1
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreatic Antioxidative Defense and Heat Shock Proteins Prevent Islet of Langerhans Cell Death After Chronic Oral Exposure to Cadmium LOAEL Dose. Biol Trace Elem Res 2024; 202:3714-3730. [PMID: 37955768 DOI: 10.1007/s12011-023-03955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival. Male Wistar rats were separated into control and cadmium groups (drinking water with 32.5 ppm CdCl2). At 2, 3, and 4 months, glucose, insulin, and cadmium were measured in serum; cadmium and insulin were quantified in isolated islets of Langerhans; and redox balance was analyzed in the pancreas. Immunoreactivity analysis of p-HSF1, HSP70, HSP90, caspase 3 and 9, and cell survival was performed. The results showed that cadmium exposure causes a serum increase and accumulation of the metal in the pancreas and islets of Langerhans, hyperglycemia, and hyperinsulinemia, associated with high insulin production. Cd-exposed groups presented high levels of reactive oxygen species and lipid peroxidation. An augment in MT and GSH concentrations with the increased enzymatic activity of the glutathione system, catalase, and superoxide dismutase maintained a favorable redox environment. Additionally, islets of Langerhans showed a high immunoreactivity of HSPs and minimal immunoreactivity to caspase associated with a high survival rate of Langerhans islet cells. In conclusion, antioxidative and HSP pancreatic defense avoids cell death associated with Cd accumulation in chronic conditions; however, this could provoke oversynthesis and insulin release, which is a sign of insulin resistance.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
2
|
Ali H, Yamanishi M, Sunagawa K, Kumon M, Hasi RY, Aihara M, Kawakami R, Tanaka T. Protective effect of oleic acid against very long-chain fatty acid-induced apoptosis in peroxisome-deficient CHO cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159452. [PMID: 38244676 DOI: 10.1016/j.bbalip.2024.159452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Very long-chain fatty acids (VLCFAs) are degraded exclusively in peroxisomes, as evidenced by the accumulation of VLCFAs in patients with certain peroxisomal disorders. Although accumulation of VLCFAs is considered to be associated with health issues, including neuronal degeneration, the mechanisms underlying VLCFAs-induced tissue degeneration remain unclear. Here, we report the toxic effect of VLCFA and protective effect of C18: 1 FA in peroxisome-deficient CHO cells. We examined the cytotoxicity of saturated and monounsaturated VLCFAs with chain-length at C20-C26, and found that longer and saturated VLCFA showed potent cytotoxicity at lower accumulation levels. Furthermore, the extent of VLCFA-induced toxicity was found to be associated with a decrease in cellular C18:1 FA levels. Notably, supplementation with C18:1 FA effectively rescued the cells from VLCFA-induced apoptosis without reducing the cellular VLCFAs levels, implying that peroxisome-deficient cells can survive in the presence of accumulated VLCFA, as long as the cells keep sufficient levels of cellular C18:1 FA. These results suggest a therapeutic potential of C18:1 FA in peroxisome disease and may provide new insights into the pharmacological effect of Lorenzo's oil, a 4:1 mixture of C18:1 and C22:1 FA.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mone Yamanishi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Keigo Sunagawa
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mizuki Kumon
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
3
|
Pawłowska M, Mila-Kierzenkowska C, Szczegielniak J, Woźniak A. Oxidative Stress in Parasitic Diseases-Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants (Basel) 2023; 13:38. [PMID: 38247462 PMCID: PMC10812656 DOI: 10.3390/antiox13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•-) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host's weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300-500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Jan Szczegielniak
- Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| |
Collapse
|
4
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|
5
|
Ali H, Kobayashi M, Morito K, Hasi RY, Aihara M, Hayashi J, Kawakami R, Tsuchiya K, Sango K, Tanaka T. Peroxisomes attenuate cytotoxicity of very long-chain fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159259. [PMID: 36460260 DOI: 10.1016/j.bbalip.2022.159259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/13/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
One of the major functions of peroxisomes in mammals is oxidation of very long-chain fatty acids (VLCFAs). Genetic defects in peroxisomal β-oxidation result in the accumulation of VLCFAs and lead to a variety of health problems, such as demyelination of nervous tissues. However, the mechanisms by which VLCFAs cause tissue degeneration have not been fully elucidated. Recently, we found that the addition of small amounts of isopropanol can enhance the solubility of saturated VLCFAs in an aqueous medium. In this study, we characterized the biological effect of extracellular VLCFAs in peroxisome-deficient Chinese hamster ovary (CHO) cells, neural crest-derived pheochromocytoma cells (PC12), and immortalized adult Fischer rat Schwann cells (IFRS1) using this solubilizing technique. C20:0 FA was the most toxic of the C16-C26 FAs tested in all cells. The basis of the toxicity of C20:0 FA was apoptosis and was observed at 5 μM and 30 μM in peroxisome-deficient and wild-type CHO cells, respectively. The sensitivity of wild-type CHO cells to cytotoxic C20:0 FA was enhanced in the presence of a peroxisomal β-oxidation inhibitor. Further, a positive correlation was evident between cell toxicity and the extent of intracellular accumulation of toxic FA. These results suggest that peroxisomes are pivotal in the detoxification of apoptotic VLCFAs by preventing their accumulation.
Collapse
Affiliation(s)
- Hanif Ali
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan; Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Miyu Kobayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Katsuya Morito
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Rumana Yesmin Hasi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Mutsumi Aihara
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Junji Hayashi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Ryushi Kawakami
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Koichiro Tsuchiya
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tamotsu Tanaka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8502, Japan.
| |
Collapse
|
6
|
Kleiboeker B, Lodhi IJ. Peroxisomal regulation of energy homeostasis: Effect on obesity and related metabolic disorders. Mol Metab 2022; 65:101577. [PMID: 35988716 PMCID: PMC9442330 DOI: 10.1016/j.molmet.2022.101577] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Peroxisomes are single membrane-bound organelles named for their role in hydrogen peroxide production and catabolism. However, their cellular functions extend well beyond reactive oxygen species (ROS) metabolism and include fatty acid oxidation of unique substrates that cannot be catabolized in mitochondria, and synthesis of ether lipids and bile acids. Metabolic functions of peroxisomes involve crosstalk with other organelles, including mitochondria, endoplasmic reticulum, lipid droplets and lysosomes. Emerging studies suggest that peroxisomes are important regulators of energy homeostasis and that disruption of peroxisomal functions influences the risk for obesity and the associated metabolic disorders, including type 2 diabetes and hepatic steatosis. SCOPE OF REVIEW Here, we focus on the role of peroxisomes in ether lipid synthesis, β-oxidation and ROS metabolism, given that these functions have been most widely studied and have physiologically relevant implications in systemic metabolism and obesity. Efforts are made to mechanistically link these cellular and systemic processes. MAJOR CONCLUSIONS Circulating plasmalogens, a form of ether lipids, have been identified as inversely correlated biomarkers of obesity. Ether lipids influence metabolic homeostasis through multiple mechanisms, including regulation of mitochondrial morphology and respiration affecting brown fat-mediated thermogenesis, and through regulation of adipose tissue development. Peroxisomal β-oxidation also affects metabolic homeostasis through generation of signaling molecules, such as acetyl-CoA and ROS that inhibit hydrolysis of stored lipids, contributing to development of hepatic steatosis. Oxidative stress resulting from increased peroxisomal β-oxidation-generated ROS in the context of obesity mediates β-cell lipotoxicity. A better understanding of the roles peroxisomes play in regulating and responding to obesity and its complications will provide new opportunities for their treatment.
Collapse
Affiliation(s)
- Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO 63110 USA.
| |
Collapse
|
7
|
Jiang C, Okazaki T. Control of mitochondrial dynamics and apoptotic pathways by peroxisomes. Front Cell Dev Biol 2022; 10:938177. [PMID: 36158224 PMCID: PMC9500405 DOI: 10.3389/fcell.2022.938177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisomes are organelles containing different enzymes that catalyze various metabolic pathways such as β-oxidation of very long-chain fatty acids and synthesis of plasmalogens. Peroxisome biogenesis is controlled by a family of proteins called peroxins, which are required for peroxisomal membrane formation, matrix protein transport, and division. Mutations of peroxins cause metabolic disorders called peroxisomal biogenesis disorders, among which Zellweger syndrome (ZS) is the most severe. Although patients with ZS exhibit severe pathology in multiple organs such as the liver, kidney, brain, muscle, and bone, the pathogenesis remains largely unknown. Recent findings indicate that peroxisomes regulate intrinsic apoptotic pathways and upstream fission-fusion processes, disruption of which causes multiple organ dysfunctions reminiscent of ZS. In this review, we summarize recent findings about peroxisome-mediated regulation of mitochondrial morphology and its possible relationship with the pathogenesis of ZS.
Collapse
Affiliation(s)
- Chenxing Jiang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Okazaki
- Laboratory of Molecular Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- *Correspondence: Tomohiko Okazaki,
| |
Collapse
|
8
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
9
|
Oxidative Stress, Genomic Integrity, and Liver Diseases. Molecules 2022; 27:molecules27103159. [PMID: 35630636 PMCID: PMC9147071 DOI: 10.3390/molecules27103159] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Excess reactive oxygen species production and free radical formation can lead to oxidative stress that can damage cells, tissues, and organs. Cellular oxidative stress is defined as the imbalance between ROS production and antioxidants. This imbalance can lead to malfunction or structure modification of major cellular molecules such as lipids, proteins, and DNAs. During oxidative stress conditions, DNA and protein structure modifications can lead to various diseases. Various antioxidant-specific gene expression and signal transduction pathways are activated during oxidative stress to maintain homeostasis and to protect organs from oxidative injury and damage. The liver is more vulnerable to oxidative conditions than other organs. Antioxidants, antioxidant-specific enzymes, and the regulation of the antioxidant responsive element (ARE) genes can act against chronic oxidative stress in the liver. ARE-mediated genes can act as the target site for averting/preventing liver diseases caused by oxidative stress. Identification of these ARE genes as markers will enable the early detection of liver diseases caused by oxidative conditions and help develop new therapeutic interventions. This literature review is focused on antioxidant-specific gene expression upon oxidative stress, the factors responsible for hepatic oxidative stress, liver response to redox signaling, oxidative stress and redox signaling in various liver diseases, and future aspects.
Collapse
|
10
|
Abstract
Macropinocytosis is an evolutionarily conserved endocytic pathway that mediates the nonselective acquisition of extracellular material via large endocytic vesicles known as macropinosomes. In addition to other functions, this uptake pathway supports cancer cell metabolism through the uptake of nutrients. Cells harboring oncogene or tumor suppressor mutations are known to display heightened macropinocytosis, which confers to the cancer cells the ability to survive and proliferate despite the nutrient-scarce conditions of the tumor microenvironment. Thus, macropinocytosis is associated with cancer malignancy. Macropinocytic uptake can be induced in cancer cells by different stress stimuli, acting as an adaptive mechanism for the cells to resist stresses in the tumor milieu. Here, we review the cellular stresses that are known to promote macropinocytosis, as well as the underlying molecular mechanisms that drive this process.
Collapse
Affiliation(s)
- Guillem Lambies
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cosimo Commisso
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Ogbodo JO, Agbo CP, Njoku UO, Ogugofor MO, Egba SI, Ihim SA, Echezona AC, Brendan KC, Upaganlawar AB, Upasani CD. Alzheimer's Disease: Pathogenesis and Therapeutic Interventions. Curr Aging Sci 2022; 15:2-25. [PMID: 33653258 DOI: 10.2174/1874609814666210302085232] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Alzheimer's Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis. INTERVENTIONS The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer's disease were also discussed.
Collapse
Affiliation(s)
- John O Ogbodo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Chinazom P Agbo
- Department of Pharmaceutics, University of Nigeria, Nsukka, Nigeria
| | - Ugochi O Njoku
- Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | | | - Simeon I Egba
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Stella A Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
| | | | | | - Aman B Upaganlawar
- Department of Pharmacology, Sureshdada Shriman\'s College of Pharmacy, New Dehli, India
| | | |
Collapse
|
12
|
Felgus-Lavefve L, Howard L, Adams SH, Baum JI. The Effects of Blueberry Phytochemicals on Cell Models of Inflammation and Oxidative Stress. Adv Nutr 2021; 13:1279-1309. [PMID: 34791023 PMCID: PMC9340979 DOI: 10.1093/advances/nmab137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Blueberries have been extensively studied for the health benefits associated with their high phenolic content. The positive impact of blueberry consumption on human health is associated in part with modulation of proinflammatory molecular pathways and oxidative stress. Here, we review in vitro studies examining the anti-inflammatory and antioxidant effects of blueberry phytochemicals, discuss the results in terms of relevance to disease and health, and consider how different blueberry components modulate cellular mechanisms. The dampening effects of blueberry-derived molecules on inflammation and oxidative stress in cell models have been demonstrated through downregulation of the NF-κB pathway and reduction of reactive oxygen species (ROS) and lipid peroxidation. The modulatory effects of blueberry phytochemicals on the mitogen-activated protein kinase (MAPK) pathway and antioxidant system are not as well described, with inconsistent observations reported on immune cells and between models of endothelial, dermal, and ocular inflammation. Although anthocyanins are often reported as being the main bioactive compound in blueberries, no individual phytochemical has emerged as the primary compound when different fractions are compared; rather, an effect of whole blueberry extracts or synergy between different phenolic and nonphenolic extracts seems apparent. The major molecular mechanisms of blueberry phytochemicals are increasingly defined in cell models, but their relevance in more complex human systems needs further investigation using well-controlled clinical trials, in which systemic exposures to blueberry-associated molecules are measured concurrently with physiologic indices of inflammation and oxidative stress.
Collapse
Affiliation(s)
| | - Luke Howard
- Department of Food Science, University of Arkansas, Fayetteville, AR, USA
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA,Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, CA, USA
| | | |
Collapse
|
13
|
Silver Nanoparticles Formation by Jatropha integerrima and LC/MS-QTOF-Based Metabolite Profiling. NANOMATERIALS 2021; 11:nano11092400. [PMID: 34578715 PMCID: PMC8468306 DOI: 10.3390/nano11092400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/30/2022]
Abstract
The broad application of metal nanoparticles in different fields encourages scientists to find alternatives to conventional synthesis methods to reduce negative environmental impacts. Herein, we described a safe method for preparing silver nanoparticles (J-AgNPs) using Jatropha integerrima leaves extract as a reducing agent and further characterize its physiochemical and pharmacological properties to identify its therapeutic potential as a cytotoxic and antimicrobial agent. The biogenic synthesized J-AgNPs were physiochemically characterized by ultraviolet-visible spectroscopy, dynamic light scattering (DLS), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy. HPLC-DAD, followed by LC/MS and the Fourier-transform infrared spectroscopy (FTIR), was applied to detect the biomolecules of J. integerrima involved in the fabrication of NPs. Furthermore, J-AgNPs and the ampicillin-nanocomposite conjugate were investigated for their potential antibacterial effects against four clinical isolates. Finally, cytotoxic effects were also investigated against cancer and normal cell lines, and their mechanism was assessed using TEM analysis and confocal laser scanning microscopy (LSM). Ag ions were reduced to spherical J-AgNPs, with a zeta potential of −34.7 mV as well as an average size of 91.2 and 22.8 nm as detected by DLS and TEM, respectively. HPLC GC/MC analysis identified five biomolecules, and FTIR suggested the presence of proteins besides polyphenolic molecules; together, these molecules could be responsible for the reduction and capping processes during NP formation. Additionally, J-AgNPs displayed a strong antibacterial effect, although the ampicillin conjugated form had a very weak antibacterial effect. Furthermore, the NPs caused a reduction in cell viability of all the treated cells by initiating ultrastructural changes and apoptosis, as identified by TEM and LSM analysis. Therefore, J-AgNPs can be formed using the leaf extract from the J. integerrima plant. Furthermore, J-AgNPs may serve as a candidate for further biochemical and pharmacological testing to identify its therapeutic value.
Collapse
|
14
|
Biological Potential of Silver Nanoparticles Mediated by Leucophyllum frutescens and Russelia equisetiformis Extracts. NANOMATERIALS 2021; 11:nano11082098. [PMID: 34443930 PMCID: PMC8401648 DOI: 10.3390/nano11082098] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Awareness about environmental concerns is increasing, specially the pollution resulting from nanoparticles (NPs) production, which has led to great interest in the usage of biogenic agents for their fabrication. The current investigation used eco-friendly organic phytomolecules from Leucophyllum frutescens and Russelia equisetiformis leaves extract for the first time in the fabrication of silver NPs from silver ions and further an assessment of their biological activities was performed. The leaves extract from both plant sources were used as capping and reducing agents and added to AgNO3. The mixtures were observed for colour changes, and after a stable dark brown colour was obtained, the NPs were separated and further investigated using dynamic light scattering, transmission electron microscopy and energy-dispersive X-ray spectroscopy. The Fourier transform infrared spectroscopy technique was employed to determine the active organic ingredients in the plant extracts. The prepared NPs were tested against three cell lines (two cancer ones and one normal control) and the effects observed using TEM and confocal laser scanning microscopy (LSM). Antibacterial activity against two Gram positive and two Gram negative species was examined and the synergistic effect of the ampicillin-NPs conjugate was studied. Findings showed successful conversion of Ag ions into L-AgNPs and R-AgNPs achieved using L.frutescens and R. equisetiformis extracts, respectively. A mean size of 112.9 nm for L-AgNPs and 151.7 nm for R-AgNPs and negative zeta potentials were noted. TEM analysis showed spherical NPs and EDS indicated Ag at 3 keV. Reduction in cancer cell viability with low half-maximal inhibitory concentrations was noted for both tested NPs. Structural changes and apoptotic features in the treated cancer cell lines were noted by TEM and cell death was confirmed by LSM. Furthermore, higher antibacterial activity was noticed against Gram positive compared with Gram negative bacteria as well as high synergistic effect was noted for the Amp-NPs conjugate, specially against Gram positive bacteria. The current investigation has thus developed an eco-friendly NPs synthesis route by applying plant extracts to efficiently produce NPs endowed with potential cytotoxic and antibacterial capacity, which therefore could be recommended as new approaches to overcome human diseases with minimal environmental impact.
Collapse
|
15
|
Abe Y, Honsho M, Kawaguchi R, Matsuzaki T, Ichiki Y, Fujitani M, Fujiwara K, Hirokane M, Oku M, Sakai Y, Yamashita T, Fujiki Y. A peroxisome deficiency-induced reductive cytosol state up-regulates the brain-derived neurotrophic factor pathway. J Biol Chem 2020; 295:5321-5334. [PMID: 32165495 PMCID: PMC7170515 DOI: 10.1074/jbc.ra119.011989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/06/2020] [Indexed: 02/02/2023] Open
Abstract
The peroxisome is a subcellular organelle that functions in essential metabolic pathways, including biosynthesis of plasmalogens, fatty acid β-oxidation of very-long-chain fatty acids, and degradation of hydrogen peroxide. Peroxisome biogenesis disorders (PBDs) manifest as severe dysfunction in multiple organs, including the central nervous system (CNS), but the pathogenic mechanisms in PBDs are largely unknown. Because CNS integrity is coordinately established and maintained by neural cell interactions, we here investigated whether cell-cell communication is impaired and responsible for the neurological defects associated with PBDs. Results from a noncontact co-culture system consisting of primary hippocampal neurons with glial cells revealed that a peroxisome-deficient astrocytic cell line secretes increased levels of brain-derived neurotrophic factor (BDNF), resulting in axonal branching of the neurons. Of note, the BDNF expression in astrocytes was not affected by defects in plasmalogen biosynthesis and peroxisomal fatty acid β-oxidation in the astrocytes. Instead, we found that cytosolic reductive states caused by a mislocalized catalase in the peroxisome-deficient cells induce the elevation in BDNF secretion. Our results suggest that peroxisome deficiency dysregulates neuronal axogenesis by causing a cytosolic reductive state in astrocytes. We conclude that astrocytic peroxisomes regulate BDNF expression and thereby support neuronal integrity and function.
Collapse
Affiliation(s)
- Yuichi Abe
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Institute of Rheological Functions of Food, Hisayama-machi, Fukuoka 811-2501, Japan
| | - Ryoko Kawaguchi
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Yayoi Ichiki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masashi Fujitani
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Kazushirou Fujiwara
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masaaki Hirokane
- Graduate School of Systems Life Sciences, Kyushu University Graduate School, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahide Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan; Institute of Rheological Functions of Food, Hisayama-machi, Fukuoka 811-2501, Japan.
| |
Collapse
|
16
|
Tian H, Liu G, Guo Y, Li Y, Deng M, Liu D, Sun B. Lycopene supplementation regulates the gene expression profile and fat metabolism of breeding hens. J Anim Physiol Anim Nutr (Berl) 2020; 104:936-945. [PMID: 32170789 DOI: 10.1111/jpn.13344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 01/02/2023]
Abstract
This study investigated the effects of lycopene on the gene expression profile and expression of genes related to fat metabolism of Xinghua breeding hens. Seven hundred and twenty healthy breeding hens were randomly assigned to four treatments; each treatment was replicated six times with 30 hens each. Broken rice and soybean meal were adopted for the basal diet and added with 0 (control group), 20, 40 and 80 mg/kg lycopene respectively. Gene expression profile of the liver induced by lycopene and expression of genes related to fat metabolism in hens liver and intestine were analysed after 42-day feeding trial including 7-day pre-feeding period and 35-day formal period. The genes involved in fat metabolism were analysed, and we found that lycopene significantly increased the expression of PGC1α, PPARα, RXRα and RARα in the liver, PPARγ, RXRα and RXRγ in the jejunum, and RARα in the duodenum (p < .05); reduced the expression of FABP1 and FABP10 in the liver, and FATP4 in the jejunum (p < .05). By analysing gene expression profile, 158 differentially expressed genes (DEGs) including 69 up-regulated genes and 89 down-regulated genes were obtained between control group and 40 mg/kg group. KEGG pathway analysis was performed on all DEGs, and 5 pathways were obtained. In conclusion, lycopene can affect the expression of related genes, and this may be one of the reasons that lycopene can regulate fat metabolism.
Collapse
Affiliation(s)
- Hanchen Tian
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Potential Involvement of Peroxisome in Multiple Sclerosis and Alzheimer's Disease : Peroxisome and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:91-104. [PMID: 33417210 DOI: 10.1007/978-3-030-60204-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Peroxisomopathies are rare diseases due to dysfunctions of the peroxisome in which this organelle is either absent or with impaired activities. These diseases, at the exception of type I hyperoxaluria and acatalasaemia, affect the central and peripheral nervous system. Due to the significant impact of peroxisomal abnormalities on the functioning of nerve cells, this has led to an interest in peroxisome in common neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. In these diseases, a role of the peroxisome is suspected on the basis of the fatty acid and phospholipid profile in the biological fluids and the brains of patients. It is also speculated that peroxisomal dysfunctions could contribute to oxidative stress and mitochondrial alterations which are recognized as major players in the development of neurodegenerative diseases. Based on clinical and in vitro studies, the data obtained support a potential role of peroxisome in Alzheimer's disease and multiple sclerosis.
Collapse
|
18
|
Sillar JR, Germon ZP, De Iuliis GN, Dun MD. The Role of Reactive Oxygen Species in Acute Myeloid Leukaemia. Int J Mol Sci 2019; 20:ijms20236003. [PMID: 31795243 PMCID: PMC6929020 DOI: 10.3390/ijms20236003] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with a poor overall survival. Reactive oxygen species (ROS) have been shown to be elevated in a wide range of cancers including AML. Whilst previously thought to be mere by-products of cellular metabolism, it is now clear that ROS modulate the function of signalling proteins through oxidation of critical cysteine residues. In this way, ROS have been shown to regulate normal haematopoiesis as well as promote leukaemogenesis in AML. In addition, ROS promote genomic instability by damaging DNA, which promotes chemotherapy resistance. The source of ROS in AML appears to be derived from members of the “NOX family” of NADPH oxidases. Most studies link NOX-derived ROS to activating mutations in the Fms-like tyrosine kinase 3 (FLT3) and Ras-related C3 botulinum toxin substrate (Ras). Targeting ROS through either ROS induction or ROS inhibition provides a novel therapeutic target in AML. In this review, we summarise the role of ROS in normal haematopoiesis and in AML. We also explore the current treatments that modulate ROS levels in AML and discuss emerging drug targets based on pre-clinical work.
Collapse
Affiliation(s)
- Jonathan R. Sillar
- Haematology Department, Calvary Mater Hospital, Newcastle, NSW 2298, Australia
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: (J.R.S.); (M.D.D.); Tel.: +612-4921-5693 (M.D.D.)
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Sciences, Faculty of Science, University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences & Pharmacy, Faculty of Health & Medicine, University of Newcastle, Callaghan, NSW 2308, Australia;
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Correspondence: (J.R.S.); (M.D.D.); Tel.: +612-4921-5693 (M.D.D.)
| |
Collapse
|
19
|
Systemic Lupus Erythematosus: Pathogenesis at the Functional Limit of Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1651724. [PMID: 31885772 PMCID: PMC6899283 DOI: 10.1155/2019/1651724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/15/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a disease characterized by the production of autoreactive antibodies and cytokines, which are thought to have a major role in disease activity and progression. Immune system exposure to excessive amounts of autoantigens that are not efficiently removed is reported to play a significant role in the generation of autoantibodies and the pathogenesis of SLE. While several mechanisms of cell death-based autoantigenic exposure and compromised autoantigen removal have been described in relation to disease onset, a significant association with the development of SLE can be attributed to increased apoptosis and impaired phagocytosis of apoptotic cells. Both apoptosis and impaired phagocytosis can be caused by hydrogen peroxide whose cellular production is enhanced by exposure to endogenous hormones or environmental chemicals, which have been implicated in the pathogenesis of SLE. Hydrogen peroxide can cause lymphocyte apoptosis and glutathione depletion, both of which are associated with the severity of SLE. The cellular accumulation of hydrogen peroxide is facilitated by the myriad of stimuli causing increased cellular bioenergetic activity that enhances metabolic production of this toxic oxidizing agent such as emotional stress and infection, which are recognized SLE exacerbating factors. When combined with impaired cellular hydrogen peroxide removal caused by xenobiotics and genetically compromised hydrogen peroxide elimination due to enzymatic polymorphic variation, a mechanism for cellular accumulation of hydrogen peroxide emerges, leading to hydrogen peroxide-induced apoptosis and impaired phagocytosis, enhanced autoantigen exposure, formation of autoantibodies, and development of SLE.
Collapse
|
20
|
Corpas FJ, Del Río LA, Palma JM. Plant peroxisomes at the crossroad of NO and H 2 O 2 metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:803-816. [PMID: 30609289 DOI: 10.1111/jipb.12772] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Plant peroxisomes are subcellular compartments involved in many biochemical pathways during the life cycle of a plant but also in the mechanism of response against adverse environmental conditions. These organelles have an active nitro-oxidative metabolism under physiological conditions but this could be exacerbated under stress situations. Furthermore, peroxisomes have the capacity to proliferate and also undergo biochemical adaptations depending on the surrounding cellular status. An important characteristic of peroxisomes is that they have a dynamic metabolism of reactive nitrogen and oxygen species (RNS and ROS) which generates two key molecules, nitric oxide (NO) and hydrogen peroxide (H2 O2 ). These molecules can exert signaling functions by means of post-translational modifications that affect the functionality of target molecules like proteins, peptides or fatty acids. This review provides an overview of the endogenous metabolism of ROS and RNS in peroxisomes with special emphasis on polyamine and uric acid metabolism as well as the possibility that these organelles could be a source of signal molecules involved in the functional interconnection with other subcellular compartments.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, E-18008 Granada, Spain
| |
Collapse
|
21
|
Cocato ML, Lobo AR, Azevedo-Martins AK, Filho JM, de Sá LRM, Colli C. Effects of a moderate iron overload and its interaction with yacon flour, and/or phytate, in the diet on liver antioxidant enzymes and hepatocyte apoptosis in rats. Food Chem 2019; 285:171-179. [PMID: 30797332 DOI: 10.1016/j.foodchem.2019.01.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/26/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022]
Abstract
The effect of moderate Fe overload in the diet and its interaction with phytate, and/or yacon flour (YF), recognized as an inhibitor, and facilitator, of Fe absorption, respectively, was evaluated in healthy rats. For this purpose the following parameters were analyzed: (1) apparent iron (Fe), copper (Cu) and zinc (Zn) absorption; (2) blood Fe; (3) blood lipids (cholesterol, tryacylglicerol); (4) blood AST and ALT; (5) liver histology (histopathology, hemosiderin depots, apoptosis index; (6) liver fatty acid incorporation; (7) liver antioxidant enzyme activity. Moderate Fe overload may cause change in some liver markers (hemosiderin depots, apoptosis index and GPx) and blood lipids (total cholesterol and VLDL) and the interaction with yacon flour, and phytate, in the Fe overloaded diets may exert a protective effect on these alterations.
Collapse
Affiliation(s)
- Maria Lucia Cocato
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| | - Alexandre Rodrigues Lobo
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil
| | | | - Jorge Mancini Filho
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| | - Lilian Rose Marques de Sá
- Department of Pathology, School of Veterinary Medicine and Animal Health of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| | - Célia Colli
- Department of Food Experimental and Experimental Nutrition, Pharmaceutical Sciences Faculty of São Paulo University, 05508 900 São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Zhou Y, Li P, Fan N, Wang X, Liu X, Wu L, Zhang W, Zhang W, Ma C, Tang B. In situ visualization of peroxisomal peroxynitrite in the livers of mice with acute liver injury induced by carbon tetrachloride using a new two-photon fluorescent probe. Chem Commun (Camb) 2019; 55:6767-6770. [DOI: 10.1039/c9cc02483b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ visualization of peroxisomal peroxynitrite in the livers of mice with acute liver injury using a new two-photon fluorescent probe.
Collapse
Affiliation(s)
- Yongqing Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Nannan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Xiaoning Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Lijie Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University
- Jinan 250014
- P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| |
Collapse
|
23
|
Zhang Z, Gu Y, Liu Q, Zheng C, Xu L, An Y, Jin X, Liu Y, Shi L. Spatial Confined Synergistic Enzymes with Enhanced Uricolytic Performance and Reduced Toxicity for Effective Gout Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801865. [PMID: 30035856 DOI: 10.1002/smll.201801865] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Confinement of urate oxidase with detoxifying enzymes into multienzyme architecture is an appealing approach for gout treatment due to its capability to decompose serum uric acid without generation of H2 O2 . However, most of these strategies involve chemical modifications to the enzymes and barely consider enhancing the stability of the multienzyme architectures particularly against proteolysis, which significantly dampened its catalytic activity and in vivo stability. Herein, a novel strategy to prepare multienzyme nanoclusters with highly uricolytic activity and enhanced stability is demonstrated. With the close proximation, catalase can effectively decompose the H2 O2 generated by uricase during uricolysis. Moreover, with a shell structure constructed with polyethylene glycol, the nanocluster achieves great performance in reducing the nonspecific serum protein adsorptions and proteases digestion, leading to an enhanced circulation time after the intravenous administration. Such complementary multienzyme nanoclusters realize the long-term therapeutic effect in the management of serum uric acid level, without any toxicity or undesired immune responses in vivo. This work mimics the synergistic effect of protein complex in nature and can be further developed to a general method for the construction of multienzyme nanoclusters, which provides new opportunities for utilizing therapeutic enzymes for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Zhanzhan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu Gu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunxiong Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lifeng Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin Jin
- School of Chemistry & Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
24
|
Nury T, Sghaier R, Zarrouk A, Ménétrier F, Uzun T, Leoni V, Caccia C, Meddeb W, Namsi A, Sassi K, Mihoubi W, Riedinger JM, Cherkaoui-Malki M, Moreau T, Vejux A, Lizard G. Induction of peroxisomal changes in oligodendrocytes treated with 7-ketocholesterol: Attenuation by α-tocopherol. Biochimie 2018; 153:181-202. [PMID: 30031877 DOI: 10.1016/j.biochi.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/17/2018] [Indexed: 02/08/2023]
Abstract
The involvement of organelles in cell death is well established especially for endoplasmic reticulum, lysosomes and mitochondria. However, the role of the peroxisome is not well known, though peroxisomal dysfunction favors a rupture of redox equilibrium. To study the role of peroxisomes in cell death, 158 N murine oligodendrocytes were treated with 7-ketocholesterol (7 KC: 25-50 μM, 24 h). The highest concentration is known to induce oxiapoptophagy (OXIdative stress + APOPTOsis + autoPHAGY), whereas the lowest concentration does not induce cell death. In those conditions (with 7 KC: 50 μM) morphological, topographical and functional peroxisome alterations associated with modifications of the cytoplasmic distribution of mitochondria, with mitochondrial dysfunction (loss of transmembrane mitochondrial potential, decreased level of cardiolipins) and oxidative stress were observed: presence of peroxisomes with abnormal sizes and shapes similar to those observed in Zellweger fibroblasts, lower cellular level of ABCD3, used as a marker of peroxisomal mass, measured by flow cytometry, lower mRNA and protein levels (measured by RT-qPCR and western blotting) of ABCD1 and ABCD3 (two ATP-dependent peroxisomal transporters), and of ACOX1 and MFP2 enzymes, and lower mRNA level of DHAPAT, involved in peroxisomal β-oxidation and plasmalogen synthesis, respectively, and increased levels of very long chain fatty acids (VLCFA: C24:0, C24:1, C26:0 and C26:1, quantified by gas chromatography coupled with mass spectrometry) metabolized by peroxisomal β-oxidation. In the presence of 7 KC (25 μM), slight mitochondrial dysfunction and oxidative stress were found, and no induction of apoptosis was detected; however, modifications of the cytoplasmic distribution of mitochondria and clusters of mitochondria were detected. The peroxisomal alterations observed with 7 KC (25 μM) were similar to those with 7 KC (50 μM). In addition, data obtained by transmission electron microcopy and immunofluorescence microscopy by dual staining with antibodies raised against p62, involved in autophagy, and ABCD3, support that 7 KC (25-50 μM) induces pexophagy. 7 KC (25-50 μM)-induced side effects were attenuated by α-tocopherol but not by α-tocotrienol, whereas the anti-oxidant properties of these molecules determined with the FRAP assay were in the same range. These data provide evidences that 7 KC, at concentrations inducing or not cell death, triggers morphological, topographical and functional peroxisomal alterations associated with minor or major mitochondrial changes.
Collapse
Affiliation(s)
- Thomas Nury
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Randa Sghaier
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Monastir, Lab. Biotechnology, Monastir, Tunisia
| | - Amira Zarrouk
- Univ. Monastir, Lab-NAFS 'Nutrition - Functional Food & Vascular Diseases' LR12-ES-05, Monastir, Tunisia; Faculty of Medicine, Sousse, Tunisia
| | | | - Tugba Uzun
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Valerio Leoni
- Lab. Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Claudio Caccia
- Unit of Medical Genetics and Neurogenetics, IRCCS Carlo Besta, Milano, Italy
| | - Wiem Meddeb
- Univ. Carthage, LMMA, IPEST, Tunis, and Fac. of Science of Bizerte, Bizerte, Tunisia
| | - Amira Namsi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Lab. Neurophysiologie Fonctionnelle et Pathologie-UR11ES/09, Tunis, Tunisia
| | - Khouloud Sassi
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Univ. Tunis El Manar, Fac. of Medicine, Lab of Onco-Hematology, Tunis, Tunisia
| | - Wafa Mihoubi
- Centre de Biotechnologie de Sfax, Lab. Biotechnologie Moléculaire des Eucaryotes, Sfax, Tunisia
| | - Jean-Marc Riedinger
- Centre de Lutte Contre le Cancer GF Leclerc, Laboratoire de Biologie Médicale, Dijon, France
| | - Mustapha Cherkaoui-Malki
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Thibault Moreau
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France; Dept. of Neurology, Univ. Hospital of Dijon, France
| | - Anne Vejux
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France
| | - Gérard Lizard
- Univ. Bourgogne Franche-Comté, Lab. Bio-PeroxIL, 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' (EA7270) / Inserm, Dijon, France.
| |
Collapse
|
25
|
Praveena SM, Teh SW, Rajendran RK, Kannan N, Lin CC, Abdullah R, Kumar S. Recent updates on phthalate exposure and human health: a special focus on liver toxicity and stem cell regeneration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11333-11342. [PMID: 29546515 DOI: 10.1007/s11356-018-1652-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Phthalates have been blended in various compositions as plasticizers worldwide for a variety of purposes. Consequently, humans are exposed to a wide spectrum of phthalates that needs to be researched and understood correctly. The goal of this review is to focus on phthalate's internal exposure pathways and possible role of human digestion on liver toxicity. In addition, special focus was made on stem cell therapy in reverting liver toxicity. The known entry of higher molecular weight phthalates is through ingestion while inhalation and dermal pathways are for lower molecular weight phthalates. In human body, certain phthalates are digested through phase 1 (hydrolysis, oxidation) and phase 2 (conjugation) metabolic processes. The phthalates that are made bioavailable through digestion enter the blood stream and reach the liver for further detoxification, and these are excreted via urine and/or feces. Bis(2-ethylhexyl) phthalate (DEHP) is a compound well studied involving human metabolism. Liver plays a pivotal role in humans for detoxification of pollutants. Thus, continuous exposure to phthalates in humans may lead to inhibition of liver detoxifying enzymes and may result in liver dysfunction. The potential of stem cell therapy addressed herewith will revert liver dysfunction and lead to restoration of liver function properly.
Collapse
Affiliation(s)
- Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Seoh Wei Teh
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Darul Ehsan, 43400, Serdang, Selangor, Malaysia
| | - Ranjith Kumar Rajendran
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Narayanan Kannan
- Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Chu-Ching Lin
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Rozaini Abdullah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Darul Ehsan, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Elucidation of the mechanism of changes in the antioxidant function with the aging in the liver of the senescence-accelerated mouse P10 (SAMP10). Exp Gerontol 2018; 106:46-53. [PMID: 29477336 DOI: 10.1016/j.exger.2018.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Accepted: 02/22/2018] [Indexed: 11/23/2022]
Abstract
Senescence-accelerated mice are known to display a variety of deficits and signs of accelerated aging, but the specific mechanisms involved in this process are still unclear. In this study, we examined the expression levels of antioxidant enzymes, transcription factors responsible for the regulation of expression of these enzymes, and mitochondrial proteins in the liver of SAMP10 and SAMR1 mice at 3 and 12 months of age using western blotting analysis. To investigate the amount of oxidative damage to DNA, levels of 8-OHdG were measured in the liver of these mice. At 3 months of age, the levels of catalase, Mn-SOD, GPx, UQCRC2 and COXIV were significantly upregulated in SAMP10 mice compared with that in SAMR1 mice. However, NDUFS3 levels were not significantly different at this young age. In contrast, the expression level of catalase was significantly lower, and the levels of phosphorylated FoxO-1a and UQCRC2 were significantly higher in SAMP10 mice compared to those in SAMR1 mice; however, at 12 months of age, there were no significant differences in Mn-SOD, GPx, total -FoxO-1a, COXIV, and NDUFS3 expression between the two groups of mice. The levels of 8-OHdG in the liver were markedly higher in 12-month-old SAMP10 mice than those in 3-month-old SAMP10 and SAMR1 mice. These results suggest that an increase in number of mitochondria or a collapse in the balance between the levels of complexes I and III results in an increase in the amount of ROS and induces the expression of antioxidant enzymes in the liver of SAMP10 mice at 3 months of age. Although young SAMP10 mice produce a large amount of ROS, they also produce suitable levels of antioxidant enzymes that decompose ROS; consequently accelerated aging does not occur in young SAMP10 mice. In addition to excessive ROS production which is an important cause of aging, the level of catalase was significantly lower in SAMP10 than that in SAMR1 mice. These results suggested that overexpression of ROS and a decrease in the levels of catalase resulted in the accelerated aging observed in older SAMP10 mice. Moreover, the level of phosphorylated FoxO-1a was increased in SAMP10 compared to that in SAMR1 mice though the total amount of FoxO-1a was not significantly different between the two groups in old age. These results suggest that some impairment in the regulation mechanism of FoxO-1a phosphorylation is responsible for abnormal catalase expression and that a significant decrease in the level of catalase with aging decisively affects the metabolic balance of ROS; thus, ROS that cannot be metabolized contributes to the accelerated aging of SAMP10 mice.
Collapse
|
27
|
Avola R, Graziano ACE, Pannuzzo G, Alvares E, Cardile V. Krabbe's leukodystrophy: Approaches and models in vitro. J Neurosci Res 2017; 94:1284-92. [PMID: 27638610 DOI: 10.1002/jnr.23846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
This Review describes some in vitro approaches used to investigate the mechanisms involved in Krabbe's disease, with particular regard to the cellular systems employed to study processes of inflammation, apoptosis, and angiogenesis. The aim was to update the knowledge on the results obtained from in vitro models of this neurodegenerative disorder and provide stimuli for future research. For a long time, the nonavailability of established neural cells has limited the understanding of neuropathogenic mechanisms in Krabbe's leukodystrophy. More recently, the development of new Krabbe's disease cell models has allowed the identification of neurologically relevant pathogenic cascades, including the major role of elevated psychosine levels. Thus, direct and/or indirect roles of psychosine in the release of cytokines, reactive oxygen species, and nitric oxide and in the activation of kinases, caspases, and angiogenic factors results should be clearer. In parallel, it is now understood that the presence of globoid cells precedes oligodendrocyte apoptosis and demyelination. The information described here will help to continue the research on Krabbe's leukodystrophy and on potential new therapeutic approaches for this disease that even today, despite numerous attempts, is without cure. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Elisa Alvares
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania, Italy.
| |
Collapse
|
28
|
Stepien KM, Heaton R, Rankin S, Murphy A, Bentley J, Sexton D, Hargreaves IP. Evidence of Oxidative Stress and Secondary Mitochondrial Dysfunction in Metabolic and Non-Metabolic Disorders. J Clin Med 2017; 6:E71. [PMID: 28753922 PMCID: PMC5532579 DOI: 10.3390/jcm6070071] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of a number of diseases and conditions. Oxidative stress occurs once the antioxidant defenses of the body become overwhelmed and are no longer able to detoxify reactive oxygen species (ROS). The ROS can then go unchallenged and are able to cause oxidative damage to cellular lipids, DNA and proteins, which will eventually result in cellular and organ dysfunction. Although not always the primary cause of disease, mitochondrial dysfunction as a secondary consequence disease of pathophysiology can result in increased ROS generation together with an impairment in cellular energy status. Mitochondrial dysfunction may result from either free radical-induced oxidative damage or direct impairment by the toxic metabolites which accumulate in certain metabolic diseases. In view of the importance of cellular antioxidant status, a number of therapeutic strategies have been employed in disorders associated with oxidative stress with a view to neutralising the ROS and reactive nitrogen species implicated in disease pathophysiology. Although successful in some cases, these adjunct therapies have yet to be incorporated into the clinical management of patients. The purpose of this review is to highlight the emerging evidence of oxidative stress, secondary mitochondrial dysfunction and antioxidant treatment efficacy in metabolic and non-metabolic diseases in which there is a current interest in these parameters.
Collapse
Affiliation(s)
- Karolina M Stepien
- The Mark Holland Metabolic Unit Salford Royal NHS Foundation Trust Stott Lane, Salford M6 8HD, UK.
| | - Robert Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Scott Rankin
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Alex Murphy
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - James Bentley
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Darren Sexton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| | - Iain P Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK.
| |
Collapse
|
29
|
Saffert P, Enenkel C, Wendler P. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes. Front Mol Biosci 2017; 4:33. [PMID: 28611990 PMCID: PMC5447069 DOI: 10.3389/fmolb.2017.00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80–150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.
Collapse
Affiliation(s)
- Paul Saffert
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Petra Wendler
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
30
|
Peroxisomal protein import pores. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:821-7. [DOI: 10.1016/j.bbamcr.2015.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
|
31
|
Park DJ, Sekhon SS, Yoon J, Kim YH, Min J. Color reduction of melanin by lysosomal and peroxisomal enzymes isolated from mammalian cells. Mol Cell Biochem 2016; 413:119-25. [PMID: 26738491 DOI: 10.1007/s11010-015-2645-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Lysosomes and peroxisomes are organelles with many functions in all eukaryotic cells. Lysosomes contain hydrolytic enzymes (lysozyme) that degrade molecules, whereas peroxisomes contain enzymes such as catalase that convert hydrogen peroxide (H2O2) to water and oxygen and neutralize toxicity. In contrast, melanin is known as a helpful element to protect the skin against harmful ultraviolet rays. However, a high quantity of melanin leads to hyperpigmentation or skin cancer in human. New materials have already been discovered to inhibit tyrosinase in melanogenesis; however, melanin reduction does not suggest their preparation. In this study, we report that the color intensity because of melanin decreased by the cellular activation of lysosomes and peroxisomes. An increase in the superficial intensity of lysosome and peroxisome activities of HeLa cells was observed. In addition, a decrease in the amount of melanin has also been observed in mammalian cells without using any other chemical, showing that the process can work in vivo for treating melanin. Therefore, the results of this study indicate that the amount of melanin decreases by the lysosome and peroxisome activity after entering the cells, and functional organelles are effective in color reduction. This mechanism can be used in vivo for treating melanin.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Bioprocess Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea
| | - Simranjeet Singh Sekhon
- Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju, 361-763, South Korea
| | - Jihee Yoon
- Division of Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju, 361-763, South Korea.
| | - Jiho Min
- Department of Bioprocess Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea. .,Division of Chemical Engineering, Chonbuk National University, 664-14 Deokjin-dong, 1 Ga Deokjin-Gu, Jeonju, 561-756, South Korea.
| |
Collapse
|
32
|
Lee JY, Biemond M, Petratos S. Axonal degeneration in multiple sclerosis: defining therapeutic targets by identifying the causes of pathology. Neurodegener Dis Manag 2015; 5:527-48. [DOI: 10.2217/nmt.15.50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Current therapeutics in multiple sclerosis (MS) target the putative inflammation and immune attack on CNS myelin. Despite their effectiveness in blunting the relapse rate in MS patients, such therapeutics do not prevent MS disease progression. Importantly, specific clinical dilemma arises through inability to predict MS progression and thereby therapeutically target axonal injury during MS, limiting permanent disability. The current review identifies immune and neurobiological principles that govern the sequelae of axonal degeneration during MS disease progression. Defining the specific disease arbiters, inflammatory and autoimmune, oligodendrocyte dystrophy and degenerative myelin, we discuss a basis for a molecular mechanism in axons that may be targeted therapeutically, in spatial and temporal manner to limit axonal degeneration and thereby halt progression of MS.
Collapse
Affiliation(s)
- Jae Young Lee
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Melissa Biemond
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| | - Steven Petratos
- Department of Medicine, Central Clinical School, Monash University, Prahran VIC 3004, Australia
| |
Collapse
|
33
|
Abstract
Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies. Proteins undergo reversible and irreversible redox modifications. Oxidized proteins are cleared mainly through the 20S proteasome and autophagy. The proteolytic systems exhibit a dynamic crosstalk to adapt to redox alterations. Protein oxidation together with impaired degradation are linked to neurodegeneration.
Collapse
|
34
|
Qu R, Shen L, Qu A, Wang R, An Y, Shi L. Artificial Peroxidase/Oxidase Multiple Enzyme System Based on Supramolecular Hydrogel and Its Application as a Biocatalyst for Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2015; 7:16694-16705. [PMID: 26173996 DOI: 10.1021/acsami.5b04398] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Inspired by delicate structures and multiple functions of natural multiple enzyme architectures such as peroxisomes, we constructed an artificial multiple enzyme system by coencapsulation of glucose oxidases (GOx) and artificial peroxidases in a supramolecular hydrogel. The artificial peroxidase was a functional complex micelle, which was prepared by the self-assembly of diblock copolymer and hemin. Compared with catalase or horseradish peroxidase (HRP), the functional micelle exhibited comparable activity and better stability, which provided more advantages in constructing a multienzyme with a proper oxidase. The hydrogel containing the two catalytic centers was further used as a catalyst for green oxidation of glucose, which was a typical cascade reaction. Glucose was oxidized by oxygen (O2) via the GOx-mediated reaction, producing toxic intermediate hydrogen peroxide (H2O2). The produced H2O2 further oxidized peroxidase substrates catalyzed by hemin-micelles. By regulating the diffusion modes of the enzymes and substrates, the artificial multienzyme based on hydrogel could successfully activate the cascade reaction, which the soluble enzyme mixture could not achieve. The hydrogel, just like a protective covering, protected oxidases and micelles from inactivation via toxic intermediates and environmental changes. The artificial multienzyme could efficiently achieve the oxidation task along with effectively eliminating the toxic intermediates. In this way, this system possesses great potentials for glucose detection and green oxidation of a series of substrates related to biological processes.
Collapse
Affiliation(s)
- Rui Qu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Liangliang Shen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Aoting Qu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Ruolin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yingli An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
35
|
New Insight into the Role of Reactive Oxygen Species (ROS) in Cellular Signal-Transduction Processes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:221-54. [PMID: 26404470 DOI: 10.1016/bs.ircmb.2015.07.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reactive oxygen species (ROS) were once considered to be deleterious agents, contributing to a vast range of pathologies. But, now their protective effects are being appreciated. Both their damaging and beneficial effects are initiated when they target distinct molecules and consequently begin functioning as part of complex signal-transduction pathways. The recognition of ROS as signaling mediators has driven a wealth of research into their roles in both normal and pathophysiological states. The present review assesses the relevant recent literature to outline the current perspectives on redox-signaling mechanisms, physiological implications, and therapeutic strategies. This study highlights that a more fundamental knowledge about many aspects of redox signaling will allow better targeting of ROS, which would in turn improve prophylactic and pharmacotherapy for redox-associated diseases.
Collapse
|
36
|
Bernard F, Brulle F, Dumez S, Lemiere S, Platel A, Nesslany F, Cuny D, Deram A, Vandenbulcke F. Antioxidant responses of Annelids, Brassicaceae and Fabaceae to pollutants: a review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:273-303. [PMID: 24951273 DOI: 10.1016/j.ecoenv.2014.04.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
Pollutants, such as Metal Trace Elements (MTEs) and organic compounds (polycyclic aromatic hydrocarbons, pesticides), can impact DNA structure of living organisms and thus generate damage. For instance, cadmium is a well-known genotoxic and mechanisms explaining its clastogenicity are mainly indirect: inhibition of DNA repair mechanisms and/or induction of Reactive Oxygen Species (ROS). Animal or vegetal cells use antioxidant defense systems to protect themselves against ROS produced during oxidative stress. Because tolerance of organisms depends, at least partially, on their ability to cope with ROS, the mechanisms of production and management of ROS were investigated a lot in Ecotoxicology as markers of biotic and abiotic stress. This was mainly done through the measurement of enzyme activities The present Review focuses on 3 test species living in close contact with soil that are often used in soil ecotoxicology: the worm Eisenia fetida, and two plant species, Trifolium repens (white clover) and Brassica oleracea (cabbage). E. fetida is a soil-dwelling organism commonly used for biomonitoring. T. repens is a symbiotic plant species which forms root nodule with soil bacteria, while B. oleracea is a non-symbiotic plant. In literature, some oxidative stress enzyme activities have already been measured in those species but such analyses do not allow distinction between individual enzyme involvements in oxidative stress. Gene expression studies would allow this distinction at the transcriptomic level. A literature review and a data search in molecular database were carried out on the basis of keywords in Scopus, in PubMed and in Genbank™ for each species. Molecular data regarding E. fetida were already available in databases, but a lack of data regarding oxidative stress related genes was observed for T. repens and B. oleracea. By exploiting the conservation observed between species and using molecular biology techniques, we partially cloned missing candidates involved in oxidative stress and in metal detoxification in E. fetida, T. repens and B. oleracea.
Collapse
Affiliation(s)
- F Bernard
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - F Brulle
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Dumez
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - S Lemiere
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France
| | - A Platel
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - F Nesslany
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Toxicologie - Institut Pasteur de Lille, EA 4483, F-59800 Lille, France
| | - D Cuny
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France
| | - A Deram
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire des Sciences Végétales et Fongiques - Université de Lille 2, EA4483, F-59006 Lille Cedex, France; Faculté de Management de la Santé (ILIS) - Université de Lille 2, EA4483, F-59120 Loos, France
| | - F Vandenbulcke
- Université Lille Nord de France, F-59000 Lille, France; Laboratoire de Génie Civil et géo-Environnement EA4515 - Université Lille Nord de France - Lille 1, Ecologie Numérique et Ecotoxicologie, F-59655 Villeneuve d'Ascq, France.
| |
Collapse
|
37
|
Pruchniak MP, Araźna M, Demkow U. Biochemistry of Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 878:9-19. [DOI: 10.1007/5584_2015_161] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Abstract
The ejaculated spermatozoon, as an aerobic cell, must fight against toxic levels of reactive oxygen species (ROS) generated by its own metabolism but also by other sources such as abnormal spermatozoa, chemicals and toxicants, or the presence of leukocytes in semen. Mammalian spermatozoa are extremely sensitive to oxidative stress, a condition occurring when there is a net increase in ROS levels within the cell. Opportunely, this specialized cell has a battery of antioxidant enzymes (superoxide dismutase, peroxiredoxins, thioredoxins, thioredoxins reductases, and glutathione s-transferases) working in concert to assure normal sperm function. Any impairment of the antioxidant enzymatic activities will promote severe oxidative damage which is observed as plasma membrane lipid peroxidation, oxidation of structural proteins and enzymes, and oxidation of DNA bases that lead to abnormal sperm function. Altogether, these damages occurring in spermatozoa are associated with male infertility. The present review contains a description of the enzymatic antioxidant system of the human spermatozoon and a reevaluation of the role of its different components and highlights the necessity of sufficient supply of reducing agents (NADPH and reduced glutathione) to guarantee normal sperm function.
Collapse
|
39
|
Ortona E, Maselli A, Delunardo F, Colasanti T, Giovannetti A, Pierdominici M. Relationship between redox status and cell fate in immunity and autoimmunity. Antioxid Redox Signal 2014; 21:103-22. [PMID: 24359147 DOI: 10.1089/ars.2013.5752] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE The signaling function of redox molecules is essential for an efficient and proper execution of a large number of cellular processes, contributing to the maintenance of cell homeostasis. Excessive oxidative stress is considered as playing an important role in the pathogenesis of autoimmune diseases by enhancing inflammation and breaking down the immunological tolerance through protein structural modifications that induce the appearance of neo/cryptic epitopes. RECENT ADVANCES There is a complex reciprocal relationship between oxidative stress and both apoptosis and autophagy, which is essential to determine cell fate. This is especially relevant in the context of autoimmune disorders in which apoptosis and autophagy play a crucial pathogenic role. CRITICAL ISSUES In this review, we describe the latest developments with regard to the involvement of redox molecules in the initiation and progression of autoimmune disorders, focusing on their role in cell fate regulation. We also discuss new therapeutic approaches that target oxidative stress in the treatment of these disorders. The administration of antioxidants is scarcely studied in autoimmunity, and future analyses are needed to assess its beneficial effects in preventing or ameliorating these diseases. FUTURE DIRECTIONS Deciphering the intricate relationships between oxidative stress and both apoptosis and autophagy in the context of autoimmunity could be critical in elucidating key pathogenic mechanisms and could lead to novel interventions for the clinical management of autoimmune diseases.
Collapse
Affiliation(s)
- Elena Ortona
- 1 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità , Rome, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Peroxisome-localized hepatitis Bx protein increases the invasion property of hepatocellular carcinoma cells. Arch Virol 2014; 159:2549-57. [PMID: 24810099 DOI: 10.1007/s00705-014-2105-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/28/2014] [Indexed: 02/07/2023]
Abstract
HBx acts as a multifunctional regulator that modulates various cellular responses, which can lead to development and progression of hepatocellular carcinoma (HCC). Here, we show that the HBx protein is also localized to peroxisomes, and this increases cellular reactive oxygen species (ROS) to levels that are higher than when HBx is localized to other organelles. The elevated ROS strongly activated nuclear factor (NF)-κB. In addition, the peroxisome-localized HBx increased the expressions of matrix metalloproteinases and decreased the expression of E-cadherin, which increased the invasive ability of HCC cells. Thus, a specific distribution of HBx to peroxisomes may contribute to HCC progression by increasing the invasive ability of HCC cells through elevation of the cellular ROS level.
Collapse
|
41
|
Pravda J. Metabolic theory of septic shock. World J Crit Care Med 2014; 3:45-54. [PMID: 24892019 PMCID: PMC4038812 DOI: 10.5492/wjccm.v3.i2.45] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/21/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Septic shock is a life threatening condition that can develop subsequent to infection. Mortality can reach as high as 80% with over 150000 deaths yearly in the United States alone. Septic shock causes progressive failure of vital homeostatic mechanisms culminating in immunosuppression, coagulopathy and microvascular dysfunction which can lead to refractory hypotension, organ failure and death. The hypermetabolic response that accompanies a systemic inflammatory reaction places high demands upon stored nutritional resources. A crucial element that can become depleted early during the progression to septic shock is glutathione. Glutathione is chiefly responsible for supplying reducing equivalents to neutralize hydrogen peroxide, a toxic oxidizing agent that is produced during normal metabolism. Without glutathione, hydrogen peroxide can rise to toxic levels in tissues and blood where it can cause severe oxidative injury to organs and to the microvasculature. Continued exposure can result in microvascular dysfunction, capillary leakage and septic shock. It is the aim of this paper to present evidence that elevated systemic levels of hydrogen peroxide are present in septic shock victims and that it significantly contributes to the development and progression of this frequently lethal condition.
Collapse
|
42
|
Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal 2014; 20:1618-27. [PMID: 23590434 PMCID: PMC3942678 DOI: 10.1089/ars.2013.5303] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Manganese superoxide dismutase (MnSOD) is a nuclear-encoded and mitochondria-matrix-localized oxidation-reduction (redox) enzyme that regulates cellular redox homeostasis. Cellular redox processes are known to regulate proliferative and quiescent growth states. Therefore, MnSOD and mitochondria-generated reactive oxygen species (ROS) are believed to be critical regulators of quiescent cells' entry into the cell cycle and exit from the proliferative cycle back to the quiescent state. RECENT ADVANCES/CRITICAL ISSUES Recent evidence suggests that the intracellular redox environment fluctuates during the cell cycle, shifting toward a more oxidized status during mitosis. MnSOD activity is higher in G0/G1 cells compared with S, G2 and M phases. After cell division, MnSOD activity increases in the G1 phase of the daughter generation. The periodic fluctuation in MnSOD activity during the cell cycle inversely correlates with cellular superoxide levels as well as glucose and oxygen consumption. Based on an inverse correlation between MnSOD activity and glucose consumption during the cell cycle, it is proposed that MnSOD is a central molecular player for the "Warburg effect." FUTURE DIRECTIONS In general, loss of MnSOD activity results in aberrant proliferation. A better understanding of the MnSOD and mitochondrial ROS-dependent cell cycle processes may lead to novel approaches to overcome aberrant proliferation. Since ROS have both deleterious (pathological) and beneficial (physiological) effects, it is proposed that "eustress" should be used when discussing ROS processes that regulate normal physiological functions, while "oxidative stress" should be used to discuss the deleterious effects of ROS.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa
| | | | | |
Collapse
|
43
|
Revisiting the neuropathogenesis of Zellweger syndrome. Neurochem Int 2014; 69:1-8. [DOI: 10.1016/j.neuint.2014.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 01/27/2023]
|
44
|
Colin IM, Poncin S, Levêque P, Gallez B, Gérard AC. Differential regulation of the production of reactive oxygen species in Th1 cytokine-treated thyroid cells. Thyroid 2014; 24:441-52. [PMID: 24073824 DOI: 10.1089/thy.2013.0142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Th1 cytokines exert pleiotropic effects in Hashimoto's thyroiditis. Previous studies reported a downregulation of thyroperoxidase and dual oxidase (DUOX) protein and mRNA expression in thyroid cells treated with Th1 cytokines. Although this effect is partially mediated by intracellular reactive oxygen species (ROS) and reactive nitrogen species, the nature and the source of the ROS involved are currently unknown. The aim of this study was to examine further the nature and source of the ROS produced in response to Th1 cytokines. METHODS Two rat thyroid cell lines (PCCL3 and FRTL-5) and human thyrocytes were incubated with Th1 cytokines (interleukin [IL]-1α and interferon-γ) in the presence or absence of the Th2 cytokine IL-4, the nitric oxide synthase inhibitor N-nitroso-L-arginine methyl ester (L-NAME), or the synthetic antioxidant N-acetylcysteine. The nature and source of the intracellular and extracellular ROS produced were determined. RESULTS A rapid increase in intracellular ROS was observed in cells incubated with Th1 cytokines. This increase was not caused by extracellular hydrogen peroxide (H2O2) produced by DUOX because both DUOX expression and extracellular H2O2 synthesis were decreased by Th1 cytokines. Confocal colocalization experiments showed that the Th1 cytokine-triggered ROS were not produced from mitochondria. Electron paramagnetic resonance investigations of PCCL3 cells indicated that the highly reactive hydroxyl radical was not involved in the response to Th1 cytokines. NOX2 mRNA expression was significantly increased in PCCL3 cells incubated with Th1 cytokines, as was the expression of the protein in the thyroid of Hashimoto's thyroiditis patients. NOX4 expression was by contrast unaffected. These results suggest that at least superoxide could be produced after exposure of thyroid cells to Th1 cytokines. The effects of L-NAME and IL-4, both of which partially or totally reverse Th1 cytokine-induced effects, on ROS release were also analyzed. L-NAME and IL-4 significantly reduced the Th1 cytokine-induced surge of intracellular ROS in PCCL3 and human thyroid cells. CONCLUSION The data presented here reinforce the idea that ROS, other than extracellular H2O2 produced by DUOX, are released from NOX2 after exposure of thyroid cells to Th1 cytokines. ROS/reactive nitrogen species act as important, but as further explained, not exclusive intracellular mediators of Th1 cytokine-induced effects in thyroid cells.
Collapse
Affiliation(s)
- Ides M Colin
- 1 Morphology Research Group, Institute of Experimental and Clinical Research (IREC), Medical Sector, Catholic University of Louvain , Brussels, Belgium
| | | | | | | | | |
Collapse
|
45
|
Ostrowski TD, Hasser EM, Heesch CM, Kline DD. H₂O₂ induces delayed hyperexcitability in nucleus tractus solitarii neurons. Neuroscience 2014; 262:53-69. [PMID: 24397952 DOI: 10.1016/j.neuroscience.2013.12.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Hydrogen peroxide (H₂O₂) is a stable reactive oxygen species and potent neuromodulator of cellular and synaptic activity. Centrally, endogenous H₂O₂ is elevated during bouts of hypoxia-reoxygenation, a variety of disease states, and aging. The nucleus tractus solitarii (nTS) is the central termination site of visceral afferents for homeostatic reflexes and contributes to reflex alterations during these conditions. We determined the extent to which H₂O₂ modulates synaptic and membrane properties in nTS neurons in rat brainstem slices. Stimulation of the tractus solitarii (which contains the sensory afferent fibers) evoked synaptic currents that were not altered by 10-500 μM H₂O₂. However, 500 μM H₂O₂ modulated several intrinsic membrane properties of nTS neurons, including a decrease in input resistance (R(i)), hyperpolarization of resting membrane potential (RMP) and action potential (AP) threshold (THR), and an initial reduction in AP discharge to depolarizing current. H₂O₂ increased conductance of barium-sensitive potassium currents, and block of these currents ablated H₂O₂-induced changes in RMP, Ri and AP discharge. Following washout of H₂O₂ AP discharge was enhanced due to depolarization of RMP and a partially maintained hyperpolarization of THR. Hyperexcitability persisted with repeated H₂O₂ exposure. H₂O₂ effects on RMP and THR were ablated by intracellular administration of the antioxidant catalase, which was immunohistochemically identified in neurons throughout the nTS. Thus, H₂O₂ initially reduces excitability of nTS neurons that is followed by sustained hyperexcitability, which may play a profound role in cardiorespiratory reflexes.
Collapse
Affiliation(s)
- T D Ostrowski
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - E M Hasser
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - C M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - D D Kline
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
46
|
Cardoso AR, Kakimoto PAHB, Kowaltowski AJ. Diet-sensitive sources of reactive oxygen species in liver mitochondria: role of very long chain acyl-CoA dehydrogenases. PLoS One 2013; 8:e77088. [PMID: 24116206 PMCID: PMC3792056 DOI: 10.1371/journal.pone.0077088] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/01/2013] [Indexed: 12/15/2022] Open
Abstract
High fat diets and accompanying hepatic steatosis are highly prevalent conditions. Previous work has shown that steatosis is accompanied by enhanced generation of reactive oxygen species (ROS), which may mediate further liver damage. Here we investigated mechanisms leading to enhanced ROS generation following high fat diets (HFD). We found that mitochondria from HFD livers present no differences in maximal respiratory rates and coupling, but generate more ROS specifically when fatty acids are used as substrates. Indeed, many acyl-CoA dehydrogenase isoforms were found to be more highly expressed in HFD livers, although only the very long chain acyl-CoA dehydrogenase (VLCAD) was more functionally active. Studies conducted with permeabilized mitochondria and different chain length acyl-CoA derivatives suggest that VLCAD is also a source of ROS production in mitochondria of HFD animals. This production is stimulated by the lack of NAD(+). Overall, our studies uncover VLCAD as a novel, diet-sensitive, source of mitochondrial ROS.
Collapse
Affiliation(s)
- Ariel R. Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Pâmela A. H. B. Kakimoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
47
|
|
48
|
Dhanasiri AKS, Fernandes JMO, Kiron V. Liver transcriptome changes in zebrafish during acclimation to transport-associated stress. PLoS One 2013; 8:e65028. [PMID: 23762281 PMCID: PMC3677916 DOI: 10.1371/journal.pone.0065028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
Liver plays a key role during the stress acclimation, and liver transcriptome analysis of shipped zebrafish could reveal the molecular adjustments that occur in the organ. Transcriptional changes in liver were analyzed with a 44 K oligo array using total RNA from fish prior to transport and during a mock transport process--immediately after packing (0 h), at 48 and 72 h. Large numbers of genes related to a variety of biological processes and pathways were regulated, mainly during transport (at 48/72 h). Immediately after packing, transcripts of genes related to both gluconeogenesis and glycolysis were induced. During transport, induction of gluconeogenesis-linked genes and reduction of glycolysis-related genes may be supporting the increase in blood glucose levels. Inhibition of genes involved in fatty acid beta-oxidation may be pointing to the poor ability of fish to utilize energy from fatty acids, under transport conditions. Genes involved in some of the mechanisms that regulate body ammonia were also affected. Even though genes associated with certain transaminases were inhibited in liver, sustained glutamate deamination may have led to high ammonia accumulation in liver/body. Enhanced levels of gene transcripts in ubiquitination and MAPK signalling cascade and reduced levels of gene transcripts related to ROS generation via peroxisomal enzymes as well as xenobiotic metabolism may be signifying the importance of such cellular and tissue responses to maintain homeostasis. Furthermore, transcripts connected with stress and thyroid hormones were also regulated. Moreover, suppression of genes related to specific immune components may be denoting the deleterious impact of transport on fish health. Thus, this study has revealed the complex molecular adjustments that occur in zebrafish when they are transported.
Collapse
Affiliation(s)
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
49
|
Parveen R, Asghar A, Anjum FM, Khan MI, Arshad MS, Yasmeen A. Selective deposition of dietary α-lipoic acid in mitochondrial fraction and its synergistic effect with α-tocoperhol acetate on broiler meat oxidative stability. Lipids Health Dis 2013; 12:52. [PMID: 23617815 PMCID: PMC3653726 DOI: 10.1186/1476-511x-12-52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/18/2013] [Indexed: 01/30/2023] Open
Abstract
The use of bioactive antioxidants in feed of broiler to mitigate reactive oxygen species (ROS) in biological systems is one of promising nutritional strategies. The aim of present study was to alleviate ROS production in mitochondrial fraction (MF) of meat by supplemented dietary antioxidant in feed of broiler. For this purpose, mitochondria specific antioxidant: α-lipoic acid (25 mg, 75 mg and 150 mg) with or without combination of α-tocopherol acetate (200 mg) used in normal and palm olein oxidized oil (4%) supplemented feed. One hundred and eighty one day old broiler birds were randomly divided into six treatments and provided the mentioned feed from third week. Feed intake, feed conversion ratio (FCR) remained statistically same in all groups while body weight decreased in supplemented groups accordingly at the end of study. The broiler meat MF antioxidant potential was significantly improved by feeding supplemented feed estimated as 1,1-di phenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity, 2,2-azinobis-(3- ethylbenzothiazoline-6-sulphonic acid) (ABTS+) and thiobarbituric acid reactive substances (TBARS). The maximum antioxidant activity was depicted in group fed on 150 mg/kg α-lipoic acid (ALA) and 200 mg/kg α-tocopherol acetate (ATA) (T4) in both breast and leg MF. Moreover, TBARS were higher in leg as compared to breast MF. Although, oxidized oil containing feed reduced the growth, lipid stability and antioxidant potential of MF whilst these traits were improved by receiving feed containing ALA and ATA. ALA and ATA showed higher deposition in T4 group while least in group received oxidized oil containing feed (T5). Positive correlation exists between DPPH free radical scavenging activity and the ABTS + reducing activity. In conclusion, ALA and ATA supplementation in feed had positive effect on antioxidant status of MF that consequently diminished the oxidative stress in polyunsaturated fatty acid enriched meat.
Collapse
|
50
|
Liu Y, Du J, Yan M, Lau MY, Hu J, Han H, Yang OO, Liang S, Wei W, Wang H, Li J, Zhu X, Shi L, Chen W, Ji C, Lu Y. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. NATURE NANOTECHNOLOGY 2013; 8:187-92. [PMID: 23416793 PMCID: PMC3670615 DOI: 10.1038/nnano.2012.264] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 12/18/2012] [Indexed: 05/17/2023]
Abstract
Organisms have sophisticated subcellular compartments containing enzymes that function in tandem. These confined compartments ensure effective chemical transformation and transport of molecules, and the elimination of toxic metabolic wastes. Creating functional enzyme complexes that are confined in a similar way remains challenging. Here we show that two or more enzymes with complementary functions can be assembled and encapsulated within a thin polymer shell to form enzyme nanocomplexes. These nanocomplexes exhibit improved catalytic efficiency and enhanced stability when compared with free enzymes. Furthermore, the co-localized enzymes display complementary functions, whereby toxic intermediates generated by one enzyme can be promptly eliminated by another enzyme. We show that nanocomplexes containing alcohol oxidase and catalase could reduce blood alcohol levels in intoxicated mice, offering an alternative antidote and prophylactic for alcohol intoxication.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, and Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | - Juanjuan Du
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | - Ming Yan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Mo Yin Lau
- Department of Medicine, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, California 90033, USA
| | - Jay Hu
- Department of Medicine, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, California 90033, USA
| | - Hui Han
- Department of Medicine, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, California 90033, USA
| | - Otto O. Yang
- School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Sheng Liang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Wei Wei
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jianmin Li
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, and Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
- Correspondence and requests for materials should be addressed to L.S., W.C., C.J. or Y.L, ; ; ;
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing 100071, China
- Correspondence and requests for materials should be addressed to L.S., W.C., C.J. or Y.L, ; ; ;
| | - Cheng Ji
- Department of Medicine, Keck School of Medicine of USC, University of Southern California (USC), Los Angeles, California 90033, USA
- Correspondence and requests for materials should be addressed to L.S., W.C., C.J. or Y.L, ; ; ;
| | - Yunfeng Lu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, USA
- Correspondence and requests for materials should be addressed to L.S., W.C., C.J. or Y.L, ; ; ;
| |
Collapse
|