1
|
Chen N, Wu RW, Lam Y, Chan WC, Chan D. Hypertrophic chondrocytes at the junction of musculoskeletal structures. Bone Rep 2023; 19:101698. [PMID: 37485234 PMCID: PMC10359737 DOI: 10.1016/j.bonr.2023.101698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/25/2023] Open
Abstract
Hypertrophic chondrocytes are found at unique locations at the junction of skeletal tissues, cartilage growth plate, articular cartilage, enthesis and intervertebral discs. Their role in the skeleton is best understood in the process of endochondral ossification in development and bone fracture healing. Chondrocyte hypertrophy occurs in degenerative conditions such as osteoarthritis. Thus, the role of hypertrophic chondrocytes in skeletal biology and pathology is context dependent. This review will focus on hypertrophic chondrocytes in endochondral ossification, in which they exist in a transient state, but acting as a central regulator of differentiation, mineralization, vascularization and conversion to bone. The amazing journey of a chondrocyte from being entrapped in the extracellular matrix environment to becoming proliferative then hypertrophic will be discussed. Recent studies on the dynamic changes and plasticity of hypertrophic chondrocytes have provided new insights into how we view these cells, not as terminally differentiated but as cells that can dedifferentiate to more progenitor-like cells in a transition to osteoblasts and adipocytes, as well as a source of skeletal stem and progenitor cells residing in the bone marrow. This will provide a foundation for studies of hypertrophic chondrocytes at other skeletal sites in development, tissue maintenance, pathology and therapy.
Collapse
Affiliation(s)
- Ning Chen
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Robin W.H. Wu
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Yan Lam
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518053, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
The role of hypertrophic chondrocytes in regulation of the cartilage-to-bone transition in fracture healing. Bone Rep 2022; 17:101616. [PMID: 36105852 PMCID: PMC9465425 DOI: 10.1016/j.bonr.2022.101616] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Endochondral bone formation is an important pathway in fracture healing, involving the formation of a cartilaginous soft callus and the process of cartilage-to-bone transition. Failure or delay in the cartilage-to-bone transition causes an impaired bony union such as nonunion or delayed union. During the healing process, multiple types of cells including chondrocytes, osteoprogenitors, osteoblasts, and endothelial cells coexist in the callus, and inevitably crosstalk with each other. Hypertrophic chondrocytes located between soft cartilaginous callus and bony hard callus mediate the crosstalk regulating cell-matrix degradation, vascularization, osteoclast recruitment, and osteoblast differentiation in autocrine and paracrine manners. Furthermore, hypertrophic chondrocytes can become osteoprogenitors and osteoblasts, and directly contribute to woven bone formation. In this review, we focus on the roles of hypertrophic chondrocytes in fracture healing and dissect the intermingled crosstalk in fracture callus during the cartilage-to-bone transition.
Collapse
|
3
|
Georgieva VS, Bluhm B, Probst K, Zhu M, Heilig J, Niehoff A, Brachvogel B. Ablation of the miRNA cluster 24 in cartilage and osteoblasts impairs bone remodeling. Sci Rep 2022; 12:9116. [PMID: 35650319 PMCID: PMC9160244 DOI: 10.1038/s41598-022-13231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/13/2022] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs (miRNAs) post-transcriptionally regulate cartilage and bone development and function, however, only few miRNAs have been described to play a role for cartilage to bone transition in vivo. Previously, we showed that cartilage-specific deletion of the Mirc24 cluster in newborn male mice leads to impaired growth plate cartilage development due to increased RAF/MEK/ERK signaling and affects the stability of the cartilage extracellular matrix on account of decreased SOX6 and SOX9 and increased MMP13 levels. Here, we studied how Mirc24 cluster inactivation in cartilage and osteoblasts leads to an increased bone density associated with defects in collagen remodeling in trabecular bone. No changes in osteoblast distribution were observed, whereas the number of osteoclasts was reduced and TRAP activity in osteoclasts decreased. Surprisingly, an increased level of cluster-encoded miR-322 or miR-503 raises Rankl gene expression and inactivation of the cluster in chondrocytes reduces Rankl expression. These results suggest that the Mirc24 cluster regulates Rankl expression in chondrocytes at the chondro-osseous border, where the cluster is mainly expressed to modulate osteoclast formation, bone remodeling and bone integrity.
Collapse
Affiliation(s)
- Veronika S Georgieva
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Björn Bluhm
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Kristina Probst
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Mengjie Zhu
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, 50933, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, 50931, Cologne, Germany
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany. .,Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
4
|
Rashid H, Chen H, Javed A. Runx2 is required for hypertrophic chondrocyte mediated degradation of cartilage matrix during endochondral ossification. Matrix Biol Plus 2021; 12:100088. [PMID: 34805821 PMCID: PMC8586806 DOI: 10.1016/j.mbplus.2021.100088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/08/2021] [Accepted: 10/18/2021] [Indexed: 10/25/2022] Open
Abstract
The RUNX2 transcription factor is a key regulator for the development of cartilage and bone. Global or resting chondrocyte-specific deletion of the Runx2 gene results in failure of chondrocyte hypertrophy, endochondral ossification, and perinatal lethality. The terminally mature hypertrophic chondrocyte regulates critical steps of endochondral ossification. Importantly, expression of the Runx2 gene starts in the resting chondrocyte and increases progressively, reaching the maximum level in hypertrophic chondrocytes. However, the RUNX2 role after chondrocyte hypertrophy remains unknown. To answer this question, we deleted the Runx2 gene specifically in hypertrophic chondrocytes using the Col10-Cre line. Mice lacking the Runx2 gene in hypertrophic chondrocytes (Runx2HC/HC ) survive but exhibit limb dwarfism. Interestingly, the length of the hypertrophic chondrocyte zone is doubled in the growth plate of Runx2HC/HC mice. Expression of pro-apoptotic Bax decreased significantly while anti-apoptotic Bcl2 remains unchanged leading to a four-fold increase in the Bcl2/Bax ratio in mutant mice. In line with this, a significant reduction in apoptosis of Runx2HC/HC hypertrophic chondrocyte is noted. A large amount of cartilage matrix is present in the long bones that extend toward the diaphyseal region of Runx2HC/HC mice. This is not due to enhanced synthesis of the cartilage matrix as the expression of both collagen type 2 and aggrecan were comparable among Runx2HC/HC and WT littermates. Our qPCR analysis demonstrates the increased amount of cartilage matrix is due to impaired expression of cartilage degrading enzymes such as metalloproteinase and aggrecanase as well as tissue inhibitor of metalloproteinases. Moreover, a significant decrease of TRAP positive chondroclasts was noted along the cartilage islands in Runx2HC/HC mice. Consistently, qPCR data showed an 81% reduction in the Rankl/Opg ratio in Runx2HC/HC littermates, which is inhibitory for chondroclast differentiation. Finally, we assess if increase cartilage matrix in Runx2HC/HC mice serves as a template for bone and mineral deposition using micro-CT and Von Kossa. The mutant mice exhibit a significant increase in trabecular bone mass compared to littermates. In summary, our findings have uncovered a novel role of Runx2 in apoptosis of hypertrophic chondrocytes and degradation of cartilage matrix during endochondral ossification.
Collapse
Key Words
- ACAN, Aggrecan
- Aggrecanase
- Apoptosis
- BAC, Bacterial artificial chromosome
- CCND1, Cyclin D1
- CDK1, Cyclin-dependent kinase 1
- COL10, Collagen type X
- COL2, Collagen type II
- Chondroclast/osteoclast
- Dwarfism
- IHH, Indian hedgehog
- MMP, Matrix metalloproteinase
- Matrix-metalloproteinase
- OPG, Osteoprotegerin
- PCNA, Proliferating cell nuclear antigen
- PTHRP, Parathyroid hormone-related peptide
- RANKL, Receptor activator of nuclear factor Kappa B ligand
- RUNX2, Runt related transcription factor 2
- SOX9, SRY box transcription factor
- TNAP, Tissue-nonspecific alkaline phosphatase
- TRAP, Tartrate-resistant acid phosphatase
- VEGFA, Vascular endothelial growth factor a
- Wnt/PCP, Wnt/planar cell polarity
Collapse
Affiliation(s)
- Harunur Rashid
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haiyan Chen
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amjad Javed
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
LIM domain proteins Pinch1/2 regulate chondrogenesis and bone mass in mice. Bone Res 2020; 8:37. [PMID: 33083097 PMCID: PMC7553939 DOI: 10.1038/s41413-020-00108-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/28/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
The LIM domain-containing proteins Pinch1/2 regulate integrin activation and cell–extracellular matrix interaction and adhesion. Here, we report that deleting Pinch1 in limb mesenchymal stem cells (MSCs) and Pinch2 globally (double knockout; dKO) in mice causes severe chondrodysplasia, while single mutant mice do not display marked defects. Pinch deletion decreases chondrocyte proliferation, accelerates cell differentiation and disrupts column formation. Pinch loss drastically reduces Smad2/3 protein expression in proliferative zone (PZ) chondrocytes and increases Runx2 and Col10a1 expression in both PZ and hypertrophic zone (HZ) chondrocytes. Pinch loss increases sclerostin and Rankl expression in HZ chondrocytes, reduces bone formation, and increases bone resorption, leading to low bone mass. In vitro studies revealed that Pinch1 and Smad2/3 colocalize in the nuclei of chondrocytes. Through its C-terminal region, Pinch1 interacts with Smad2/3 proteins. Pinch loss increases Smad2/3 ubiquitination and degradation in primary bone marrow stromal cells (BMSCs). Pinch loss reduces TGF-β-induced Smad2/3 phosphorylation and nuclear localization in primary BMSCs. Interestingly, compared to those from single mutant mice, BMSCs from dKO mice express dramatically lower protein levels of β-catenin and Yap1/Taz and display reduced osteogenic but increased adipogenic differentiation capacity. Finally, ablating Pinch1 in chondrocytes and Pinch2 globally causes severe osteopenia with subtle limb shortening. Collectively, our findings demonstrate critical roles for Pinch1/2 and a functional redundancy of both factors in the control of chondrogenesis and bone mass through distinct mechanisms.
Collapse
|
6
|
Dai J, Dong R, Han X, Li J, Gong X, Bai Y, Kang F, Liang M, Zeng F, Hou Z, Dong S. Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes. Am J Physiol Cell Physiol 2020; 319:C21-C33. [PMID: 32374679 DOI: 10.1152/ajpcell.00039.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The invasion of osteoclasts into the cartilage via blood vessels advances the process of endochondral ossification, and dysregulation of dynamic intercellular interactions results in skeletal dysplasias. Although the regulation of osteoclasts by growth plate chondrocytes has been reported in detail, the effect of osteoclasts on chondrocytes remains to be determined. In this study, ATDC5 cells and bone marrow mesenchymal stem cells were differentiated into chondrocytes and treated with conditioned medium obtained from bone marrow macrophages differentiated to osteoclast precursors and osteoclasts. Exosomes were inhibited in conditioned medium or isolated directly from osteoclasts to further determine whether osteoclast-derived exosomes play an important role in chondrocyte hypertrophy. Additionally, exosomal miRNAs were detected, and let-7a-5p was selected as an miRNA with significantly increased expression in osteoclast-derived exosomes. Experiments were performed to verify the potential target Smad2 and investigate how let-7a-5p affected chondrocytes. The results suggest that both osteoclast precursors and osteoclasts promote chondrocyte hypertrophy and that the promotive effect of osteoclasts is more significant than that of osteoclast precursors. Osteoclast-derived exosomes promote the hypertrophic differentiation of chondrocytes. Moreover, osteoclast-derived exosomal let-7a-5p inhibits Smad2 to decrease the transforming growth factor-β-induced inhibition of chondrocyte hypertrophy. Our research reveals the role of osteoclasts in the regulation of chondrocytes and provides insights into the highly coordinated intercellular process of endochondral ossification.
Collapse
Affiliation(s)
- Jingjin Dai
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xinyun Han
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jianmei Li
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoshan Gong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yun Bai
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengmeng Liang
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fanchun Zeng
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
7
|
Yi SW, Kim HJ, Oh HJ, Shin H, Lee JS, Park JS, Park KH. Gene expression profiling of chondrogenic differentiation by dexamethasone-conjugated polyethyleneimine with SOX trio genes in stem cells. Stem Cell Res Ther 2018; 9:341. [PMID: 30526665 PMCID: PMC6286596 DOI: 10.1186/s13287-018-0998-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
Background During differentiation of stem cells, it is recognized that molecular mechanisms of transcription factors manage stem cells towards the intended lineage. In this study, using microarray-based technology, gene expression profiling was examined during the process of chondrogenic differentiation of human mesenchymal stem cells (hMSCs). To induce chondrogenic differentiation of hMSCs, the cationic polymer polyethyleneimine (PEI) was coupled with the synthetic glucocorticoid dexamethasone (DEX). DEX/PEI could be polyplexed with anionic plasmid DNAs (pDNAs) harboring the chondrogenesis-inducing factors SOX5, SOX6, and SOX9. These are named differentiation-inducing nanoparticles (DI-NPs). Methods A DI-NP system for inducing chondrogenic differentiation was designed and characterized by dynamic light scattering and scanning electron microscopy (SEM). Chondrogenic induction of hMSCs was evaluated using various tools such as reverse-transcription polymerase chain reaction (RT-PCR), Western blotting, confocal fluorescent microscopy, and immunohistochemistry analysis. The gene expression profiling of DI-NP-treated hMSCs was performed by microarray analysis. Results The hMSCs were more efficiently transfected with pDNAs using DI-NPs than using PEI. Moreover, microarray analysis demonstrated the gene expression profiling of hMSCs transfected with DI-NPs. Chondrogenic factors including SOX9, collagen type II (COLII), Aggrecan, and cartilage oligometric matrix protein (COMP) were upregulated while osteogenic factors including collagen type I (COLI) was downregulated. Chondrogenesis-induced hMSCs were better differentiated as assessed by RT-PCR, Western blotting analyses, and immunohistochemistry. Conclusion DI-NPs are good gene delivery carriers and induce chondrogenic differentiation of hMSCs. Additionally, comprehensive examination of the gene expression was attempted to identify specific genes related to differentiation by microarray analysis. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s13287-018-0998-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Se Won Yi
- Department of Nano-regenerative Medical Engineering, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Hye Jin Kim
- Department of Nano-regenerative Medical Engineering, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Hyun Jyung Oh
- Department of Nano-regenerative Medical Engineering, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Heejun Shin
- Department of Biotechnology, Catholic University 43-1, Yeokgok 2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea
| | - Jung Sun Lee
- Department of Nano-regenerative Medical Engineering, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea
| | - Ji Sun Park
- Department of Nano-regenerative Medical Engineering, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea.
| | - Keun-Hong Park
- Department of Nano-regenerative Medical Engineering, College of Life Science, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam-si, 134-88, Republic of Korea.
| |
Collapse
|
8
|
Houben A, Kostanova-Poliakova D, Weissenböck M, Graf J, Teufel S, von der Mark K, Hartmann C. β-catenin activity in late hypertrophic chondrocytes locally orchestrates osteoblastogenesis and osteoclastogenesis. Development 2016; 143:3826-3838. [PMID: 27621061 PMCID: PMC5087647 DOI: 10.1242/dev.137489] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Trabecular bone formation is the last step in endochondral ossification. This remodeling process of cartilage into bone involves blood vessel invasion and removal of hypertrophic chondrocytes (HTCs) by chondroclasts and osteoclasts. Periosteal- and chondrocyte-derived osteoprogenitors utilize the leftover mineralized HTC matrix as a scaffold for primary spongiosa formation. Here, we show genetically that β-catenin (encoded by Ctnnb1), a key component of the canonical Wnt pathway, orchestrates this remodeling process at multiple levels. Conditional inactivation or stabilization of β-catenin in HTCs by a Col10a1-Cre line locally modulated osteoclastogenesis by altering the Rankl:Opg ratio in HTCs. Lack of β-catenin resulted in a severe decrease of trabecular bone in the embryonic long bones. Gain of β-catenin activity interfered with removal of late HTCs and bone marrow formation, leading to a continuous mineralized hypertrophic core in the embryo and resulting in an osteopetrotic-like phenotype in adult mice. Furthermore, β-catenin activity in late HTCs is required for chondrocyte-derived osteoblastogenesis at the chondro-osseous junction. The latter contributes to the severe trabecular bone phenotype in mutants lacking β-catenin activity in HTCs. Summary: The conditional modulation of β-catenin activity in late hypertrophic chondrocytes locally regulates osteoclast differentiation and the transdifferentiation of chondrocytes into osteoblasts.
Collapse
Affiliation(s)
- Astrid Houben
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | | | - Martina Weissenböck
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | - Julian Graf
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Stefan Teufel
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| | - Klaus von der Mark
- Dept. of Experimental Medicine I, University of Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Christine Hartmann
- Institute of Experimental Musculoskeletal Medicine, Medical Faculty of the University of Münster, Domagkstrasse 3, 48149 Münster, Germany
| |
Collapse
|
9
|
Wang B, Jin H, Shu B, Mira RR, Chen D. Chondrocytes-Specific Expression of Osteoprotegerin Modulates Osteoclast Formation in Metaphyseal Bone. Sci Rep 2015; 5:13667. [PMID: 26329493 PMCID: PMC4556963 DOI: 10.1038/srep13667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022] Open
Abstract
Bone marrow stromal cells/osteoblasts were originally thought to be the major player in regulating osteoclast differentiation through expressing RANKL/OPG cytokines. Recent studies have established that chondrocytes also express RANKL/OPG and support osteoclast formation. Till now, the in vivo function of chondrocyte-produced OPG in osteoclast formation and postnatal bone growth has not been directly investigated. In this study, chondrocyte-specific Opg transgenic mice were generated by using type II collagen promoter. The Col2-Opg transgenic mice showed delayed formation of secondary ossification center and localized increase of bone mass in proximal metaphysis of tibiae. TRAP staining showed that osteoclast numbers were reduced in both secondary ossification center and proximal metaphysis. This finding was further confirmed by in vitro chondrocyte/spleen cell co-culture assay. In contrast, the mineral apposition rates were not changed in Col2-Opg transgenic mice. TUNEL staining revealed more apoptotic hypertrophic chondrocytes in the growth plate of Col2-Opg mice. Flow cytometry analysis showed fewer RANK-expressing cells in the marrow of Col2a1-Opg mice, suggesting the role of OPG in blocking the differentiation of early mesenchymal progenitors into RANK-expressing pre-osteoclasts. Our results demonstrated that OPG expression in chondrocyte increases bone mass in the proximal metaphysis of tibiae through negative regulation of osteoclast formation.
Collapse
Affiliation(s)
- Baoli Wang
- Key Lab of Hormone and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.,Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Hongting Jin
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Bing Shu
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | - Ranim R Mira
- Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| | - Di Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA.,Department of Biochemistry, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Solberg LB, Stang E, Brorson SH, Andersson G, Reinholt FP. Tartrate-resistant acid phosphatase (TRAP) co-localizes with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in lysosomal-associated membrane protein 1 (LAMP1)-positive vesicles in rat osteoblasts and osteocytes. Histochem Cell Biol 2014; 143:195-207. [PMID: 25201349 PMCID: PMC4298672 DOI: 10.1007/s00418-014-1272-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
Tartrate-resistant acid phosphatase (TRAP) is well known as an osteoclast marker; however, a recent study from our group demonstrated enhanced number of TRAP + osteocytes as well as enhanced levels of TRAP located to intracellular vesicles in osteoblasts and osteocytes in experimental osteoporosis in rats. Such vesicles were especially abundant in osteoblasts and osteocytes in cancellous bone as well as close to bone surface and intracortical remodeling sites. To further investigate TRAP in osteoblasts and osteocytes, long bones from young, growing rats were examined. Immunofluorescence confocal microscopy displayed co-localization of TRAP with receptor activator of NF-KB ligand (RANKL) and osteoprotegerin (OPG) in hypertrophic chondrocytes and diaphyseal osteocytes with Pearson's correlation coefficient ≥0.8. Transmission electron microscopy showed co-localization of TRAP and RANKL in lysosomal-associated membrane protein 1 (LAMP1) + vesicles in osteoblasts and osteocytes supporting the results obtained by confocal microscopy. Recent in vitro data have demonstrated OPG as a traffic regulator for RANKL to LAMP1 + secretory lysosomes in osteoblasts and osteocytes, which seem to serve as temporary storage compartments for RANKL. Our in situ observations indicate that TRAP is located to RANKL-/OPG-positive secretory lysosomes in osteoblasts and osteocytes, which may have implications for osteocyte regulation of osteoclastogenesis.
Collapse
Affiliation(s)
- L B Solberg
- Department of Pathology, The Core Facility for Advanced Electron Microscopy, Oslo University Hospital, Rikshospitalet, P.O. Box 4950, Nydalen, 0424, Oslo, Norway,
| | | | | | | | | |
Collapse
|
11
|
Abou-Khalil R, Colnot C. Cellular and molecular bases of skeletal regeneration: what can we learn from genetic mouse models? Bone 2014; 64:211-21. [PMID: 24709685 DOI: 10.1016/j.bone.2014.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/19/2014] [Accepted: 03/26/2014] [Indexed: 10/25/2022]
Abstract
Although bone repairs through a very efficient regenerative process in 90% of the patients, many factors can cause delayed or impaired healing. To date, there are no reliable biological parameters to predict or diagnose bone repair defects. Orthopedic surgeons mostly base their diagnoses on radiographic analyses. With the recent progress in our understanding of the bone repair process, new methods may be envisioned. Animal models have allowed us to define the key steps of bone regeneration and the biological and mechanical factors that may influence bone healing in positive or negative ways. Most importantly, small animal models such as mice have provided powerful tools to apprehend the genetic bases of normal and impaired bone healing. The current review presents a state of the art of the genetically modified mouse models that have advanced our understanding of the cellular and molecular components of bone regeneration and repair. The review illustrates the use of these models to define the role of inflammation, skeletal cell lineages, signaling pathways, the extracellular matrix, osteoclasts and angiogenesis. These genetic mouse models promise to change the field of orthopedic surgery to help establish genetic predispositions for delayed repair, develop models of non-union that mimic the human conditions and elaborate new therapeutic approaches to enhance bone regeneration.
Collapse
Affiliation(s)
- Rana Abou-Khalil
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Céline Colnot
- INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
12
|
Boyce RW, Varela A, Chouinard L, Bussiere JL, Chellman GJ, Ominsky MS, Pyrah IT. Infant cynomolgus monkeys exposed to denosumab in utero exhibit an osteoclast-poor osteopetrotic-like skeletal phenotype at birth and in the early postnatal period. Bone 2014; 64:314-25. [PMID: 24727159 DOI: 10.1016/j.bone.2014.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/14/2014] [Accepted: 04/01/2014] [Indexed: 01/14/2023]
Abstract
RANKL is a key regulator of bone resorption and osteoclastogenesis. Denosumab is a fully human IgG2 monoclonal antibody that inhibits bone resorption by binding and inhibiting the activity of RANKL. To determine the effects of denosumab on pre- and postnatal skeletal growth and development, subcutaneous injections of 0 (control) or 50 mg/kg/month denosumab were given to pregnant cynomolgus monkeys from approximately gestation day (GD) 20 until parturition (up to 6 doses). For up to 6 months postpartum (birth day [BD] 180/181), evaluation of the infants included skeletal radiographs, bone biomarkers, and oral examinations for assessment of tooth eruption. Infant bones were collected at necropsy for densitometry, biomechanical testing, and histopathologic evaluation from control and denosumab-exposed infants on BD1 (or within 2 weeks of birth) and BD181, and from infants that died or were euthanized moribund from BD5 to BD69. In all denosumab-exposed infants, biomarkers of bone resorption and formation were markedly decreased at BD1 and BD14 and slightly greater at BD91 vs. control, then similar to control values by BD181. Spontaneous long bone fractures were detected clinically or radiographically in 4 denosumab-exposed infants at BD28 and BD60, with evidence of radiographic healing at ≥BD60. In BD1 infants exposed to denosumab in utero, radiographic evaluations of the skeleton revealed decreased long bone length; a generalized increased radio-opacity of the axial and appendicular skeleton and bones at the base of the skull with decreased or absent marrow cavities, widened growth plates, flared/club-shaped metaphysis, altered jaw/skull shape, and reduced jaw length; and delayed development of secondary ossification centers. Densitometric evaluations in these infants demonstrated a marked increase in bone mineral density at trabecular sites, but cortical bone mineral density was decreased. Histologically, long bone cortices were attenuated and there was an absence of osteoclasts. Bones with active endochondral ossification consisted largely of a dense network of retained primary spongiosa with reduced marrow space consistent with an osteopetrotic phenotype. A minimal increase in growth plate thickness largely due to the expansion of the hypertrophic zone was present. Retained woven bone was observed in bones formed by intramembranous ossification, consistent with absence of bone remodeling. These changes in bone tissue composition and geometry were reflected in reduced biomechanical strength and material properties of bones from denosumab-exposed infants. Material property changes were characterized by increased tissue brittleness reflected in reductions in calculated material toughness at the femur diaphysis and lack of correlation between energy and bone mass at the vertebra; these changes were likely the basis for the increased skeletal fragility (fractures). Although tooth eruption was not impaired in denosumab-exposed infants, the reduced growth and increased bone density of the mandible resulted in dental abnormalities consisting of tooth malalignment and dental dysplasia. Radiographic changes at BD1 persisted at BD28, with evidence of resumption of bone resorption and remodeling observed in most infants at BD60 and/or BD90. In 2 infants euthanized on BD60 and BD69, there was histologic and radiographic evidence of subphyseal/metaphyseal bone resorption accompanied by multiple foci of ossification in growth plates that were markedly increased in thickness. In infants necropsied at BD181, where systemic exposure to denosumab had been below limits of quantitation for approximately 3months, there was largely full recovery from all bone-related changes observed earlier postpartum, including tissue brittleness. Persistent changes included dental dysplasia, decreased bone length, reduced cortical thickness, and decreased peak load and ultimate strength at the femur diaphysis. In conclusion, the skeletal and secondary dental effects observed in infant monkeys exposed in utero to denosumab are consistent with the anticipated pharmacological activity of denosumab as a monoclonal antibody against RANKL and inhibitor of osteoclastogenesis. The resulting inhibition of resorption impaired both bone modeling and remodeling during skeletal development and growth. The skeletal phenotype of these infant monkeys resembles human infants with osteoclast-poor osteopetrosis due to inactivating mutations of RANK or RANKL.
Collapse
Affiliation(s)
- Rogely W Boyce
- Department of Comparative Biology and Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Aurore Varela
- Charles River Preclinical Services-Montreal, 22022 Transcanadienne, Senneville, QC H9X 3R3, Canada.
| | - Luc Chouinard
- Charles River Preclinical Services-Montreal, 22022 Transcanadienne, Senneville, QC H9X 3R3, Canada.
| | - Jeanine L Bussiere
- Department of Comparative Biology and Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Gary J Chellman
- Charles River Preclinical Services-Nevada, 6995 Longley Lane, Reno, NV 89511, USA.
| | - Michael S Ominsky
- Department of Metabolic Disorders, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Ian T Pyrah
- Department of Comparative Biology and Safety Sciences, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
13
|
Cheng S, Xing W, Zhou X, Mohan S. Haploinsufficiency of osterix in chondrocytes impairs skeletal growth in mice. Physiol Genomics 2013; 45:917-23. [PMID: 23943855 DOI: 10.1152/physiolgenomics.00111.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osterix (Osx) is essential for both intramembranous or endochondral bone formation. Osteoblast-specific ablation of Osx using Col1α1-Cre resulted in osteopenia, because of impaired osteoblast differentiation in adult mice. Since Osx is also known to be expressed in chondrocytes, we evaluated the role of Osx expressed in chondrocytes by examining the skeletal phenotype of mice with conditional disruption of Osx in Col2α1-expressing chondrocytes. Surprisingly, Cre-positive mice that were homozygous for Osx floxed alleles died after birth. Alcian blue and alizarin red staining revealed that the lengths of skeleton, femur, and vertebrae were reduced by 21, 26, and 14% (P < 0.01), respectively, in the knockout (KO) compared with wild-type mice. To determine if haploid insufficiency of Osx in chondrocytes influenced postnatal skeletal growth, we compared skeletal phenotype of floxed heterozygous mice that were Cre-positive or Cre-negative. Body length was reduced by 8% (P < 0.001), and areal BMD of total body, femur, and tibia was reduced by 5, 7, and 8% (P < 0.05), respectively, in mice with conditional disruption of one allele of Osx in chondrocytes. Micro-CT showed reduced cortical volumetric bone mineral density and trabecular bone volume to total volume in the femurs of Osx(flox/+);col2α1-Cre mice. Histological analysis revealed that the impairment of longitudinal growth was associated with disrupted growth plates in the Osx(flox/+);col2α1-Cre mice. Primary chondrocytes isolated from KO embryos showed reduced expression of chondral ossification markers but elevated expression of chondrogenesis markers. Our findings indicate that Osx expressed in chondrocytes regulates bone growth in part by regulating chondrocyte hypertrophy.
Collapse
Affiliation(s)
- Shaohong Cheng
- Musculoskeletal Disease Center, Jerry L. Pettis VA Medical Center, Loma Linda, California
| | | | | | | |
Collapse
|
14
|
Golovchenko S, Hattori T, Hartmann C, Gebhardt M, Gebhard S, Hess A, Pausch F, Schlund B, von der Mark K. Deletion of beta catenin in hypertrophic growth plate chondrocytes impairs trabecular bone formation. Bone 2013; 55:102-12. [PMID: 23567158 DOI: 10.1016/j.bone.2013.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/31/2022]
Abstract
In order to elucidate the role of β-catenin in hypertrophic cartilage zone of the growth plate, we deleted the β-catenin gene ctnnb1specifically from hypertrophic chondrocytes by mating ctnnb1(fl/fl) mice with BAC-Col10a1-Cre-deleter mice. Surprisingly, this resulted in a significant reduction of subchondral trabecular bone formation in BACCol10Cre; ctnnb1(Δ/Δ) (referred to as Cat-ko) mice, although Cre expression was restricted to hypertrophic chondrocytes. The size of the Col10a1 positive hypertrophic zone was normal, but qRT-PCR revealed reduced expression of Mmp13, and Vegfa in Cat-ko hypertrophic chondrocytes, indicating impaired terminal differentiation. Immunohistological and in situ hybridization analysis revealed the substantial deficiency of collagen I positive mature osteoblasts, but equal levels of osterix-positive cells in the subchondral bone marrow space of Cat-ko mice, indicating that the supply of osteoblast precursor cells was not reduced. The fact that in Cat-ko mice subchondral trabeculae were lacking including their calcified cartilage core indicated a strongly enhanced osteoclast activity. In fact, TRAP staining as well as in situ hybridization analysis of Mmp9 expression revealed denser occupation of the cartilage erosion zone with enlarged osteoclasts as compared to the control growth plate, suggesting increased RANKL or reduced osteoprotegerin (Opg) activity in this zone. This notion was confirmed by qRT-PCR analysis of mRNA extracted from cultured hypertrophic chondrocytes or from whole epiphyses, showing increased Rankl mRNA levels in Cat-ko as compared to control chondrocytes, whereas changes in OPG levels were not significant. These results indicate that β-catenin levels in hypertrophic chondrocytes play a key role in regulating osteoclast activity and trabecular bone formation at the cartilage-bone interface by controlling RANKL expression in hypertrophic chondrocytes.
Collapse
|
15
|
Dwivedi PP, Lam N, Powell BC. Boning up on glypicans-opportunities for new insights into bone biology. Cell Biochem Funct 2013; 31:91-114. [DOI: 10.1002/cbf.2939] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/09/2012] [Accepted: 11/16/2012] [Indexed: 01/01/2023]
Affiliation(s)
| | - N. Lam
- Craniofacial Research Group; Women's and Children's Health Research Institute; North Adelaide; South Australia; Australia
| | | |
Collapse
|
16
|
Böhm M, Grässel S. Role of proopiomelanocortin-derived peptides and their receptors in the osteoarticular system: from basic to translational research. Endocr Rev 2012; 33:623-51. [PMID: 22736674 PMCID: PMC3410228 DOI: 10.1210/er.2011-1016] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proopiomelanocortin (POMC)-derived peptides such as melanocortins and β-endorphin (β-ED) exert their pleiotropic effects via binding to melanocortin receptors (MCR) and opioid receptors (OR). There is now compelling evidence for the existence of a functional POMC system within the osteoarticular system. Accordingly, distinct cell types of the synovial tissue and bone have been identified to generate POMC-derived peptides like β-ED, ACTH, or α-MSH. MCR subtypes, especially MC1R, MC2R (the ACTH receptor), MC3R, and MC4R, but also the μ-OR and δ-OR, have been detected in various cells of the synovium, cartilage, and bone. The respective ligands of these POMC-derived peptide receptors mediate an increasing number of newly recognized biological effects in the osteoarticular system. These include bone mineralization and longitudinal growth, cell proliferation and differentiation, extracellular matrix synthesis, osteoprotection, and immunomodulation. Importantly, bone formation is also regulated by the central melanocortin system via a complex hormonal interplay with other organs and tissues involved in energy metabolism. Among the POMC-derived peptides examined in cell culture systems from osteoarticular tissue and in animal models of experimentally induced arthritis, α-MSH, ACTH, and MC3R-specific agonists appear to have the most promising antiinflammatory actions. The effects of these melanocortin peptides may be exploited in future for the treatment of patients with inflammatory and degenerative joint diseases.
Collapse
Affiliation(s)
- Markus Böhm
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University of Münster, Von Esmarch-Strasse 58, D-48149 Münster, Germany.
| | | |
Collapse
|
17
|
Mackie EJ, Tatarczuch L, Mirams M. The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification. J Endocrinol 2011; 211:109-21. [PMID: 21642379 DOI: 10.1530/joe-11-0048] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endochondral ossification is the process that results in both the replacement of the embryonic cartilaginous skeleton during organogenesis and the growth of long bones until adult height is achieved. Chondrocytes play a central role in this process, contributing to longitudinal growth through a combination of proliferation, extracellular matrix (ECM) secretion and hypertrophy. Terminally differentiated hypertrophic chondrocytes then die, allowing the invasion of a mixture of cells that collectively replace the cartilage tissue with bone tissue. The behaviour of growth plate chondrocytes is tightly regulated at all stages of endochondral ossification by a complex network of interactions between circulating hormones (including GH and thyroid hormone), locally produced growth factors (including Indian hedgehog, WNTs, bone morphogenetic proteins and fibroblast growth factors) and the components of the ECM secreted by the chondrocytes (including collagens, proteoglycans, thrombospondins and matrilins). In turn, chondrocytes secrete factors that regulate the behaviour of the invading bone cells, including vascular endothelial growth factor and receptor activator of NFκB ligand. This review discusses how the growth plate chondrocyte contributes to endochondral ossification, with some emphasis on recent advances.
Collapse
Affiliation(s)
- E J Mackie
- School of Veterinary Science, University of Melbourne, Parkville, Victoria, Australia.
| | | | | |
Collapse
|
18
|
Zhang X, Siclari VA, Lan S, Zhu J, Koyama E, Dupuis HL, Enomoto-Iwamoto M, Beier F, Qin L. The critical role of the epidermal growth factor receptor in endochondral ossification. J Bone Miner Res 2011; 26:2622-33. [PMID: 21887704 PMCID: PMC3200483 DOI: 10.1002/jbmr.502] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Loss of epidermal growth factor receptor (EGFR) activity in mice alters growth plate development, impairs endochondral ossification, and retards growth. However, the detailed mechanism by which EGFR regulates endochondral bone formation is unknown. Here, we show that administration of an EGFR-specific small-molecule inhibitor, gefitinib, into 1-month-old rats for 7 days produced profound defects in long bone growth plate cartilage characterized by epiphyseal growth plate thickening and massive accumulation of hypertrophic chondrocytes. Immunostaining demonstrated that growth plate chondrocytes express EGFR, but endothelial cells and osteoclasts show little to no expression. Gefitinib did not alter chondrocyte proliferation or differentiation and vascular invasion into the hypertrophic cartilage. However, osteoclast recruitment and differentiation at the chondro-osseous junction were attenuated owing to decreased RANKL expression in the growth plate. Moreover, gefitinib treatment inhibited the expression of matrix metalloproteinases (MMP-9, -13, and -14), increased the amount of collagen fibrils, and decreased degraded extracellular matrix products in the growth plate. In vitro, the EGFR ligand transforming growth factor α (TGF-α) strongly stimulated RANKL and MMPs expression and suppressed osteoprotegerin (OPG) expression in primary chondrocytes. In addition, a mouse model of cartilage-specific EGFR inactivation exhibited a similar phenotype of hypertrophic cartilage enlargement. Together our data demonstrate that EGFR signaling supports osteoclastogenesis at the chondro-osseous junction and promotes chondrogenic expression of MMPs in the growth plate. Therefore, we conclude that EGFR signaling plays an essential role in the remodeling of growth plate cartilage extracellular matrix into bone during endochondral ossification.
Collapse
Affiliation(s)
- Xianrong Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Although various function of chemerin have been suggested, its physiological role remains to be elucidated. Here we show that chemerin-deficient mice are glucose intolerant irrespective of exhibiting reduced macrophage accumulation in adipose tissue. The glucose intolerance was mainly due to increased hepatic glucose production and impaired insulin secretion. Chemerin and its receptor ChemR23 were expressed in β-cell. Studies using isolated islets and perfused pancreas revealed impaired glucose-dependent insulin secretion (GSIS) in chemerin-deficient mice. Conversely, chemerin transgenic mice revealed enhanced GSIS and improved glucose tolerance. Expression of MafA, a pivotal transcriptional factor for β-cell function, was downregulated in chemerin-deficient islets and a chemerin-ablated β-cell line and rescue of MafA expression restored GSIS, indicating that chemerin regulates β-cell function via maintaining MafA expression. These results indicate that chemerin regulates β-cell function and plays an important role in glucose homeostasis in a tissue-dependent manner.
Collapse
|
20
|
Omar O, Suska F, Lennerås M, Zoric N, Svensson S, Hall J, Emanuelsson L, Nannmark U, Thomsen P. The influence of bone type on the gene expression in normal bone and at the bone-implant interface: experiments in animal model. Clin Implant Dent Relat Res 2011; 13:146-56. [PMID: 19438950 DOI: 10.1111/j.1708-8208.2009.00195.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies on the biological processes in different bone types and the reaction of different bone types to biomaterials are often hindered because of the difficulties in sampling procedures and lack of sensitive techniques. PURPOSE The purpose was to assess the suitability of quantitative polymerase chain reaction (qPCR) for investigation of the biological differences between cortical and trabecular bone types and their responses to biomaterials. MATERIALS AND METHODS Gene expression of selected markers in rat bone samples from different locations was evaluated. Samples were harvested by trephines from the trabecular femoral epiphysis, cortico-trabecular proximal tibial metaphysic, and the cortical distal tibial metaphysis. Gene expression was also evaluated at the surfaces of anodically oxidized implants retrieved from cortical and trabecular sites after 3 days of implantation. mRNA in the bone samples and in the tissue associated with the implant surfaces was extracted and quantified using qPCR. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), alkaline phosphatase (ALP), osteocalcin (OC), tartrate-resistant acid phosphatase (TRAP), cathepsin K (CATK), and 18S ribosomal subunits (18S) were analyzed. RESULTS In the bone samples, higher expression of ALP, OC, TRAP, and CATK was found in femoral epiphysis compared to proximal or distal tibial metaphysis, indicating a higher turnover in the trabecular bone. On the other hand, TNF-α and IL-1β showed higher expression in both tibia sites compared with the femur site, which suggests higher inflammatory potential in the cortical bone. In response to the oxidized implants trabecular bone expressed a higher level of IL-1β, whereas the implants in cortical bone were associated with higher expression of ALP and OC. CONCLUSION There are biological differences between cortical and trabecular bone types, both in the normal steady-state condition and in response to biomaterials. Such differences can be characterized and discriminated quantitatively using a sensitive technique such as qPCR.
Collapse
Affiliation(s)
- Omar Omar
- Department of Biomaterials, Sahlgrenska Academy at University of Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stempel J, Fritsch H, Pfaller K, Blumer MJF. Development of articular cartilage and the metaphyseal growth plate: the localization of TRAP cells, VEGF, and endostatin. J Anat 2011; 218:608-18. [PMID: 21457260 DOI: 10.1111/j.1469-7580.2011.01377.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
During long bone development the original cartilaginous model in mammals is replaced by bone, but at the long bone endings the avascular articular cartilage remains. Before the articular cartilage attains structural maturity it undergoes reorganization, and molecules such as vascular endothelial growth factor (VEGF) and endostatin could be involved in this process. VEGF attracts blood vessels, whereas endostatin blocks their formation. The present study therefore focused on the spatio-temporal localization of these two molecules during the development of the articular cartilage. Furthermore, we investigated the distribution of the chondro/osteoclasts at the chondro-osseous junction of the articular cartilage with the subchondral bone. Mice served as our animal model, and we examined several postnatal stages of the femur starting with week (W) 4. Our results indicated that during the formation of the articular cartilage, VEGF and endostatin had an overlapping localization. The former molecule was, however, down-regulated, whereas the latter was uniformly intensely localized until W12. At the chondro-osseous junction, the number of tartrate-resistant acid phosphatase (TRAP)-positive chondro/osteoclasts declined with increasing age. Until W3 the articular cartilage was not well organized but at W8 it appeared structurally mature. At that time only a few TRAP cells were present, indicative of a low resorptive activity at the chondro-osseous junction. Subsequently, we examined the metaphyseal growth plate that is closed when skeletal maturity is attained. Within its hypertrophic zone, localization of endostatin and VEGF was observed until W6 and W8, respectively. At the chondro-osseous junction of the growth plate, chondro/osteoclasts remained numerous until W12 to allow for its complete resorption. According to former findings, VEGF is critical for a normal skeleton development, whereas endostatin has almost no effect on this process. In conclusion, our findings suggest that both VEGF and endostatin play a role in the structural reorganization of the articular cartilage and endostatin may be involved in the maintenance of its avascularity. In the growth plate, however, endostatin does not appear to counteract VEGF, allowing vascular invasion of hypertrophic cartilage and bone growth.
Collapse
Affiliation(s)
- Judith Stempel
- Division of Clinical and Functional Anatomy, Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
22
|
David E, Guihard P, Brounais B, Riet A, Charrier C, Battaglia S, Gouin F, Ponsolle S, Bot RL, Richards CD, Heymann D, Rédini F, Blanchard F. Direct anti-cancer effect of oncostatin M on chondrosarcoma. Int J Cancer 2011; 128:1822-35. [PMID: 21344373 DOI: 10.1002/ijc.25776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/22/2010] [Indexed: 12/24/2022]
Abstract
The cytokine Oncostatin M (OSM) is cytostatic, pro-apoptotic and induces differentiation of osteosarcoma cells into osteocytes, suggesting new adjuvant treatment for these bone-forming sarcomas. However, OSM systemic over-expression could lead to adverse side effects such as generalized inflammation, neoangiogenesis and osteolysis. We determine here the effect of OSM on chondrosarcoma, another primary bone sarcoma characterized by the production of cartilage matrix and altered bone remodelling. Chondrosarcomas are resistant to conventional chemotherapy and radiotherapy, and wide surgical excision remains the only available treatment. We found that OSM blocked the cell cycle in four of five chondrosarcoma cell lines, independently of p53 and presumably through the JAK3/STAT1 pathway. In two tested cell lines, OSM induced a hypertrophic chondrocyte differentiation, with an induced Cbfa1/SOX9 ratio and induced Coll10, matrix metalloproteinase 13 (MMP13) and RANKL expression. Adenoviral gene transfer of OSM (AdOSM) in the Swarm rat chondrosarcoma (SRC) model indicated that local intra-tumoral OSM over-expression reduces chondrosarcoma development not only with reduced tumor proliferation and enhanced apoptosis but also with enhanced RANKL expression, osteoclast formation and reduced bone volumes. Flu-like symptoms were induced by the AdOSM, but there was no effect on tumor angiogenesis. Therefore, OSM could be considered as a new adjuvant anti-cancer agent for chondrosarcomas. A local application of this cytokine is presumably needed to overcome the poor vascularization of these tumors and to limit the deleterious effect on other tissues. Its side effect on bone remodeling could be managed with anti-resorption agents, thus offering potential new lines of therapeutic interventions.
Collapse
|
23
|
Karimian E, Chagin AS, Sävendahl L. Genetic regulation of the growth plate. Front Endocrinol (Lausanne) 2011; 2:113. [PMID: 22654844 PMCID: PMC3356134 DOI: 10.3389/fendo.2011.00113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/20/2011] [Indexed: 12/12/2022] Open
Abstract
The epiphyseal growth plate consists of a layer of cartilage present only during the growth period and vanishes soon after puberty in long bones. It is divided to three well-defined zones, from epiphyses; resting, proliferative, and hypertrophic zones. Chondrocyte proliferation and differentiation and subsequent bone formation in this cartilage are controlled by various endocrine, autocrine, and paracrine factors which finally results into elimination of the cartilaginous tissue and promotion of the epiphyseal fusion. As chondrocytes differentiate from round, quiescent, and single structure to flatten and proliferative and then large and terminally differentiated, they experience changes in their gene expression pattern which allow them to transform from cartilaginous tissue to bone. This review summarizes the literature in this area and shortly describes different factors that affect growth plate cartilage both at the local and systemic levels. This may eventually help us to develop new treatment strategies of different growth disorders.
Collapse
Affiliation(s)
- Elham Karimian
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska InstitutetStockholm, Sweden
- *Correspondence: Elham Karimian, Pediatric Endocrinology Unit Q2:08, Karolinska University Hospital, 171 76 Stockholm, Sweden. e-mail:
| | - Andrei S. Chagin
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska InstitutetStockholm, Sweden
| | - Lars Sävendahl
- Pediatric Endocrinology Unit, Department of Women’s and Children’s Health, Karolinska InstitutetStockholm, Sweden
| |
Collapse
|
24
|
Shyng YC, Chi CY, Devlin H, Sloan P. Healing of tooth extraction sockets in the streptozotocin diabetic rat model: Induction of cartilage by BMP-6. Growth Factors 2010; 28:447-51. [PMID: 20969540 DOI: 10.3109/08977194.2010.527966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cartilage does not form in the tooth extraction socket of the normal rat. The aim of the study was to determine if adding BMP-6 to the extraction socket would cause chondrogenic differentiation in the diabetic rat. A group of 8-week-old rats were injected intraperitoneally with a diabetogenic agent, streptozotocin, and a control group received citrate buffer only. Three weeks later, the maxillary molar teeth were extracted and either BMP-6 or saline applied to the extraction sockets. Rats from each group were killed on days 3, 5, 7, and 9 after tooth extraction. In the diabetic rats treated with BMP-6, there was a cellular subperiosteal reaction at day 3 in the extra-alveolar tissues, which by day 7 had formed a large mass of cartilage. Cartilage was induced in the subperiosteal region of the socket extra-alveolar bone following the application of BMP-6 in the diabetic rat.
Collapse
Affiliation(s)
- Y C Shyng
- Department of Medical Research and Animal Study, Kaohsiung Military General Hospital, Kaohsiung, Taiwan 823, Republic of China
| | | | | | | |
Collapse
|
25
|
Abstract
Osteoclasts are highly specialized cells capable of degrading mineralized tissue and form at different regions of bone to meet different physiological needs, such as mobilization of calcium, modeling of bone structure, and remodeling of bone matrix. Osteoclast production is elevated in a number of pathological conditions, many of which lead to loss of bone mass. Whether normal or pathological, osteoclastogenesis strictly depends upon support from accessory cells which supply cytokines required for osteoclast differentiation. Only one of these cytokines, receptor activator of NFkappaB ligand (RANKL), is absolutely essential for osteoclast formation throughout life and is thus expressed by all cell types that support osteoclast differentiation. The central role of RANKL in bone resorption is highlighted by the fact that it is the basis for a new therapy to inhibit bone loss. This review will discuss mechanisms that control RANKL gene expression in different osteoclast-support cells and how the study of such mechanisms may lead to a better understanding of the cellular interactions that drive normal and pathological bone resorption.
Collapse
Affiliation(s)
- Charles A O'Brien
- Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA.
| |
Collapse
|
26
|
Watanabe Y, Namba A, Aida Y, Honda K, Tanaka H, Suzuki N, Matsumura H, Maeno M. IL-1beta suppresses the formation of osteoclasts by increasing OPG production via an autocrine mechanism involving celecoxib-related prostaglandins in chondrocytes. Mediators Inflamm 2010; 2009:308596. [PMID: 20204061 PMCID: PMC2829618 DOI: 10.1155/2009/308596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/28/2009] [Accepted: 12/01/2009] [Indexed: 11/18/2022] Open
Abstract
Elevated interleukin (IL)-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1beta stimulated the expression of prostaglandin (PG) receptor EP4 via increased PGE(2) production. However, the effect of IL-1beta on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1beta and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) in human chondrocytes, and the indirect effect of IL-1beta on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1beta; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1beta. Conditioned medium from IL-1beta-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1beta suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan
| | - Aki Namba
- Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan
| | - Yukiko Aida
- Department of Fixed Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Kazuhiro Honda
- Nihon University Graduate School of Dentistry, Tokyo 101-8310, Japan
| | - Hideki Tanaka
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Hideo Matsumura
- Department of Fixed Prosthodontics, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
- Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| |
Collapse
|
27
|
Ota N, Takaishi H, Kosaki N, Takito J, Yoda M, Tohmonda T, Kimura T, Okada Y, Yasuda H, Kawaguchi H, Matsumoto M, Chiba K, Ikegami H, Toyama Y. Accelerated cartilage resorption by chondroclasts during bone fracture healing in osteoprotegerin-deficient mice. Endocrinology 2009; 150:4823-34. [PMID: 19819969 DOI: 10.1210/en.2009-0452] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), a decoy receptor of RANKL, maintain bone mass by regulating the differentiation of osteoclasts, which are bone-resorbing cells. Endochondral bone ossification and bone fracture healing involve cartilage resorption, a less well-understood process that is needed for replacement of cartilage by bone. Here we describe the role of OPG produced by chondrocytes in chondroclastogenesis. Fracture healing in OPG(-/-) mice showed faster union of the fractured bone, faster resorption of the cartilaginous callus, and an increased number of chondroclasts at the chondroosseous junctions compared with that in wild-type littermates. When a cultured pellet of OPG(-/-) chondrocytes was transplanted beneath the kidney capsule, the pellet recruited many chondroclasts. The pellet showed the ability to induce tartrate-resistant acid phosphatase-positive multinucleated cells from RAW 264.7 cells in vitro. Finally, OPG(-/-) chondrocytes (but not wild-type chondrocytes) cultured with spleen cells induced many tartrate-resistant acid phosphatase-positive multinucleated cells. The expression of RANKL and OPG in chondrocytes was regulated by several osteotropic factors including 1,25-dihydroxyvitamin D(3), PTHrP, IL-1alpha, and TNF-alpha. Thus, local OPG produced by chondrocytes probably controls cartilage resorption as a negative regulator for chondrocyte-dependent chondroclastogenesis.
Collapse
Affiliation(s)
- Norikazu Ota
- Department of Orthopaedic Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Krawczak DA, Westendorf JJ, Carlson CS, Lewis JL. Influence of bone morphogenetic protein-2 on the extracellular matrix, material properties, and gene expression of long-term articular chondrocyte cultures: loss of chondrocyte stability. Tissue Eng Part A 2009; 15:1247-55. [PMID: 18950256 DOI: 10.1089/ten.tea.2008.0249] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine the effects of bone morphogenetic protein-2 (BMP-2) on articular chondrocyte tissues grown as monolayers in vitro for up to 8 weeks. Articular chondrocytes were isolated from New Zealand White rabbits and plated in monolayer cultures. The cultures were supplemented with 100 ng/mL of BMP-2 for up to 8 weeks and the extracellular matrix (ECM) composition, material properties, and messenger RNA (mRNA) expression were analyzed. mRNA expression of cartilage-specific genes, type II collagen, and aggrecan showed that BMP-2 enhanced chondrocyte stability for up to 3 weeks. After 3 weeks in culture, there was substantially more type I collagen expression and more osteopontin and runt-related transcription factor 2 expression in 5- and 8-week cultures treated with BMP-2 than in controls. Additionally, matrix metalloproteinase-13 and ADAMTS-5 (A disintegrin-like and metalloproteinase with thrombospondin 5) were upregulated in 5- and 8-week cultures treated with BMP-2, coinciding with a loss of ECM density, collagen, and proteoglycan. Eight-week tissue stimulated with BMP-2 was more fragile and tore more easily when removed from the culture dish as compared to controls, suggesting temporal limitations to the effectiveness of BMP-2 in monolayer systems and perhaps other models to enhance the generation of a cartilage-like tissue for tissue engineering purposes.
Collapse
Affiliation(s)
- David A Krawczak
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
29
|
Abstract
As the cellular component of articular cartilage, chondrocytes are responsible for maintaining in a low-turnover state the unique composition and organization of the matrix that was determined during embryonic and postnatal development. In joint diseases, cartilage homeostasis is disrupted by mechanisms that are driven by combinations of biological mediators that vary according to the disease process, including contributions from other joint tissues. In osteoarthritis (OA), biomechanical stimuli predominate with up-regulation of both catabolic and anabolic cytokines and recapitulation of developmental phenotypes, whereas in rheumatoid arthritis (RA), inflammation and catabolism drive cartilage loss. In vitro studies in chondrocytes have elucidated signaling pathways and transcription factors that orchestrate specific functions that promote cartilage damage in both OA and RA. Thus, understanding how the adult articular chondrocyte functions within its unique environment will aid in the development of rational strategies to protect cartilage from damage resulting from joint disease. This review will cover current knowledge about the specific cellular and biochemical mechanisms that regulate cartilage homeostasis and pathology.
Collapse
Affiliation(s)
- Mary B Goldring
- Research Division, Hospital for Special Surgery, Affiliated with Weill College of Medicine of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
30
|
Kitazawa R, Mori K, Yamaguchi A, Kondo T, Kitazawa S. Modulation of mouse RANKL gene expression by Runx2 and vitamin D3. J Cell Biochem 2008; 105:1289-97. [DOI: 10.1002/jcb.21929] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Cheng SL, Shao JS, Cai J, Sierra OL, Towler DA. Msx2 exerts bone anabolism via canonical Wnt signaling. J Biol Chem 2008; 283:20505-22. [PMID: 18487199 DOI: 10.1074/jbc.m800851200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Msx2 is a homeodomain transcription factor first identified in craniofacial bone and human femoral osteoblasts. We hypothesized that Msx2 might activate skeletal Wnt signaling. Therefore, we analyzed the effects of CMV-Msx2 transgene (Msx2Tg) expression on skeletal physiology and composition. Skeletal Msx2 expression was increased 2-3-fold by Msx2Tg, with expanded protein accumulation in marrow, secondary ossification centers, and periosteum. Microcomputed tomography established increased bone volume in Msx2Tg mice, with increased numbers of plate-like trabeculae. Histomorphometry revealed increased bone formation in Msx2Tg mice versus non-Tg siblings, arising from increased osteoblast numbers. While decreasing adipogenesis, Msx2Tg increased osteogenic differentiation via mechanisms inhibited by Dkk1, an antagonist of Wnt receptors LRP5 and LRP6. Bone from Msx2Tg mice elaborated higher levels of Wnt7 canonical agonists, with diminished Dkk1, changes that augment canonical signaling. Analysis of non-Tg and Msx2Tg siblings possessing the TOPGAL reporter confirmed this; Msx2Tg up-regulated skeletal beta-galactosidase expression (p </= 0.01), along with Wnt7a and Wnt7b, and reduced circulating Dkk1. To better understand molecular mechanisms, we studied C3H10T1/2 osteoprogenitor cells. As in bone, Msx2 increased Wnt7 genes and down-regulated Dkk1, while inducing the osteoblast gene alkaline phosphatase. Msx2-directed RNA interference increased Dkk1 expression and promoter activity, while reducing Wnt7a, Wnt7b, and alkaline phosphatase. Moreover, Msx2 inhibited Dkk1 promoter activity and reduced RNA polymerase association with Dkk1 chromatin. RNA interference-mediated knockdown of Wnt7a, Wnt7b, and LRP6 significantly reduced Msx2-induced alkaline phosphatase. Msx2 exerts bone anabolism in part by reducing Dkk1 expression and enhancing Wnt signaling, thus promoting osteogenic differentiation of skeletal progenitors.
Collapse
Affiliation(s)
- Su-Li Cheng
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
32
|
Marino R, Hegde A, Barnes KM, Schrier L, Emons JA, Nilsson O, Baron J. Catch-up growth after hypothyroidism is caused by delayed growth plate senescence. Endocrinology 2008; 149:1820-8. [PMID: 18174286 PMCID: PMC2276705 DOI: 10.1210/en.2007-0993] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Catch-up growth is defined as a linear growth rate greater than expected for age after a period of growth inhibition. We hypothesized that catch-up growth occurs because growth-inhibiting conditions conserve the limited proliferative capacity of growth plate chondrocytes, thus slowing the normal process of growth plate senescence. When the growth-inhibiting condition resolves, the growth plates are less senescent and therefore grow more rapidly than normal for age. To test this hypothesis, we administered propylthiouracil to newborn rats for 8 wk to induce hypothyroidism and then stopped the propylthiouracil to allow catch-up growth. In untreated controls, the growth plates underwent progressive, senescent changes in multiple functional and structural characteristics. We also identified genes that showed large changes in mRNA expression in growth plate and used these changes as molecular markers of senescence. In treated animals, after stopping propylthiouracil, these functional, structural, and molecular senescent changes were delayed, compared with controls. This delayed senescence included a delayed decline in longitudinal growth rate, resulting in catch-up growth. The findings demonstrate that growth inhibition due to hypothyroidism slows the developmental program of growth plate senescence, including the normal decline in the rate of longitudinal bone growth, thus accounting for catch-up growth.
Collapse
Affiliation(s)
- Rose Marino
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, MD 20892-1103, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
UNLABELLED Chondrocytes express RANKL, but their role in osteoclastogenesis is not clear. We report that hypertrophic chondrocytes induce osteoclast formation through RANKL production stimulated by BMP2 and Runx2/Smad1 and thus they may regulate resorption of calcified matrix by osteoclasts at growth plates. INTRODUCTION Bone morphogenetic protein (BMP) signaling and Runx2 regulate chondrogenesis during bone development and fracture repair and RANKL expression by osteoblast/stromal cells. Chondrocytes express RANKL, and this expression is stimulated by vitamin D3, but it is not known if chondrocytes directly support osteoclast formation or if BMPs or Runx2 is involved in this potential regulation of osteoclastogenesis. MATERIAL AND METHODS The chondrocyte cell line, ATDC5, primary mouse sternal chondrocytes, and chick sternal chondrocytes were used. Cells were treated with BMP2, and expression of RANKL and chondrocyte marker genes was determined by real-time RT-PCR and Western blot. Chondrocytes and spleen-derived osteoclast precursors +/- BMP2 were co-cultured to examine the effect of chondrocyte-produced RANKL on osteoclast formation. A reporter assay was used to determine whether BMP2-induced RANKL production is through transcriptional regulation of the RANKL promoter and whether it is mediated by Runx2. RESULTS BMP2 significantly increased expression of RANKL mRNA and protein in all three types of chondrocytes, particularly by Col X-expressing and upper sternal chondrocytes. Chondrocytes constitutively induced osteoclast formation. This effect was increased significantly by BMP2 and prevented by RANK:Fc. BMP2 significantly increased luciferase activity of the RANKL-luc reporter, and Smad1 increased this effect. Deletion or mutation of Runx2 binding sites within the RANKL promoter or overexpression of a dominant negative Runx2 abolished BMP2- and Smad1-mediated activation of RANKL promoter activity. CONCLUSIONS Hypertrophic chondrocytes may regulate osteoclastogenesis at growth plates to remove calcified matrix through BMP-induced RANKL expression.
Collapse
|
34
|
Takahashi M, Takahashi Y, Takahashi K, Zolotaryov FN, Hong KS, Kitazawa R, Iida K, Okimura Y, Kaji H, Kitazawa S, Kasuga M, Chihara K. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett 2008; 582:573-8. [DOI: 10.1016/j.febslet.2008.01.023] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 01/05/2008] [Accepted: 01/14/2008] [Indexed: 11/28/2022]
|
35
|
Matsui S, Takeuchi H, Tsujimoto Y, Matsushima K. Effects of Smads and BMPs induced by Ga-Al-As laser irradiation on calcification ability of human dental pulp cells. J Oral Sci 2008; 50:75-81. [DOI: 10.2334/josnusd.50.75] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
36
|
Perry MJ, McDougall KE, Hou SC, Tobias JH. Impaired growth plate function in bmp-6 null mice. Bone 2008; 42:216-25. [PMID: 17980691 DOI: 10.1016/j.bone.2007.09.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 08/23/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
Bone morphogenetic protein 6 (BMP-6) is expressed by different skeletal cells including osteoblasts and growth plate chondrocytes, suggesting roles in bone formation and growth regulation. To address these possibilities, we examined whether cancellous and cortical bone parameters, or indices of growth plate function, are altered in bmp-6 null mice as assessed under basal conditions, and following stimulation of bone formation and suppression of growth by estrogen treatment. Ten-week-old female littermate bmp-6 null and wild-type (WT) mice were administered vehicle or E(2) 4, 40, 400 or 4,000 microg/kg/day by daily sc injection for 28 days (6-8 per group). Tibias were removed, and detailed histomorphometric analysis of the proximal metaphysis and growth plates, and tibial diaphysis were performed on longitudinal and transverse sections respectively. Long bone area as measured by DXA was reduced in vehicle-treated bmp-6 null mice compared with WT littermate controls. In addition, vehicle-treated bmp-6 null mice had a reduced cross-sectional area at the tibial mid-diaphysis as assessed by histomorphometry, whereas cancellous bone indices were unaffected. Histomorphometry of the proximal tibial metaphysis demonstrated a defect in bone formation immediately adjacent to the growth plate in bmp-6 null mice compared to WT mice following E(2) treatment. E(2) administration was also associated with a dose-responsive decrease in longitudinal growth rate, and proliferative and hypertrophic zone parameters of the growth plate (p<0.0001). Significantly greater reductions following E(2) treatment were observed in longitudinal growth rate (p<0.01), proliferating and hypertorphic zone widths (p<0.001), and proliferating (p<0.0002) and hypertrophic (p<0.002) cells per column of bmp-6 null mice compared to WT mice. Our observation that long bones are reduced in size compared to wild-type mice primarily through a decrease in cortical cross-sectional area, whilst cancellous bone mass is unaltered, suggests a non-redundant role for BMP-6 in periosteal but not trabecular bone formation. Moreover, growth plate function was reduced in bmp-6 null mice receiving estrogen, leading to an impaired cancellous bone response to estrogen at the highest dose, suggesting that BMP-6 also plays a physiological role in maintaining growth plate function.
Collapse
Affiliation(s)
- Mark J Perry
- Department of Clinical Science North Bristol, Bristol University, Bristol, UK.
| | | | | | | |
Collapse
|
37
|
Vertebral rounding deformity in pediatric spondylolisthesis occurs due to deficient of endochondral ossification of the growth plate: radiological, histological and immunohistochemical analysis of a rat spondylolisthesis model. Spine (Phila Pa 1976) 2007; 32:2839-45. [PMID: 18246006 DOI: 10.1097/brs.0b013e31815b981f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A study using rat spondylolisthesis models. OBJECTIVE To clarify pathomechanism of vertebral rounding deformity in pediatric spondylolisthesis. SUMMARY OF BACKGROUND DATA For high-grade slippage, rounding of sacrum surface associated with L5 spondylolisthesis is reported to be the most responsible risk factor. However, the exact pathomechanism of the rounding deformity is yet to be clarified. METHODS Spondylolisthesis rat model (4-week-old) was used. Radiographs were taken weekly for 5 weeks after the surgery. The lumbar spines were harvested for histology. Hematoxylin and eosin, alcian blue staining, and tartrate-resistant acid phosphatase staining were used. Immunohistochemically, the growth plate cartilage was studied for type II and X collagen. A modified bone histomorphometric analysis was also performed. RESULTS Radiographs showed slippage 1 week after surgery. Rounding deformity was obvious 2 weeks after surgery. The rounding deformity progressed with time. Three weeks after surgery, the specific columns of growth plate were unclear at the anterior corner, which corresponded to the rounding surface observed on radiographs. Instead, a huge mass of cartilage was observed at that site. Tartrate-resistant acid phosphatase-positive cells were observed in the vicinity of the growth plate except in relation with the anterior corner. The growth plate and cartilage mass at the anterior corner stained positive for type II collagen. Chondrocytes in the hypertrophied layer stained positively for type X collagen; however, staining was faint at the anterior corner. The results suggested that the chondrocytes at the anterior did not form, morphologically and functionally, the normal growth plate. From histomorphometrical analysis, the normal posterior growth plate made endochondral bone growth in 510 +/- 20 microm for a week, whereas the anterior corner in 200 +/- 15 microm. CONCLUSION Deficient endochondral ossification of the growth plate in the anterior upper corner of the vertebra could be the pathomechanism of the rounding deformity of the sacrum.
Collapse
|
38
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|
39
|
Neven E, Dauwe S, De Broe ME, D'Haese PC, Persy V. Endochondral bone formation is involved in media calcification in rats and in men. Kidney Int 2007; 72:574-81. [PMID: 17538568 DOI: 10.1038/sj.ki.5002353] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Arterial media calcification is often considered a cell-regulated process resembling intramembranous bone formation, implying a conversion of vascular tissue into a bone-like structure without a cartilage intermediate. In this study, we examined the association of chondrocyte-specific marker expression with media calcification in arterial samples derived from rats with chronic renal failure (CRF) and from human transplant donors. CRF was induced in rats with a diet supplemented with adenine. Vascular calcification was evaluated histomorphometrically on Von Kossa-stained sections and the expression of the chondrocyte markers sox9 and collagen II with the osteogenic marker core-binding factor alpha1 (cbfa1) was determined immunohistochemically. Media calcification was detected in more than half of the rats with CRF. In over half of the rats with severe media calcification, a typical cartilage matrix was found by morphology. All of the animals with severe calcification showed the presence of chondrocyte-like cells expressing the markers sox9, collagen II, and cbfa1. Human aorta specimens showing mild to moderate media calcification also showed sox9, collagen II, and cbfa1 expression. The presence of chondrocytes in association with calcification of the media in aortas of rats with CRF mimics endochondral bone formation. The relevance of this association is further demonstrated by the chondrogenic conversion of medial smooth muscle cells in the human aorta.
Collapse
Affiliation(s)
- E Neven
- Department of Pathophysiology, University of Antwerp, Universiteitsplein 1, 2619 Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
40
|
C-type natriuretic peptide regulates endochondral bone growth through p38 MAP kinase-dependent and -independent pathways. BMC DEVELOPMENTAL BIOLOGY 2007; 7:18. [PMID: 17374144 PMCID: PMC1847438 DOI: 10.1186/1471-213x-7-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 03/20/2007] [Indexed: 11/16/2022]
Abstract
Background C-type natriuretic peptide (CNP) has recently been identified as an important anabolic regulator of endochondral bone growth, but the molecular mechanisms mediating its effects are not completely understood. Results We demonstrate in a tibia organ culture system that pharmacological inhibition of p38 blocks the anabolic effects of CNP. We further show that CNP stimulates endochondral bone growth largely through expansion of the hypertrophic zone of the growth plate, while delaying mineralization. Both effects are reversed by p38 inhibition. We also performed Affymetrix microarray analyses on micro-dissected tibiae to identify CNP target genes. These studies confirmed that hypertrophic chondrocytes are the main targets of CNP signaling in the growth plate, since many more genes were regulated by CNP in this zone than in the others. While CNP receptors are expressed at similar levels in all three zones, cGMP-dependent kinases I and II, important transducers of CNP signaling, are expressed at much higher levels in hypertrophic cells than in other areas of the tibia, providing a potential explanation for the spatial distribution of CNP effects. In addition, our data show that CNP induces the expression of NPR3, a decoy receptor for natriuretic peptides, suggesting the existence of a feedback loop to limit CNP signaling. Finally, detailed analyses of our microarray data showed that CNP regulates numerous genes involved in BMP signaling and cell adhesion. Conclusion Our data identify novel target genes of CNP and demonstrate that the p38 pathway is a novel, essential mediator of CNP effects on endochondral bone growth, with potential implications for understanding and treatment of numerous skeletal diseases.
Collapse
|
41
|
Matsui S, Tsujimoto Y, Matsushima K. Stimulatory Effects of Hydroxyl Radical Generation by Ga-Al-As Laser Irradiation on Mineralization Ability of Human Dental Pulp Cells. Biol Pharm Bull 2007; 30:27-31. [PMID: 17202654 DOI: 10.1248/bpb.30.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was conducted to investigate the effects of Ga-Al-As laser irradiation on the mineralization ability of human dental pulp (HDP) cells. HDP cells in vitro were irradiated once with a Ga-AL-As laser at 0.5 W for 500 s and at 1.0 W for 500 s in order to investigate free radicals as one mechanism for transmission of laser photochemical energy to cells. Production of the hydroxyl radical (*OH) was measured using the ESR spin-trapping method and was found to be increased by laser irradiation. The DMPO-OH was not detected in the presence of dimethyl sulfoxide (DMSO), a *OH scavenger. The formation of calcification nodule was also investigated by von Kossa staining. The number of calcified nodules was increased by 1.0 W-laser irradiation. Alkaline phosphatase (ALP) activity was higher in the 1.0 W-laser irradiation group. Expression of mRNAs for heat shock protein 27, bone morphogenetic proteins (BMPs) and ALP were greater in the 1.0 W-laser irradiation group. Expression of BMPs in the conditioned medium was also higher in the 1.0 W-laser irradiation group. In particular, DMSO decreased the number of calcified nodule produced by 1.0 W-laser irradiation. These results supposed that the mineralization of HDP cells is stimulated by laser irradiation, and that *OH generated by laser irradiation is a trigger for promotion of HDP cell mineralization.
Collapse
Affiliation(s)
- Satoshi Matsui
- Department of Endodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
| | | | | |
Collapse
|
42
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
43
|
Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best Pract Res Clin Rheumatol 2006; 20:1003-25. [PMID: 16980220 DOI: 10.1016/j.berh.2006.06.003] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Osteoarthritis (OA) is a joint disease that involves degeneration of articular cartilage, limited intraarticular inflammation manifested by synovitis and changes in the subchondral bone. The aetiology of OA is largely unknown, but since it may involve multiple factors, including mechanical, biochemical and genetic factors, it has been difficult to identify unique targets for therapy. Chondrocytes, which are the unique cellular component of adult articular cartilage, are capable of responding to structural changes in the surrounding cartilage matrix. Since the initial stages of OA involve increased cell proliferation and synthesis of matrix proteins, proteinases and cytokines in the cartilage, laboratory investigations have focused on the chondrocyte as a target for therapeutic intervention. The capacity of the adult articular chondrocyte to regenerate the normal cartilage matrix architecture is limited, however, and the damage becomes irreversible unless the destructive process is interrupted. Current pharmacological interventions that address chronic pain are insufficient and no proven disease-modifying therapy is available. Identification of methods for early diagnosis is of key importance, since therapeutic interventions aimed at blocking or reversing structural damage will be more effective when there is the possibility of preserving normal homeostasis. At later stages, cartilage tissue engineering with or without gene therapy with anabolic factors will also require therapy to inhibit inflammation and block damage to newly repaired cartilage. This review will focus on experimental approaches currently under study that may lead to elucidation of effective strategies for therapy in OA, with emphasis on mediators that affect the function of chondrocytes and interactions with surrounding tissues.
Collapse
Affiliation(s)
- Mary B Goldring
- Department of Medicine, Division of Rheumatology, Beth Israel Deaconess Medical Center, New England Baptist Bone and Joint Institute and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|