2-7 mm pupils and for thermal damage is 0.41-10 s for 4.25-7 mm pupils. Future Vision delivers the laser as an extended source subtending 0.75 × 0.325°. It has a 652-nm wavelength, 0.06 mW power (Ø 7 mm aperture, 10 cm distance), 0.624 mW/cm2 corneal irradiance and 0.08 W/cm2 retinal irradiance (Ø 2 mm pupil). MPE for photochemical damage is 50-625 s for 2-7 mm pupils. DISCUSSION For both of the LLRL devices evaluated here, 3 min of continuous viewing approached or surpassed the MPE, putting the retina at risk of photochemical and thermal damage. Clinicians should be cautious with the use of LLRL therapy for myopia in children until safety standards can be confirmed.
Collapse
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas., USA
| | | |
Collapse
|
22
|
Youssef MA, Shehata AR, Adly AM, Ahmed MR, Abo-Bakr HF, Fawzy RM, Gouda AT. Efficacy of Repeated Low-Level Red Light (RLRL) therapy on myopia outcomes in children: a systematic review and meta-analysis. BMC Ophthalmol 2024; 24:78. [PMID: 38378527 PMCID: PMC10877869 DOI: 10.1186/s12886-024-03337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Myopia is the most prevalent form of refractive error that has a major negative impact on visual function and causes blurring of vision. We aimed to determine if Repeated Low-Level Red Light (RLRL) treatment is beneficial in treating childhood myopia in terms of axial length (AL), spherical equivalent refraction (SER), and sub foveal choroidal thickness (SFCT). METHODS This systematic review was performed on RLRL for treatment of myopia in children compared to single vision spectacles (SVS). We employed the search strategy with key terms myopia and low-level light therapy then we searched PubMed, Scopus, Cochrane, and Web of Science databases. The mean differences (MD) were used to evaluate the treatment effects. Heterogeneity was quantified using I2 statistics and explored by sensitivity analysis. RESULTS Five randomized controlled trials (RCTs) were included in our meta-analysis with a total of 833 patients, 407 in treatment group and 426 in control group. At a 3 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.16; 95% CI [-0.19, -0.12], SER (MD = 0.33; 95% CI [0.27, 0.38]), and SFCT (MD = 43.65; 95% CI [23.72, 45.58]). At a 6 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.21; 95% CI [-0.28, -0.15]), SER (MD = 0.46; 95% CI [0.26, 0.65]), and SFCT (MD = 25.07; 95% CI [18.18, 31.95]). At a 12 month follow up period, pooled studies show a statistical difference in AL between RLRL and SVS group (MD = -0.31; 95% CI [-0.42, -0.19]) and SER (MD = 0.63; 95% CI [0.52, 0.73]). CONCLUSION This is the first systematic review and meta-analysis investigating only RCTs evidence supporting the efficacy of 650 nm RLRL for myopia control in the short term of 3, 6, and 12 months follow up. The present review revealed the clinical significance of RLRL as a new alternative treatment for myopia control with good user acceptability and no documented functional or structural damage. However, the effect of long-term RLRL treatment and the rebound effect after cessation require further investigations.
Collapse
Affiliation(s)
| | | | - Ahmed Moataz Adly
- Faculty of Medicine, Beni Suef University, Beni Suef city, Beni Suef, Egypt
| | | | | | | | - Ahmed Taha Gouda
- Faculty of Medicine, Beni Suef University, Beni Suef city, Beni Suef, Egypt
| |
Collapse
|
23
|
Zhou W, Liao Y, Wang W, Sun Y, Li Q, Liu S, Tang J, Li L, Wang X. Efficacy of Different Powers of Low-Level Red Light in Children for Myopia Control. Ophthalmology 2024; 131:48-57. [PMID: 37634757 DOI: 10.1016/j.ophtha.2023.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023] Open
Abstract
PURPOSE To compare the efficacy and safety of low-level red light (LRL) in controlling myopia progression at 3 different powers: 0.37 mW, 0.60 mW, and 1.20 mW. DESIGN Single-center, single-masked, randomized controlled trial. PARTICIPANTS Two hundred children aged 6-15 with myopia of -0.50 diopter (D) or more and astigmatism of -2.50 D or less were enrolled from April to May 2022. Follow-up ended in December 2022. METHODS Participants were assigned randomly to 3 intervention groups and 1 control group (1:1:1:1). All participants wore single-vision spectacles. Moreover, the intervention group randomly received LRL at 3 different powers twice daily for 3 minutes per session, with a minimum 4-hour interval. MAIN OUTCOME MEASURES Changes in spherical equivalent (SE), axial length (AL), and subfoveal choroidal thickness (SFCT) were measured. RESULTS After 6 months, SE progression was significantly lower in the 0.37-mW group (0.01 D; 95% confidence interval [CI], -0.12 to 0.15), 0.60-mW group (-0.05 D; 95% CI, -0.18 to 0.07), and 1.20-mW group (0.16 D; 95% CI, 0.03 to 0.30) compared to the control group (-0.22 D; 95% CI, -0.50 to 0.30; adjusted P < 0.001 for all). AL changes in the 0.37-mW group (0.04 mm; 95% CI, -0.01 to 0.08), 0.60-mW group (0.00 mm; 95% CI, -0.05 to 0.05), and 1.20-mW group (-0.04 mm; 95% CI, -0.08 to 0.01) were significantly smaller than the control group (0.27 mm; 95% CI, 0.22 to 0.33; adjusted P < 0.001 for all). Similarly, increases in SFCT were significantly greater in the 0.37-mW group (22.63 μm; 95% CI, 12.13 to 33.34 μm), 0.60-mW group (36.17 μm; 95% CI, 24.37 to 48.25 μm), and 1.20-mW group (42.59 μm; 95% CI, 23.43 to 66.24 μm) than the control group (-5.07 μm; 95% CI, -10.32 to -0.13 μm; adjusted P < 0.001 for all). No adverse events were observed. CONCLUSIONS LRL effectively controlled myopia progression at 0.37 mW, 0.60 mW, and 1.20 mW. Further research is required. FINANCIAL DISCLOSURE(S) The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; First School of Clinical Medicine of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ya Liao
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Community and Health Education, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanmei Sun
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qin Li
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Siqi Liu
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jie Tang
- Department of Community and Health Education, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lin Li
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Medical Technology School of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojuan Wang
- Department of Ophthalmology, The First People's Hospital of Xuzhou, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; First School of Clinical Medicine of Xuzhou Medical University, Xuzhou, Jiangsu, China; Suzhou Vocational Health College, Suzhou, Jiangsu, China.
| |
Collapse
|
24
|
Salzano AD, Khanal S, Cheung NL, Weise KK, Jenewein EC, Horn DM, Mutti DO, Gawne TJ. Repeated Low-level Red-light Therapy: The Next Wave in Myopia Management? Optom Vis Sci 2023; 100:812-822. [PMID: 37890098 DOI: 10.1097/opx.0000000000002083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
SIGNIFICANCE Exposure to long-wavelength light has been proposed as a potential intervention to slow myopia progression in children. This article provides an evidence-based review of the safety and myopia control efficacy of red light and discusses the potential mechanisms by which red light may work to slow childhood myopia progression.The spectral composition of the ambient light in the visual environment has powerful effects on eye growth and refractive development. Studies in mammalian and primate animal models (macaque monkeys and tree shrews) have shown that daily exposure to long-wavelength (red or amber) light promotes slower eye growth and hyperopia development and inhibits myopia induced by form deprivation or minus lens wear. Consistent with these results, several recent randomized controlled clinical trials in Chinese children have demonstrated that exposure to red light for 3 minutes twice a day significantly reduces myopia progression and axial elongation. These findings have collectively provided strong evidence for the potential of using red light as a myopia control intervention in clinical practice. However, several questions remain unanswered. In this article, we review the current evidence on the safety and efficacy of red light as a myopia control intervention, describe potential mechanisms, and discuss some key unresolved issues that require consideration before red light can be broadly translated into myopia control in children.
Collapse
Affiliation(s)
| | - Safal Khanal
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathan L Cheung
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina
| | - Katherine K Weise
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erin C Jenewein
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Darryl M Horn
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
25
|
Gawne TJ, Samal AV, She Z. The effects of intensity, spectral purity and duty cycle on red light-induced hyperopia in tree shrews. Ophthalmic Physiol Opt 2023; 43:1419-1426. [PMID: 37431102 PMCID: PMC10592436 DOI: 10.1111/opo.13201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION There have recently been several clinical studies suggesting that brief periods of exposure to red light (repeated low-level red light, 'RLRL') may produce a dramatic anti-myopia effect, calling for further investigations into its therapeutic parameters. Unfortunately, many experimental species used in refractive studies develop myopia in response to this wavelength. Tree shrews are the only animal model other than rhesus monkeys that consistently exhibit hyperopic responses to ambient red light. Here, tree shrews were used to study the influence of the spectral purity, duty cycle and intensity of red light on its anti-myopic effect. METHODS Juvenile tree shrews (Tupaia belangeri) were raised from 24 to 35 days after eye opening under ambient lighting that was: standard white colony fluorescent light; pure narrow band red light of either 600, 50-100 or 5 lux; red light that was diluted with 10% white light (by lux) or 50% white and 2 s of pure red light that alternated with 2 s of pure white light (50% duty cycle). Refractive measures were taken with a NIDEK ARK-700 autorefractor and axial dimensions with a LenStar LS-900 Axial Biometer. RESULTS The pro-hyperopia effect of ambient red light was greatly reduced by even small amounts of concurrent white light 'contamination', but remained robust if 2-s periods of pure white light alternated with 2 s of red. Finally, the hyperopic effect of red light was maintained at reduced luminance levels in the 50-100 lux range and only failed at 5 lux. CONCLUSIONS These results have implications for understanding the mechanisms by which ambient red light affects refractive development, and possibly also for clinical therapies using RLRL. Nevertheless, it remains to be determined if the mechanism of the current clinical RLRL therapy is the same as that operating on tree shrews in ambient red light.
Collapse
Affiliation(s)
- Timothy J. Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham (UAB). USA
| | - Alena V. Samal
- Department of Optometry and Vision Science, University of Alabama at Birmingham (UAB). USA
- Current Location: MyEyeDr., Birmingham, Alabama. USA
| | - Zhihui She
- Department of Optometry and Vision Science, University of Alabama at Birmingham (UAB). USA
| |
Collapse
|
26
|
Wnękowicz-Augustyn E, Teper S, Wylęgała E. Preventing the Progression of Myopia in Children-A Review of the Past Decade. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1859. [PMID: 37893579 PMCID: PMC10608552 DOI: 10.3390/medicina59101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The growing incidence of myopia worldwide justifies the search for efficient methods of myopia prevention. Numerous pharmacological, optical, and lifestyle measures have already been utilized, but there remains a need to explore more practical and predictable methods for myopia control. This paper presents a review of the most recent studies on the prevention of myopia progression using defocus-incorporated multiple-segment spectacle lenses (DIMSsl), repeated low-level red-light (RLRL) therapy, and a combination of low-dose atropine (0.01%) with orthokeratology lenses.
Collapse
Affiliation(s)
- Emilia Wnękowicz-Augustyn
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Okręgowy Szpital Kolejowy, Panewnicka 65, 40-760 Katowice, Poland; (S.T.); (E.W.)
- Municipal Hospital Group, Truchana 7, 41-500 Chorzów, Poland
- Eye and Optics Center Augmed, Łabędzka 20d, 44-100 Gliwice, Poland
| | - Sławomir Teper
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Okręgowy Szpital Kolejowy, Panewnicka 65, 40-760 Katowice, Poland; (S.T.); (E.W.)
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Okręgowy Szpital Kolejowy, Panewnicka 65, 40-760 Katowice, Poland; (S.T.); (E.W.)
| |
Collapse
|
27
|
Wang F, Peng W, Jiang Z. Repeated Low-Level Red Light Therapy for the Control of Myopia in Children: A Meta-Analysis of Randomized Controlled Trials. Eye Contact Lens 2023; 49:438-446. [PMID: 37565498 DOI: 10.1097/icl.0000000000001020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Repeated low-level red light (RLRL) therapy has been suggested to be effective in children with myopia. However, evidence from randomized controlled trials (RCTs) is still limited. We performed a meta-analysis of RCTs to systematically evaluate the efficacy of RLRL on changes of axial length (AL) and cycloplegic spherical equivalent refraction (SER) in children with myopia. METHODS Relevant RCTs were obtained through a search of electronic databases including PubMed, Embase, Cochrane Library, Wanfang, and China National Knowledge Infrastructure from inception to September 15, 2022. A random-effects model was used to pool the results after incorporating the influence of potential heterogeneity. Subgroup analyses were performed according to the control treatment and follow-up duration. RESULTS A total of seven RCTs involving 1,031 children with myopia, aged 6 to 16 years, were included in the meta-analysis. Compared with control treatment without RLRL, treatment with RLRL was associated with a significantly reduced AL (mean difference [MD]: -0.25 mm, 95% confidence interval [CI]: -0.32 to -0.17, P <0.001; I 2 =13%) and a significantly increased cycloplegic SER (MD: 0.60 D, 95% CI: 0.44-0.76, P <0.001; I 2 =20%). Further subgroup analyses showed consistent results in studies comparing children wearing single vision lenses and those receiving active treatment including orthokeratology or low-dose atropine eye drops, as well as studies of treatment duration of 6 and 12 months. CONCLUSIONS Results of the meta-analysis suggested that RLRL treatment is effective for slowing down the progression of myopia in children aged 6 to 16 years.
Collapse
Affiliation(s)
- Fei Wang
- Department of Ophthalmology (F.W., Z.J.), The Second Hospital of Anhui Medical University, Hefei, China; and Hefei Institutes of Physical Science (W.P.), Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
28
|
Xuan M, Zhu Z, Jiang Y, Wang W, Zhang J, Xiong R, Shi D, Bulloch G, Zeng J, He M. Longitudinal Changes in Choroidal Structure Following Repeated Low-Level Red-Light Therapy for Myopia Control: Secondary Analysis of a Randomized Controlled Trial. Asia Pac J Ophthalmol (Phila) 2023; 12:377-383. [PMID: 37523429 DOI: 10.1097/apo.0000000000000618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 08/02/2023] Open
Abstract
PURPOSE Repeated low-level red-light (RLRL) therapy has been confirmed as a novel intervention for myopia control in children. This study aims to investigate longitudinal changes in choroidal structure in myopic children following 12-month RLRL treatment. MATERIALS AND METHODS The current study is a secondary analysis from a multicenter, randomized controlled trial (NCT04073238). Choroidal parameters were derived from baseline and follow-up swept-source optical coherence tomography scans taken at 1, 3, 6, and 12 months. These parameters included the luminal area (LA), stromal area (SA), total choroidal area (TCA; a combination of LA and SA), and choroidal vascularity index (CVI; ratio of LA to TCA), which were automatically measured by a validated custom choroidal structure assessment tool. RESULTS A total of 143 children (88.3% of all participants) with sufficient image quality were included in the analysis (n=67 in the RLRL and n=76 in the control groups). At the 12-month visit, all choroidal parameters increased in the RLRL group, with changes from baseline of 11.70×10 3 μm 2 (95% CI: 4.14-19.26×10 3 μm 2 ), 3.92×10 3 μm 2 (95% CI: 0.56-7.27×10 3 μm 2 ), 15.61×10 3 μm 2 (95% CI: 5.02-26.20×10 3 μm 2 ), and 0.21% (95% CI: -0.09% to 0.51%) for LA, SA, TCA, and CVI, respectively, whereas these parameters reduced in the control group. CONCLUSIONS Following RLRL therapy, the choroidal thickening was found to be accompanied by increases in both the vessel LA and SA, with the increase in LA being greater than that of SA. In the control group, with myopia progression, both the LA and SA decreased over time.
Collapse
Affiliation(s)
- Meng Xuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Yu Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Ruilin Xiong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Danli Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Gabriella Bulloch
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Faculty of Science, Medicine and Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Junwen Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, Guangdong Province, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Sankaridurg P, Berntsen DA, Bullimore MA, Cho P, Flitcroft I, Gawne TJ, Gifford KL, Jong M, Kang P, Ostrin LA, Santodomingo-Rubido J, Wildsoet C, Wolffsohn JS. IMI 2023 Digest. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37126356 PMCID: PMC10155872 DOI: 10.1167/iovs.64.6.7] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Myopia is a dynamic and rapidly moving field, with ongoing research providing a better understanding of the etiology leading to novel myopia control strategies. In 2019, the International Myopia Institute (IMI) assembled and published a series of white papers across relevant topics and updated the evidence with a digest in 2021. Here, we summarize findings across key topics from the previous 2 years. Studies in animal models have continued to explore how wavelength and intensity of light influence eye growth and have examined new pharmacologic agents and scleral cross-linking as potential strategies for slowing myopia. In children, the term premyopia is gaining interest with increased attention to early implementation of myopia control. Most studies use the IMI definitions of ≤-0.5 diopters (D) for myopia and ≤-6.0 D for high myopia, although categorization and definitions for structural consequences of high myopia remain an issue. Clinical trials have demonstrated that newer spectacle lens designs incorporating multiple segments, lenslets, or diffusion optics exhibit good efficacy. Clinical considerations and factors influencing efficacy for soft multifocal contact lenses and orthokeratology are discussed. Topical atropine remains the only widely accessible pharmacologic treatment. Rebound observed with higher concentration of atropine is not evident with lower concentrations or optical interventions. Overall, myopia control treatments show little adverse effect on visual function and appear generally safe, with longer wear times and combination therapies maximizing outcomes. An emerging category of light-based therapies for children requires comprehensive safety data to enable risk versus benefit analysis. Given the success of myopia control strategies, the ethics of including a control arm in clinical trials is heavily debated. IMI recommendations for clinical trial protocols are discussed.
Collapse
Affiliation(s)
- Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - David A Berntsen
- University of Houston, College of Optometry, Houston, Texas, United States
| | - Mark A Bullimore
- University of Houston, College of Optometry, Houston, Texas, United States
| | - Pauline Cho
- West China Hospital, Sichuan University, Sichuan, China
- Eye & ENT Hospital of Fudan University, Shanghai, China
- Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ian Flitcroft
- Centre for Eye Research Ireland, School of Physics and Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
- Department of Ophthalmology, Children's Health Ireland at Temple Street Hospital, Dublin, Ireland
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kate L Gifford
- Queensland University of Technology, Brisbane, Australia
| | - Monica Jong
- Johnson & Johnson Vision, Jacksonville, Florida, United States
| | - Pauline Kang
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Lisa A Ostrin
- University of Houston, College of Optometry, Houston, Texas, United States
| | | | - Christine Wildsoet
- UC Berkeley Wertheim School Optometry & Vision Science, Berkeley, California, United States
| | - James S Wolffsohn
- College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
30
|
Ostrin LA, Harb E, Nickla DL, Read SA, Alonso-Caneiro D, Schroedl F, Kaser-Eichberger A, Zhou X, Wildsoet CF. IMI-The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 37126359 PMCID: PMC10153586 DOI: 10.1167/iovs.64.6.4] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 05/02/2023] Open
Abstract
The choroid is the richly vascular layer of the eye located between the sclera and Bruch's membrane. Early studies in animals, as well as more recent studies in humans, have demonstrated that the choroid is a dynamic, multifunctional structure, with its thickness directly and indirectly subject to modulation by a variety of physiologic and visual stimuli. In this review, the anatomy and function of the choroid are summarized and links between the choroid, eye growth regulation, and myopia, as demonstrated in animal models, discussed. Methods for quantifying choroidal thickness in the human eye and associated challenges are described, the literature examining choroidal changes in response to various visual stimuli and refractive error-related differences are summarized, and the potential implications of the latter for myopia are considered. This review also allowed for the reexamination of the hypothesis that short-term changes in choroidal thickness induced by pharmacologic, optical, or environmental stimuli are predictive of future long-term changes in axial elongation, and the speculation that short-term choroidal thickening can be used as a biomarker of treatment efficacy for myopia control therapies, with the general conclusion that current evidence is not sufficient.
Collapse
Affiliation(s)
- Lisa A Ostrin
- University of Houston College of Optometry, Houston, Texas, United States
| | - Elise Harb
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
| | - Debora L Nickla
- Department of Biomedical Sciences and Disease, New England College of Optometry, Boston, Massachusetts, United States
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - David Alonso-Caneiro
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology-Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology-Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Xiangtian Zhou
- Eye Hospital and School of Optometry and Ophthalmology, National Clinical Research Center for Ocular Diseases, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Christine F Wildsoet
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, California, United States
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
He X, Wang J, Zhu Z, Xiang K, Zhang X, Zhang B, Chen J, Yang J, Du L, Niu C, Leng M, Huang J, Liu K, Zou H, He M, Xu X. Effect of Repeated Low-level Red Light on Myopia Prevention Among Children in China With Premyopia: A Randomized Clinical Trial. JAMA Netw Open 2023; 6:e239612. [PMID: 37099298 PMCID: PMC10134010 DOI: 10.1001/jamanetworkopen.2023.9612] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/09/2023] [Indexed: 04/27/2023] Open
Abstract
Importance Myopia is a global concern, but effective prevention measures remain limited. Premyopia is a refractive state in which children are at higher risk of myopia, meriting preventive interventions. Objective To assess the efficacy and safety of a repeated low-level red-light (RLRL) intervention in preventing incident myopia among children with premyopia. Design, Setting, and Participants This was a 12-month, parallel-group, school-based randomized clinical trial conducted in 10 primary schools in Shanghai, China. A total of 139 children with premyopia (defined as cycloplegic spherical equivalence refraction [SER] of -0.50 to 0.50 diopter [D] in the more myopic eye and having at least 1 parent with SER ≤-3.00 D) in grades 1 to 4 were enrolled between April 1, 2021, and June 30, 2021; the trial was completed August 31, 2022. Interventions Children were randomly assigned to 2 groups after grade stratification. Children in the intervention group received RLRL therapy twice per day, 5 days per week, with each session lasting 3 minutes. The intervention was conducted at school during semesters and at home during winter and summer vacations. Children in the control group continued usual activities. Main Outcomes and Measures The primary outcome was the 12-month incidence rate of myopia (defined as SER ≤-0.50 D). Secondary outcomes included the changes in SER, axial length, vision function, and optical coherence tomography scan results over 12 months. Data from the more myopic eyes were analyzed. Outcomes were analyzed by means of an intention-to-treat method and per-protocol method. The intention-to-treat analysis included participants in both groups at baseline, while the per-protocol analysis included participants in the control group and those in the intervention group who were able to continue the intervention without interruption by the COVID-19 pandemic. Results There were 139 children (mean [SD] age, 8.3 [1.1] years; 71 boys [51.1%]) in the intervention group and 139 children (mean [SD] age, 8.3 [1.1] years; 68 boys [48.9%]) in the control group. The 12-month incidence of myopia was 40.8% (49 of 120) in the intervention group and 61.3% (68 of 111) in the control group, a relative 33.4% reduction in incidence. For children in the intervention group who did not have treatment interruption secondary to the COVID-19 pandemic, the incidence was 28.1% (9 of 32), a relative 54.1% reduction in incidence. The RLRL intervention significantly reduced the myopic shifts in terms of axial length and SER compared with the control group (mean [SD] axial length, 0.30 [0.27] mm vs 0.47 [0.25] mm; difference, 0.17 mm [95% CI, 0.11-0.23 mm]; mean [SD] SER, -0.35 [0.54] D vs -0.76 [0.60] D; difference, -0.41 D [95% CI, -0.56 to -0.26 D]). No visual acuity or structural damage was noted on optical coherence tomography scans in the intervention group. Conclusions and Relevance In this randomized clinical trial, RLRL therapy was a novel and effective intervention for myopia prevention, with good user acceptability and up to 54.1% reduction in incident myopia within 12 months among children with premyopia. Trial Registration ClinicalTrials.gov Identifier: NCT04825769.
Collapse
Affiliation(s)
- Xiangui He
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Jingjing Wang
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Division of Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Kaidi Xiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Xinzi Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Bo Zhang
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
| | - Jun Chen
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
| | - Jinliuxing Yang
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
| | - Linlin Du
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
| | - Chunjin Niu
- Department of Ophthalmology Prevention, Changning Center for Disease Control and Prevention, Shanghai, China
| | - Mei Leng
- Department of Teaching and Research, Changning Institute of Education, Shanghai, China
| | - Jiannan Huang
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Haidong Zou
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Mingguang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Division of Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Xun Xu
- Department of Clinical Research, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai Vision Health Center and Shanghai Children Myopia Institute, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Center of Eye Shanghai Key Laboratory of Ocular Fundus Diseases, Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
32
|
Lin ZH, Tao ZY, Kang ZF, Deng HW. A Study on the Effectiveness of 650-nm Red-Light Feeding Instruments in the Control of Myopia. Ophthalmic Res 2023; 66:664-671. [PMID: 36858031 DOI: 10.1159/000529819] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION This study analyzed the effectiveness of 650-nm red-light feeding instruments in the control of myopia. METHODS In this study, 164 school-aged participants diagnosed with myopia in the city of Shenzhen were enrolled in a red-light feeding instrument study. Of these, 41 were enrolled in the mild-to-moderate myopia group that received red-light feeding (RLMM group), 65 were enrolled in the mild-to-moderate myopia group that received single-vision spectacle treatment (SVSMM group), and 58 were included in the severe myopia group that received red-light feeding (RLS group). RESULTS After the baseline values of the three groups were matched, the right eye data were used for statistical analysis. The average return visit time of each group was 60.42 days, and changes in the observation indexes before treatment and after follow-up treatment were compared. As the primary outcome, the axial length changes in the right eye of the SVSMM group (0.08 ± 0.40 mm), the RLMM group (-0.03 ± 0.11 mm), and the RLS group (-0.07 ± 0.11 mm) were compared and showed a statistical result of p < 0.001. CONCLUSION The study results verified that red light had a noticeable effect on the control of myopia and that low-level red-light therapy played a vital role in the treatment of severe myopia.
Collapse
Affiliation(s)
- Zhi-Hong Lin
- The Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital) Shenzhen, Shenzhen, China
| | - Zheng-Yang Tao
- The Second Clinical Medical College, Jinan University (Shenzhen Eye Hospital) Shenzhen, Shenzhen, China
| | - Ze-Feng Kang
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Wei Deng
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| |
Collapse
|
33
|
Photobiomodulation therapy retarded axial length growth in children with myopia: evidence from a 12-month randomized controlled trial evidence. Sci Rep 2023; 13:3321. [PMID: 36849626 PMCID: PMC9969012 DOI: 10.1038/s41598-023-30500-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
To determine whether photobiomodulation (PBM) therapy can retard ocular axial length (AL) in children with myopia. A randomized controlled clinical trial was conducted on two consecutive cohorts of 50 eligible children aged 8-12 years with ≤ - 0.75 Diopter (D) of spherical equivalent refraction (SER). Participants were randomly assigned to the intervention group (n = 25) and treated with PBM therapy or the control group (n = 25) and treated with single vision spectacles only. At the 12-month follow-up, the changes in AL and cycloplegic SER from baseline were both compared between the two groups. In addition, the subfoveal choroidal thickness (SFChT), anterior chamber depth (ACD), and central corneal refractive power (CCP) were analysed at the 3-, 6-, 9-, and 12-month follow-ups, respectively. Among the 50 children, 78% were included at the final follow-up, with a mean age of 9.7 ± 1.5 years and a mean SER of - 2.56 ± 1.70. The mean difference in AL growth between the two groups at 12 months was 0.50 mm (PBM vs. Control, - 0.02 mm ± 0.11 vs. 0.48 mm ± 0.16, P < 0.001), and the mean difference in cycloplegic SER at 12 months was + 1.25 D (PBM vs. Control, + 0.28 D ± 0.26 vs. - 0.97 D ± 0.25, P < 0.001). There were no significant differences in any of the other parameters (including SFChT, ACD, and CCP) between the two groups at any time point. PBM therapy is an effective intervention for slightly decreasing the AL to control myopia in children.Trial registration: Chinese Clinical Trial Registration Number: ChiCTR2100043619. Registered on 23/02/2021; prospectively registered. http://www.chictr.org.cn/showproj.aspx?proj=121302 .
Collapse
|
34
|
Axial Length Shortening and Choroid Thickening in Myopic Adults Treated with Repeated Low-Level Red Light. J Clin Med 2022; 11:jcm11247498. [PMID: 36556114 PMCID: PMC9780890 DOI: 10.3390/jcm11247498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to explore the effect of repeated low-level red light (RLRL) on axial length (AL), choroid blood flow, and anterior segment components in myopic adults. Ninety-eight myopic adults were randomly divided into the RLRL group (n = 52) and the control group (n = 46). Subjects in the RLRL group completed a 4-week treatment composed of a 3-min RLRL treatment session twice daily, with an interval of at least 4 h. Visits were scheduled before and on 7, 14, 21, and 28 days after the treatment. AL, subfoveal choroidal thickness (SChT), choroidal vascularity index (CVI), and anterior segment parameters were measured at each visit. A linear mixed-effects model showed that the AL of the subjects in RLRL decreased from 24.63 ± 1.04 mm to 24.57 ± 1.04 mm, and the SChT thickened by 18.34 μm. CVI had a slight but significant increase in the 0-6 zone. However, all the anterior segment parameters did not change after RLRL treatment. Our study showed that the choroid's thickening is insufficient to explain the axial length shortening. The unchanged anterior segment and improved choroid blood flow suggest that the AL shortening in this study is mainly related to changes in the posterior segment.
Collapse
|