1
|
Fatkhutdinova LM, Gabidinova GF, Daminova AG, Dimiev AM, Khamidullin TL, Valeeva EV, Cokou AEE, Validov SZ, Timerbulatova GA. Mechanisms related to carbon nanotubes genotoxicity in human cell lines of respiratory origin. Toxicol Appl Pharmacol 2024; 482:116784. [PMID: 38070752 DOI: 10.1016/j.taap.2023.116784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.0006-200 μg/ml. Data on the CNT content in the workplace air were used to calculate the lower concentration limit. The genotoxic potential of CNTs was investigated at non-cytotoxic concentrations using a DNA comet assay. We explored reactive oxygen species (ROS) formation, direct genetic material damage, and expression of a profibrotic factor TGFB1 as mechanisms related to genotoxicity upon CNT exposure. An increase in the number of unstable DNA regions was observed at a subtoxic concentration of CNT (20 μg/ml), with no genotoxic effects at concentrations corresponding to industrial exposures being found. While the three test articles of CNTs exhibited comparable genotoxic potential, their mechanisms appeared to differ. MWCNTs were found to penetrate the nucleus of respiratory cells, potentially interacting directly with genetic material, as well as to enhance ROS production and TGFB1 gene expression. For A549 and MRC5-SV40, genotoxicity depended mainly on MWCNT concentration, while for BEAS-2B - on ROS production. Mechanisms of SWCNT genotoxicity were not so obvious. Oxidative stress and increased expression of profibrotic factors could not fully explain DNA damage under SWCNT exposure, and other mechanisms might be involved.
Collapse
Affiliation(s)
| | | | | | - Ayrat M Dimiev
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Timur L Khamidullin
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Elena V Valeeva
- Kazan State Medical University, Kazan 420012, Russian Federation
| | | | | | | |
Collapse
|
2
|
Genovese T, Duranti A, Monaco F, Siracusa R, Fusco R, Impellizzeri D, D’Amico R, Cordaro M, Cuzzocrea S, Di Paola R. Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10125. [PMID: 37373275 PMCID: PMC10298572 DOI: 10.3390/ijms241210125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are hydrolyzed by a membrane protein called fatty acid amide hydrolase (FAAH). Increasing endogenous levels of endocannabinoid by pharmacologically inhibiting FAAH results in numerous analgesic advantages in a variety of experimental models for pre-clinical pain and inflammation. In our study, we mimicked IPF by administering intratracheal bleomycin, and we administered oral URB878 at a dose of 5 mg/kg. The histological changes, cell infiltration, pro-inflammatory cytokine production, inflammation, and nitrosative stress caused by bleomycin were all reduced by URB878. Our data clearly demonstrate for the first time that the inhibition of FAAH activity was able to counteract not only the histological alteration bleomycin-induced but also the cascade of related inflammatory events.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, Italy
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
3
|
Pan L, Cheng Y, Yang W, Wu X, Zhu H, Hu M, Zhang Y, Zhang M. Nintedanib Ameliorates Bleomycin-Induced Pulmonary Fibrosis, Inflammation, Apoptosis, and Oxidative Stress by Modulating PI3K/Akt/mTOR Pathway in Mice. Inflammation 2023:10.1007/s10753-023-01825-2. [PMID: 37160579 PMCID: PMC10359208 DOI: 10.1007/s10753-023-01825-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) seriously threatens human life and health, and no curative therapy is available at present. Nintedanib is the first agent approved by the US Food and Drug Administration (FDA) in order to treat IPF; however, its mechanism of inhibition of IPF is still elusive. According to recent studies, nintedanib is a potent inhibitor. It can antagonize platelet-derived growth factor (PDGF), basic fibroblast growth factor (b-FGF), vascular endothelial growth factor (VEGF), etc., to inhibit pulmonary fibrosis. Whether there are other signaling pathways involved in IPF remains unknown. This study focused on investigating the therapeutic efficacy of nintedanib in bleomycin-mediated pulmonary fibrosis (PF) mice through PI3K/Akt/mTOR pathway. Following the induction of pulmonary fibrosis in C57 mice through bleomycin (BLM) administration, the mice were randomized into five groups: (1) the normal control group, (2) the BLM model control group, (3) the low-dose Nintedanib administration model group, (4) the medium-dose nintedanib administration model group, and (5) the high-dose nintedanib administration model group. For lung tissues, morphological changes were found by HE staining and Masson staining, ELISA method was used to detect inflammatory factors, alkaline water method to estimate collagen content, and western blotting for protein levels. TUNEL staining and immunofluorescence methods were used to analyze the effect of nintedanib on lung tissue and the impacts and underlying mechanisms of bleomycin-induced pulmonary fibrosis. After 28 days, bleomycin-treated mice developed significant pulmonary fibrosis. Relative to bleomycin-treated mice, nintedanib-treated mice had markedly reduced degrees of PF. In addition, nintedanib showed lung-protective effects by up-regulating antioxidant levels, down-regulating inflammatory protein expression, and reducing collagen accumulation. We demonstrated that nintedanib ameliorated bleomycin-induced lung injury by inhibiting the P13K/Akt/mTOR pathway as well as apoptosis. In addition, significant improvement in pulmonary fibrosis was seen after nintedanib (30/60/120 mg/kg body weight/day) treatment through a dose-dependent way. Histopathological results further corroborated the effect of nintedanib treatment on remarkably attenuating bleomycin-mediated mouse lung injury. According to our findings, nintedanib restores the antioxidant system, suppresses pro-inflammatory factors, and inhibits apoptosis. Nintedanib can reduce bleomycin-induced inflammation by downregulating PI3K/Akt/mTOR pathway, PF, and oxidative stress (OS).
Collapse
Affiliation(s)
- Lin Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yiju Cheng
- Department of Respiratory and Critical Care Medicine, Guiyang First People's Hospital, Guiyang, 550004, China.
- Guizhou Medical University, Guiyang, 550004, China.
| | - Wenting Yang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Xiao Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Honglan Zhu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Meigui Hu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yuquan Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Menglin Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| |
Collapse
|
4
|
Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, Chen D, Lu A, Ren Y, Li Z. Baicalin alleviates bleomycin‑induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol Med Rep 2020; 21:2321-2334. [PMID: 32323806 PMCID: PMC7185294 DOI: 10.3892/mmr.2020.11046] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
Baicalin is an important flavonoid compound THAT is isolated from the Scutellaria baicalensis Georgi Chinese herb and plays a critical role in anti‑oxidative, anti‑inflammatory, anti‑infection and anti‑tumor functions. Although baicalin can suppress the proliferation of tumor cells, the underlying mechanisms of baicalin in bleomycin (BLM)‑induced pulmonary fibrosis remain to be elucidated. Thus, the aim of the present study was to determine the role of baicalin in pulmonary fibrosis and fibroblast proliferation in rats. Hematoxylin and eosin (H&E) and Masson staining were used to measure the morphology of pulmonary fibrosis, ELIASA kits were used to test the ROS and inflammation, and western blotting and TUNEL were performed to study the apoptosis proteins. In vitro, MTT assay, flow cytometry, western blotting and immunofluorescence were performed to investigate the effects of baicalin on proliferation of fibroblasts. The most significantly fibrotic changes were identified in the lungs of model rats at day 28. Baicalin (50 mg/kg) attenuated the degree of pulmonary fibrosis, and the hydroxyproline content of the lung tissues was decreased in the baicalin group, compared with the BLM group. Further investigation revealed that baicalin significantly increased glutathione peroxidase (GSH‑px), total‑superoxide dismutase (T‑SOD) and glutathione (GSH) levels, whilst decreasing that of serum malondialdehyde (MDA). TUNEL‑positive cells were significantly decreased in rats treated with baicalin group, compared with the model group. Furthermore, it was found that BLM promoted fibroblasts viability in a dose‑dependent manner in vivo, which was restricted following treatment with different concentrations of baicalin. Moreover, BLM promoted the expression levels of cyclin A, D and E, proliferating cell nuclear antigen, phosphorylated (p)‑AKT and p‑calcium/calmodulin‑dependent protein kinase type. BLM also promoted the transition of cells from the G0/G1 phase to the G2/M and S phases, and increased the intracellular Ca2+ concentration, which was subsequently suppressed by baicalin. Collectively, the results of the present study suggested that baicalin exerted a suppressive effect on BLM‑induced pulmonary fibrosis and fibroblast proliferation.
Collapse
Affiliation(s)
- Hong Zhao
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chundi Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Lina Li
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Junying Liu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yinghui Gao
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Kun Mu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Donghe Chen
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Aiping Lu
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Yuanyuan Ren
- Department of Respiratory Medicine, Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Zhenhua Li
- Department of Respiratory Medicine, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
5
|
Wu F, Tian P, Ma Y, Wang J, Ou H, Zou H. Reactive Oxygen Species Are Necessary for Bleomycin A5-Induced Apoptosis and Extracellular Matrix Elimination of Nasal Polyp-Derived Fibroblasts. Ann Otol Rhinol Laryngol 2018; 128:135-144. [PMID: 30450917 DOI: 10.1177/0003489418812905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND: The pathology of chronic rhinosinusitis with nasal polyp (CRSwNP) is characterized by the infiltration of a large number of fibroblasts, resulting in extracellular matrix (ECM) deposition. Intralesional bleomycin A5 (BLE) injection has proved to be effective and safe, providing a novel treatment for CRSwNP. However, the mechanism is not clearly understood. OBJECTIVES: The aim of this study is to explore the possible mechanism of BLE-induced apoptosis in nasal polyp-derived fibroblasts (NPDFs). MATERIAL AND METHODS: Dichloro-dihydro-fluorescein diacetate probe, cell migration assays, and cell cycle analysis were used to detect the growth characteristics and basal reactive oxygen species (ROS) traits of NPDFs. Annexin V/propidium iodide and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to detect BLE-induced apoptosis. As a control, the antioxidant glutathione (GSH) was used to abrogate ROS induced by BLE. Western blot analysis was used to evaluate the effects of BLE on apoptosis and the ECM proteins of NPDFs. RESULTS: The results showed that NPDFs had more active growth characteristics and higher basal ROS levels than normal nasal mucosa fibroblasts (NMFCs). NPDFs were more sensitive to BLE-induced apoptosis and ROS accumulation. GSH abrogation inhibits BLE-induced ECM degradation and apoptosis in NPDFs through a mitochondrial-mediated pathway. CONCLUSIONS: BLE induced NPDF apoptosis and ECM degradation through a mitochondrial-mediated pathway and in a ROS-dependent manner.
Collapse
Affiliation(s)
- Fan Wu
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, China
| | - Peng Tian
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, China
| | - Yun Ma
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Wang
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, China
| | - Huashuang Ou
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, China
| | - Hua Zou
- 1 Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Thuan DTB, Zayed H, Eid AH, Abou-Saleh H, Nasrallah GK, Mangoni AA, Pintus G. A Potential Link Between Oxidative Stress and Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Front Immunol 2018; 9:1985. [PMID: 30283435 PMCID: PMC6156139 DOI: 10.3389/fimmu.2018.01985] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Systemic sclerosis (SSc), an autoimmune disease that is associated with a number of genetic and environmental risk factors, is characterized by progressive fibrosis and microvasculature damage in the skin, lungs, heart, digestive system, kidneys, muscles, joints, and nervous system. These abnormalities are associated with altered secretion of growth factor and profibrotic cytokines, such as transforming growth factor-beta (TGF-β), interleukin-4 (IL-4), platelet-derived growth factor (PDGF), and connective-tissue growth factor (CTGF). Among the cellular responses to this proinflammatory environment, the endothelial cells phenotypic conversion into activated myofibroblasts, a process known as endothelial to mesenchymal transition (EndMT), has been postulated. Reactive oxygen species (ROS) might play a key role in SSs-associated fibrosis and vascular damage by mediating and/or activating TGF-β-induced EndMT, a phenomenon that has been observed in other disease models. In this review, we identified and critically appraised published studies investigating associations ROS and EndMT and the presence of EndMT in SSc, highlighting a potential link between oxidative stress and EndMT in this condition.
Collapse
Affiliation(s)
- Duong Thi Bich Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, University of Hue, Hue, Vietnam
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Haissam Abou-Saleh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders Medical Centre, Flinders University, Adelaide, SA, Australia
| | - Gianfranco Pintus
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Yoshizaki A. Pathogenic roles of B lymphocytes in systemic sclerosis. Immunol Lett 2018; 195:76-82. [PMID: 29307688 DOI: 10.1016/j.imlet.2018.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
Systemic sclerosis (SSc) is a collagen disease characterized by autoimmunity and excessive extracellular matrix deposition in the skin and visceral organs. Although the pathogenic relationship between systemic autoimmunity and the clinical manifestations of SSc remains unknown, SSc patients show a variety of abnormal immune activation including the production of disease-specific autoantibodies and cytokine production. Many recent studies have demonstrated that immune cells, including T cells, B cells, and macrophages, have a variety of immunological abnormalities in SSc. So far, several groups and our group reported that B cells play a critical role in systemic autoimmunity and disease expression through various functions, such as cytokine production, lymphoid organogenesis, and induction of other immune cell activation in addition to autoantibody production. Recent studies show that B cells from SSc patients demonstrate an up-regulated CD19 expression, a crucial regulator of B cell activation, which induces chronic hyper-reactivity of memory B cells and SSc-specific autoantibody production and also causes fibrosis of several organs. Furthermore, in SSc-model mice, such as tight-skin mice, bleomycin-induced SSc model mice, and DNA topoisomerase I and complete Freund's adjuvant-induced SSc model mice, have abnormal B cell activation which associates with skin and lung fibrosis. Indeed, B cell depletion therapy using anti-CD20 Ab, Rituximab, is considered to one potential beneficial treatment for patients with SSc. However, there is no direct evidence which can explain how B cells, especially autoantigen-reactive B cells, progress or regulate disease manifestations of SSc. Collectively, B cell abnormalities in SSc is most likely participating in fibrosis and tissue damage of SSc. If the relationship between SSc-specific tissue damage and B cell abnormalities is revealed, these findings lead to novel effective therapy for SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, 113-8655, Japan.
| |
Collapse
|
8
|
Yoshizaki A. B lymphocytes in systemic sclerosis: Abnormalities and therapeutic targets. J Dermatol 2017; 43:39-45. [PMID: 26782005 DOI: 10.1111/1346-8138.13184] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/30/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by excessive extracellular matrix deposition in the skin and visceral organs with an autoimmune background. Although the pathogenic relationship between systemic autoimmunity and the clinical manifestations remains unknown, SSc patients have immunological abnormalities including the production of disease-specific autoantibodies. Recent studies have demonstrated that B cells play a crucial role in systemic autoimmunity and disease expression via various functions in addition to autoantibody production. Recent studies show that B cells from SSc patients demonstrate an upregulated CD19 signaling pathway, which is a crucial regulator of B-cell activation, that induces SSc-specific autoantibody production in SSc. In addition, B cells from SSc patients exhibit an overexpression of CD19. Consistently, in CD19 transgenic mice, CD19 overexpression induces SSc-specific autoantibody production. SSc patients have also intrinsic B-cell abnormalities characterized by chronic hyperreactivity of memory B cells, possibly due to CD19 overexpression. Similarly, B cells from a tight-skin mouse, a genetic model of SSc, show augmented CD19 signaling and chronic hyperreactivity. Furthermore, in bleomycin-induced SSc model mice, endogenous ligands for Toll-like receptors, induced by bleomycin treatment, stimulate B cells to produce various fibrogenic cytokines and autoantibodies. Remarkably, CD19 loss results in inhibition of B-cell hyperreactivity and elimination of autoantibody production, which is associated with improvement of fibrosis. Taken together, altered B-cell function may result in tissue fibrosis, as well as autoimmunity, in SSc. Although further studies and greater understanding are needed, B cells are potential therapeutic target in SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Kim SJ, Cheresh P, Jablonski RP, Morales-Nebreda L, Cheng Y, Hogan E, Yeldandi A, Chi M, Piseaux R, Ridge K, Michael Hart C, Chandel N, Scott Budinger GR, Kamp DW. Mitochondrial catalase overexpressed transgenic mice are protected against lung fibrosis in part via preventing alveolar epithelial cell mitochondrial DNA damage. Free Radic Biol Med 2016; 101:482-490. [PMID: 27840320 PMCID: PMC5928521 DOI: 10.1016/j.freeradbiomed.2016.11.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Alveolar epithelial cell (AEC) injury and mitochondrial dysfunction are important in the development of lung fibrosis. Our group has shown that in the asbestos exposed lung, the generation of mitochondrial reactive oxygen species (ROS) in AEC mediate mitochondrial DNA (mtDNA) damage and apoptosis which are necessary for lung fibrosis. These data suggest that mitochondrial-targeted antioxidants should ameliorate asbestos-induced lung. OBJECTIVE To determine whether transgenic mice that express mitochondrial-targeted catalase (MCAT) have reduced lung fibrosis following exposure to asbestos or bleomycin and, if so, whether this occurs in association with reduced AEC mtDNA damage and apoptosis. METHODS Crocidolite asbestos (100µg/50µL), TiO2 (negative control), bleomycin (0.025 units/50µL), or PBS was instilled intratracheally in 8-10 week-old wild-type (WT - C57Bl/6J) or MCAT mice. The lungs were harvested at 21d. Lung fibrosis was quantified by collagen levels (Sircol) and lung fibrosis scores. AEC apoptosis was assessed by cleaved caspase-3 (CC-3)/Surfactant protein C (SFTPC) immunohistochemistry (IHC) and semi-quantitative analysis. AEC (primary AT2 cells from WT and MCAT mice and MLE-12 cells) mtDNA damage was assessed by a quantitative PCR-based assay, apoptosis was assessed by DNA fragmentation, and ROS production was assessed by a Mito-Sox assay. RESULTS Compared to WT, crocidolite-exposed MCAT mice exhibit reduced pulmonary fibrosis as measured by lung collagen levels and lung fibrosis score. The protective effects in MCAT mice were accompanied by reduced AEC mtDNA damage and apoptosis. Similar findings were noted following bleomycin exposure. Euk-134, a mitochondrial SOD/catalase mimetic, attenuated MLE-12 cell DNA damage and apoptosis. Finally, compared to WT, asbestos-induced MCAT AT2 cell ROS production was reduced. CONCLUSIONS Our finding that MCAT mice have reduced pulmonary fibrosis, AEC mtDNA damage and apoptosis following exposure to asbestos or bleomycin suggests an important role for AEC mitochondrial H2O2-induced mtDNA damage in promoting lung fibrosis. We reason that strategies aimed at limiting AEC mtDNA damage arising from excess mitochondrial H2O2 production may be a novel therapeutic target for mitigating pulmonary fibrosis.
Collapse
Affiliation(s)
- Seok-Jo Kim
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Paul Cheresh
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Renea P Jablonski
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Luisa Morales-Nebreda
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Yuan Cheng
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Erin Hogan
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Monica Chi
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Raul Piseaux
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Karen Ridge
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - C Michael Hart
- Atlanta VA Medical Center, Decatur, GA, United States; Department of Medicine, Emory University, Atlanta, GA, United States
| | - Navdeep Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - G R Scott Budinger
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - David W Kamp
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center, Chicago, IL, United States; Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
10
|
Flodby P, Liebler JM, Sunohara M, Castillo DR, McConnell AM, Krishnaveni MS, Banfalvi A, Li M, Stripp B, Zhou B, Crandall ED, Minoo P, Borok Z. Region-specific role for Pten in maintenance of epithelial phenotype and integrity. Am J Physiol Lung Cell Mol Physiol 2016; 312:L131-L142. [PMID: 27864284 PMCID: PMC5283927 DOI: 10.1152/ajplung.00005.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/12/2023] Open
Abstract
Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific.
Collapse
Affiliation(s)
- Per Flodby
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Janice M Liebler
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mitsuhiro Sunohara
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Dan R Castillo
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Alicia M McConnell
- Departments of Medicine and Biomedical Sciences, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, California
| | - Manda S Krishnaveni
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Agnes Banfalvi
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Min Li
- Division of Neonatalogy, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barry Stripp
- Departments of Medicine and Biomedical Sciences, Lung and Regenerative Medicine Institutes, Cedars-Sinai Medical Center, Los Angeles, California
| | - Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California.,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California; and
| | - Parviz Minoo
- Division of Neonatalogy, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California; .,Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California.,Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
11
|
Chen Z, Wang D, Gu C, Liu X, Pei W, Li J, Cao Y, Jiao Y, Tong J, Nie J. Down-regulation of let-7 microRNA increased K-ras expression in lung damage induced by radon. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:541-548. [PMID: 26318567 DOI: 10.1016/j.etap.2015.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/06/2015] [Accepted: 08/08/2015] [Indexed: 06/04/2023]
Abstract
Radon has long been recognized as a human carcinogen leading to lung cancer, but the underlying mechanisms remain obscure. Recent studies have shown that the let-7 microRNA and K-ras play an important role in the development of various cancers. However, the exact role between let-7 and K-ras in radon induced lung damage has not been explored so far. In the present study, wistar rats and human bronchial epithelial (HBE) cells were long-term exposed to radon, and then alterations in histological pathology of rat lung tissue, ROS, antioxidant enzymes activities and clonogenic formation in HBE cells, as well as changes in let-7 and K-ras expression were determined to observe the adverse effects induced by radon. The results showed that long-term exposure to radon produced severe lung damage in rats, significantly increased ROS production and clonogenic formation ratios and decreased SOD activities in HBE cells. In addition, an obvious down-regulation of let-7 and up-regulation of K-ras were also revealed both in mRNA and in protein level in lung tissue of rats and HBE cells exposed to radon. Furthermore, a significant down-regulation of K-ras was then confirmed in both let-7b-3p and let-7a-2-3p transfected HBE cells. Taken together, the present results propose an involvement of let-7 microRNA and K-ras in radon induced lung damage both in vivo and in vitro, which may thus be of potential value in early diagnosis and therapy of radon-induced lung tumorgenesis.
Collapse
Affiliation(s)
- Zhihai Chen
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Dapeng Wang
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Chao Gu
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Xing Liu
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Weiwei Pei
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Jianxiang Li
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yi Cao
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yang Jiao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China
| | - Jian Tong
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| | - Jihua Nie
- Department of Toxicology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Böhm M, Stegemann A. Bleomycin-induced fibrosis in MC1 signalling-deficient C57BL/6J-Mc1r(e/e) mice further supports a modulating role for melanocortins in collagen synthesis of the skin. Exp Dermatol 2015; 23:431-3. [PMID: 24698097 DOI: 10.1111/exd.12409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2014] [Indexed: 12/25/2022]
Abstract
The melanocortin-1 receptor (MC1 ) binds α-melanocyte-stimulating hormone (α-MSH) with high affinity and has a physiological role in cutaneous melanin pigmentation. Previously, we reported that human dermal fibroblasts also express functional MC1 . α-MSH suppressed transforming growth factor-β1 - and bleomycin (BLM)-induced collagen synthesis in vitro and in vivo. Using MC1 signalling-deficient C57BL/6J-Mc1r(e/e) mice, we tested as to whether MC1 has a regulatory role on dermal collagen synthesis in the BLM model of scleroderma. Notably, mice with a C57BL/6J genetic background were previously shown to be BLM-non-susceptible. Interestingly, treatment of C57BL/6J-Mc1r(e/e) but not of C57BL/6J-wild-type mice with BLM increased cutaneous collagen type I content at RNA and protein level along with development of skin fibrosis. Cutaneous levels of connective tissue growth factor and monocyte chemotactic protein-1 were also increased in BLM-treated C57BL/6J-Mc1r(e/e) mice. Primary dermal fibroblasts from C57BL/6J-wt mice further expressed MC1 , suggesting that these cells are directly targeted by melanocortins to affect collagen production of the skin. Our findings support the concept that MC1 has an endogenous regulatory function in collagen synthesis and controls the extent of fibrotic stress responses of the skin.
Collapse
Affiliation(s)
- Markus Böhm
- Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology, Department of Dermatology, University of Münster, Münster, Germany
| | | |
Collapse
|
13
|
Yoshizaki A, Sato S. Abnormal B lymphocyte activation and function in systemic sclerosis. Ann Dermatol 2015; 27:1-9. [PMID: 25673924 PMCID: PMC4323585 DOI: 10.5021/ad.2015.27.1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/12/2014] [Indexed: 11/08/2022] Open
Abstract
Systemic sclerosis (SSc) is characterized by tissue fibrosis and autoimmunity. Although the pathogenic relationship between autoimmunity and clinical manifestations of SSc remains unknown, SSc patients display abnormal immune responses including the production of disease-specific autoantibodies. Previous studies have demonstrated that B cells play a critical role in systemic autoimmunity and disease expression through various functions such as induction of the activation of other immune cells in addition to autoantibody production. CD19 is a crucial regulator of B cell activation. Recent studies demonstrated that B cells from SSc patients showed an up-regulated CD19 signaling pathway that induced SSc-specific autoantibody production in SSc mouse models. CD19 transgenic mice lost tolerance for autoantigen and generated autoantibodies spontaneously. B cells from SSc patients exhibited an overexpression of CD19 that induced SSc-specific autoantibody production in transgenic mice. Moreover, SSc patients displayed intrinsic B cell abnormalities characterized by chronic hyper-reactivity of memory B cells, which was possibly due to CD19 overexpression. Similarly, B cells from a tight-skin mouse, a genetic model of SSc, showed augmented CD19 signaling. In bleomycin-induced SSc mouse models, endogenous ligands for toll-like receptor 4 induced by bleomycin stimulated B cells to produce various fibrogenic cytokines and autoantibodies. Remarkably, the loss of CD19 resulted in the inhibition of B cell hyper-reactivity and autoantibody production, which are associated with improvements in fibrosis and a parallel decrease in fibrogenic cytokine production by B cells. Taken together, the findings suggest that altered B cell function may result in tissue fibrosis as well as autoimmunity in SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Shen Q, Chen B, Xiao Z, Zhao L, Xu X, Wan X, Jin M, Dai J, Dai H. Paracrine factors from mesenchymal stem cells attenuate epithelial injury and lung fibrosis. Mol Med Rep 2014; 11:2831-7. [PMID: 25514921 DOI: 10.3892/mmr.2014.3092] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/26/2014] [Indexed: 12/30/2022] Open
Abstract
Paracrine factors are currently considered to be the major mechanism through which mesenchymal stem cells (MSCs) exert their actions. The aim of this study was to investigate the protective effects of conditioned medium (CM) from bone marrow mesenchymal stem cells (MSC) on bleomycin (BLM)‑induced lung injury and fibrosis, both in vitro and in vivo. A549 human non‑small cell lung cancer epithelial cells were cultured in serum‑free medium, or MSC‑CM, both with or without BLM. The protective effects of MSC‑CM was determined by MTT assay to assess cell viability and Annexin V‑PE to assess apoptosis. Rats were intratracheally injected with MSC‑CM, saline, or conditioned medium from fibroblasts on day 0 and day 3 after intratracheal administration of BLM, and were sacrificed on day 28. Lung injury and fibrosis were assessed by histological assessment, Ashcroft score, and hydroxyproline assay; lung cell apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In comparison to the control group (0.17±0.01), 8 and 16% MSC‑CM had a significant stimulatory effect on A549 cellular proliferation (0.24±0.03 and 0.24±0.04, respectively, P<0.01). A549 cells cultured with MSC‑CM were protected from BLM‑induced apoptosis, 23.43±3.76% vs. 38.06±4.32%; (P<0.05). In the BLM‑challenged rats, MSC‑CM was shown to protect against lung fibrosis in terms of lung inflammation, fibrotic scores, collagen deposition, and cell apoptosis. This data suggests that MSCs are capable of protecting against lung injury and fibrosis both in vitro and in vivo through a paracrine anti‑inflammatory mechanism. MSC‑CM may provide a novel approach for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Qinqin Shen
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Bing Chen
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Lifen Zhao
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuefeng Xu
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xuan Wan
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Mulan Jin
- Department of Pathology Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jianwu Dai
- Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Huaping Dai
- Beijing Key Laboratory of Respiratory and Pulmonary Circulation, Beijing Institute of Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
15
|
Exhaled nitric oxide in interstitial lung diseases. Respir Physiol Neurobiol 2014; 197:46-52. [DOI: 10.1016/j.resp.2014.03.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 11/22/2022]
|
16
|
Zhou CF, Zhou DC, Zhang JX, Wang F, Cha WS, Wu CH, Zhu QX. Bleomycin-induced epithelial-mesenchymal transition in sclerotic skin of mice: possible role of oxidative stress in the pathogenesis. Toxicol Appl Pharmacol 2014; 277:250-8. [PMID: 24726524 DOI: 10.1016/j.taap.2014.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 10/25/2022]
Abstract
Epithelial-mesenchymal transition (EMT) derived myofibroblasts are partly responsible for the increased collagen synthesis and deposition that occur in tissue fibrosis; however EMT occurrence in skin fibrosis and its mechanism remain unknown. The aim of this study was to investigate whether epithelial cells undergo EMT and determine the role of oxidative stress in this process. BALB/c mice were subcutaneously injected with bleomycin (BLM) or phosphate buffer saline (PBS) into the shaved back daily for 2, 3, and 4weeks. Skin collagen deposition was evaluated by histopathology and Western blotting. EMT characteristics in the skin were determined by histopathology and immunofluorescent staining for E-cadherin and vimentin, which were further evaluated by Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR). To investigate the role of oxidative stress in EMT, the antioxidant N-acetylcysteine (NAC) was intraperitoneally (100mg/kg body weight/day) injected daily for 3weeks. The epithelial suprabasal cells were detached from the basement membrane zone (BMZ) in the sclerotic skin treated with BLM. Immunofluorescent staining indicated vimentin-positive epithelial cells frequently occurring in the thickened epidermis of BLM-treated mice. Western blotting and RT-PCR showed that the expression of E-cadherin was significantly decreased but that of vimentin significantly increased in the skin treated with BLM. NAC attenuated BLM induced oxidative damage, changes in E-cadherin and vimentin expressions and collagen deposition in the sclerotic skin of mice. This study provides the first evidence that BLM induces the EMT of the epithelial cells superficial to the basement membrane zone in the skin fibrosis. Oxidative stress may contribute, at least in part, to BLM induced EMT and skin fibrosis in mice.
Collapse
Affiliation(s)
- Cheng-Fan Zhou
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Deng-Chuan Zhou
- Department of Emergency Medicine & Critical Care Medicine, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China
| | - Jia-Xiang Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Feng Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wan-Sheng Cha
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chang-Hao Wu
- Department of Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Qi-Xing Zhu
- Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui 230022, China; Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
17
|
Ermis H, Parlakpinar H, Gulbas G, Vardi N, Polat A, Cetin A, Kilic T, Aytemur ZA. Protective effect of dexpanthenol on bleomycin-induced pulmonary fibrosis in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:1103-10. [PMID: 23995256 DOI: 10.1007/s00210-013-0908-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/01/2013] [Indexed: 01/09/2023]
Abstract
Despite extensive studies, there is no effective treatment currently available other than pirfenidone for idiopathic pulmonary fibrosis. A protective effect of pantothenic acid and its derivatives on cell damage produced by oxygen radicals has been reported, but it has not been tested in bleomycin (BLM)--induced pulmonary fibrosis in rats. Therefore, we aimed to investigate the preventive effect of dexpanthenol (Dxp) on pulmonary fibrosis. Thirty-two rats were assigned to four groups as follows: (1) control group, (2) dexpanthenol (Dxp) group; 500 mg/kg Dxp continued intraperitoneally for 14 days, (3) bleomycin (BLM) group; a single intratracheal injection of BLM (2.5 mg/kg body weight in 0.25-ml phosphate buffered saline), and (4) BLM + Dxp-treated group; 500 mg/kg Dxp was administered 1 h before the intratracheal BLM injection and continued for 14 days i.p. The histopathological grades of lung inflammation and collagen deposition, tissue levels of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and myeloperoxidase (MPO) were measured. BLM provoked inflammation and collagen deposition (p < 0.0001), with a marked increase in myeloperoxidase (MPO) activity resembling increased inflammatory activity (p < 0.0001), which was prevented by Dxp (p < 0.0001, p = 0.02). BLM reduced tissue activities of SOD, GPx, and CAT compared to controls (p = 0.01, 0.03, 0.009). MDA was increased with BLM (p = 0.003). SOD (p = 0.001) and MDA (p = 0.016) levels were improved in group 4. The CAT levels in the BLM + Dxp group were close to those in the control group (p > 0.05). We showed that Dxp significantly prevents BLM-induced lung fibrosis in rats. Further studies are required to evaluate the role of Dxp in the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Hilal Ermis
- Department of Pulmonary Medicine, Inonu University Faculty of Medicine Turgut Ozal Medical Center, Elazig Yolu 15.km, 44280, Malatya, Turkey,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Tanaka KI, Azuma A, Miyazaki Y, Sato K, Mizushima T. Effects of lecithinized superoxide dismutase and/or pirfenidone against bleomycin-induced pulmonary fibrosis. Chest 2013; 142:1011-1019. [PMID: 22459774 DOI: 10.1378/chest.11-2879] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) involves lung injury induced by reactive oxygen species (ROS), such as superoxide anion, and fibrosis. Superoxide dismutase (SOD) catalyses the dismutation of superoxide anion to hydrogen peroxide. We recently reported that inhalation of lecithinized SOD (PC-SOD) ameliorated bleomycin-induced pulmonary fibrosis. We here studied effects of PC-SOD on bleomycin-induced pulmonary fibrosis and lung dysfunction and compared the results to those obtained with pirfenidone, a newly developed drug for IPF. METHODS Lung mechanics (elastance) and respiratory function (FVC) were assessed using a computer-controlled ventilator. Respiratory function was evaluated by monitoring percutaneous arterial oxygen saturation (SpO2). RESULTS Both inhalation of PC-SOD and oral administration of pirfenidone ameliorated bleomycin-induced pulmonary fibrosis and changes in lung mechanics. Administration of bleomycin produced a decrease in both FVC and SpO2. PC-SOD treatment led to significant recovery of both parameters, whereas pirfenidone improved only SpO2. PC-SOD suppressed the bleomycin-induced pulmonary inflammatory response and production of superoxide anions in the lung more effectively than pirfenidone. Furthermore, both PC-SOD and pirfenidone produced a therapeutic effect even when the drug was administered after the development of fibrosis. PC-SOD and pirfenidone also produced a synergistic therapeutic effect. CONCLUSIONS These results suggest that the superior activity of PC-SOD to pirfenidone against bleomycin-induced pulmonary fibrosis and lung dysfunction is due to its unique antioxidant activity. We propose that treatment of IPF with a combination of PC-SOD and pirfenidone could be therapeutically beneficial.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo; Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto
| | - Arata Azuma
- Department of Internal Medicine, Division of Respiratory, Infection, and Oncology, Nippon Medical School, Tokyo, Japan
| | - Yuri Miyazaki
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto
| | - Keizo Sato
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto
| | - Tohru Mizushima
- Department of Analytical Chemistry, Faculty of Pharmacy, Keio University, Tokyo; Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto.
| |
Collapse
|
19
|
Zhou CF, Yu JF, Zhang JX, Jiang T, Xu SH, Yu QY, Zhu QX. N-acetylcysteine attenuates subcutaneous administration of bleomycin-induced skin fibrosis and oxidative stress in a mouse model of scleroderma. Clin Exp Dermatol 2013; 38:403-9. [PMID: 23517443 DOI: 10.1111/ced.12033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Several lines of evidence suggest that the generation of reactive oxygen species (ROS) is of major importance in the pathogenesis of scleroderma, and thus antioxidant therapy may be useful for patients with an impaired oxidative defence mechanism. AIM To examine the effect of N-acetylcysteine (NAC) on skin fibrosis and oxidative stress in a bleomycin (BLM)-induced mouse model of scleroderma. METHODS We used this mouse model to evaluate the effect of NAC on skin fibrosis and oxidative stress. Skin fibrosis was evaluated by histopathological examination and hydroxyproline content. To measure lipid peroxidation, we used a thiobarbituric acid-reactive species, malondialdehyde (MDA). Oxidative protein damage (carbonyl content) and the activities of catalase (CAT) and superoxide dismutase (SOD) were determined to evaluate oxidative stress in the skin tissue. RESULTS Treatment with NAC attenuated the skin fibrosis induced by BLM, significantly reducing the MDA and protein carbonyl content in these mice. SOD activity in BLM-only mice and BLM plus NAC-treated mice was increased compared with control mice. However, there was no significant difference in skin SOD activity of mice treated with both BLM and NAC compared with those treated with BLM only. In addition, CAT activity was not altered in the BLM plus NAC mice. CONCLUSIONS NAC treatment attenuates skin fibrosis in a BLM-induced mouse model of scleroderma, and this is associated with diminished oxidative stress. The results suggest that NAC may be a potential therapeutic agent for patients with scleroderma.
Collapse
Affiliation(s)
- C-F Zhou
- Institute of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Yoshizaki A, Yanaba K, Ogawa A, Iwata Y, Ogawa F, Takenaka M, Shimizu K, Asano Y, Kadono T, Sato S. The specific free radical scavenger edaravone suppresses fibrosis in the bleomycin-induced and tight skin mouse models of systemic sclerosis. ACTA ACUST UNITED AC 2013; 63:3086-97. [PMID: 21618208 DOI: 10.1002/art.30470] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Patients with systemic sclerosis (SSc) exhibit enhanced production of free radicals due to ischemia and reperfusion injury following Raynaud's phenomenon, an initial clinical manifestation. Oxidative stress induces cytokine production, inflammatory cell recruitment, and tissue injury in several inflammatory diseases. The aim of this study was to examine the effect of edaravone, a free radical scavenger, on the development of fibrosis and autoimmunity in two different mouse models of SSc. METHODS The bleomycin-induced SSc model in mice and the tight skin mouse model were used to evaluate the effect of edaravone on fibrosis and immunologic abnormalities. To assess the reaction of fibroblasts to stimulation with free radicals, fibroblasts from these mice were cultured with NONOate, a nitric oxide-releasing agent, and hydrogen peroxide. RESULTS Treatment with edaravone reduced fibrosis in mice with bleomycin-induced SSc and in TSK/+ mice. The production of free radicals was also attenuated by edaravone in both models. In addition, production of fibrogenic cytokines such as interleukin-6 and transforming growth factor β1, production of anti-topoisomerase I antibody, and the degree of hypergammaglobulinemia were reduced by edaravone. Furthermore, bleomycin induced the production of H2O2 and nitric oxide from inflammatory cells, and collagen production was increased in fibroblasts cultured with H2O2 and NONOate. CONCLUSION This study is the first to show that edaravone has a significant inhibitory effect on fibrosis both in the bleomycin-induced SSc model and in TSK/+ mice. These results indicate that edaravone should be further evaluated for potential use as an antifibrotic agent in SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Manke A, Wang L, Rojanasakul Y. Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol Mech Methods 2013. [PMID: 23194015 DOI: 10.3109/15376516.2012.753967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbon nanotubes (CNTs) have been a subject of intensive research for a wide range of applications. However, because of their extremely small size and light weight, CNTs are readily inhaled into human lungs resulting in increased rates of pulmonary disorders, most notably fibrosis. Several studies have demonstrated the fibrogenic effects of CNTs given their ability to translocate into the surrounding areas in the lung causing granulomatous lesions and interstitial and sub-pleural fibrosis. However, the mechanisms underlying the disease process remain obscure due to the lack of understanding of the cellular interactions and molecular targets involved. Interestingly, certain physicochemical properties of CNTs have been shown to affect their respiratory toxicity, thereby becoming significant determinants of fibrogenesis. CNT-induced fibrosis involves a multitude of cell types and is characterized by the early onset of inflammation, oxidative stress and accumulation of extracellular matrix. Increased reactive oxygen species activate various cytokine/growth factor signaling cascades resulting in increased expression of inflammatory and fibrotic genes. Profibrotic growth factors and cytokines contribute directly to fibroblast proliferation and collagen production. Given the role of multiple players during the pathogenesis of CNT-induced fibrosis, the objective of this review is to summarize the key findings and discuss major cellular and molecular events governing pulmonary fibrosis. We also discuss the physicochemical properties of CNTs and their effects on pulmonary toxicities as well as various biological factors contributing to the development of fibrosis.
Collapse
Affiliation(s)
- Amruta Manke
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
22
|
Azad N, Iyer AKV, Wang L, Liu Y, Lu Y, Rojanasakul Y. Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology 2012; 7:157-68. [PMID: 22263913 DOI: 10.3109/17435390.2011.647929] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are fibrous nanoparticles that are being used widely for various applications including drug delivery. SWCNTs are currently under special attention for possible cytotoxicity. Recent reports suggest that exposure to nanoparticles leads to pulmonary fibrosis. We report that SWCNT-mediated interplay of fibrogenic and angiogenic regulators leads to increased angiogenesis, which is a novel finding that furthers the understanding of SWCNT-induced cytotoxicity. SWCNTs induce fibrogenesis through reactive oxygen species-regulated phosphorylation of p38 mitogen-activated protein kinase (MAPK). Activation of p38 MAPK by SWCNTs led to the induction of transforming growth factor (TGF)-β1 as well as vascular endothelial growth factor (VEGF). Both TGF-β1 and VEGF contributed significantly to the fibroproliferative and collagen-inducing effects of SWCNTs. Interestingly, a positive feedback loop was observed between TGF-β1 and VEGF. This interplay of fibrogenic and angiogenic mediators led to increased angiogenesis in response to SWCNTs. Overall this study reveals key signalling molecules involved in SWCNT-induced fibrogenesis and angiogenesis.
Collapse
Affiliation(s)
- Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, VA 23668, USA
| | | | | | | | | | | |
Collapse
|
23
|
Atochina-Vasserman EN, Bates SR, Zhang P, Abramova H, Zhang Z, Gonzales L, Tao JQ, Gochuico BR, Gahl W, Guo CJ, Gow AJ, Beers MF, Guttentag S. Early alveolar epithelial dysfunction promotes lung inflammation in a mouse model of Hermansky-Pudlak syndrome. Am J Respir Crit Care Med 2011; 184:449-58. [PMID: 21616998 DOI: 10.1164/rccm.201011-1882oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE The pulmonary phenotype of Hermansky-Pudlak syndrome (HPS) in adults includes foamy alveolar type 2 cells, inflammation, and lung remodeling, but there is no information about ontogeny or early disease mediators. OBJECTIVES To establish the ontogeny of HPS lung disease in an animal model, examine disease mediators, and relate them to patients with HPS1. METHODS Mice with mutations in both HPS1/pale ear and HPS2/AP3B1/pearl (EPPE mice) were studied longitudinally. Total lung homogenate, lung tissue sections, and bronchoalveolar lavage (BAL) were examined for phospholipid, collagen, histology, cell counts, chemokines, surfactant protein D (SP-D), and S-nitrosylated SP-D. Isolated alveolar epithelial cells were examined for expression of inflammatory mediators, and chemotaxis assays were used to assess their importance. Pulmonary function test results and BAL from patients with HPS1 and normal volunteers were examined for clinical correlation. MEASUREMENTS AND MAIN RESULTS EPPE mice develop increased total lung phospholipid, followed by a macrophage-predominant pulmonary inflammation, and lung remodeling including fibrosis. BAL fluid from EPPE animals exhibited early accumulation of both SP-D and S-nitrosylated SP-D. BAL fluid from patients with HPS1 exhibited similar changes in SP-D that correlated inversely with pulmonary function. Alveolar epithelial cells demonstrated expression of both monocyte chemotactic protein (MCP)-1 and inducible nitric oxide synthase in juvenile EPPE mice. Last, BAL from EPPE mice and patients with HPS1 enhanced migration of RAW267.4 cells, which was attenuated by immunodepletion of SP-D and MCP-1. CONCLUSIONS Inflammation is initiated from the abnormal alveolar epithelial cells in HPS, and S-nitrosylated SP-D plays a significant role in amplifying pulmonary inflammation.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 2011; 51:267-88. [PMID: 20887196 DOI: 10.1146/annurev.pharmtox.010909.105812] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past several years have seen the accumulation of evidence demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity, which function to fight infections, limit tissue injury, and promote wound healing. However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
25
|
Van Rheen Z, Fattman C, Domarski S, Majka S, Klemm D, Stenmark KR, Nozik-Grayck E. Lung extracellular superoxide dismutase overexpression lessens bleomycin-induced pulmonary hypertension and vascular remodeling. Am J Respir Cell Mol Biol 2011; 44:500-8. [PMID: 20539010 PMCID: PMC3095923 DOI: 10.1165/rcmb.2010-0065oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 04/29/2010] [Indexed: 12/12/2022] Open
Abstract
Interstitial lung disease is a devastating disease in humans that can be further complicated by the development of secondary pulmonary hypertension. Accumulating evidence indicates that the oxidant superoxide can contribute to the pathogenesis of both interstitial lung disease and pulmonary hypertension. We used a model of pulmonary hypertension secondary to bleomycin-induced pulmonary fibrosis to test the hypothesis that an imbalance in extracellular superoxide and its antioxidant defense, extracellular superoxide dismutase, will promote pulmonary vascular remodeling and pulmonary hypertension. We exposed transgenic mice overexpressing lung extracellular superoxide dismutase and wild-type littermates to a single dose of intratracheal bleomycin, and evaluated the mice weekly for up to 35 days. We assessed pulmonary vascular remodeling and the expression of several genes critical to lung fibrosis, as well as pulmonary hypertension and mortality. The overexpression of extracellular superoxide dismutase protected against late remodeling within the medial, adventitial, and intimal layers of the vessel wall after the administration of bleomycin, and attenuated pulmonary hypertension at the same late time point. The overexpression of extracellular superoxide dismutase also blocked the early up-regulation of two key genes in the lung known to be critical in pulmonary fibrosis and vascular remodeling, the transcription factor early growth response-1 and transforming growth factor-β. The overexpression of extracellular superoxide dismutase attenuated late pulmonary hypertension and significantly improved survival after exposure to bleomycin. These data indicate an important role for an extracellular oxidant/antioxidant imbalance in the pathogenesis of pulmonary vascular remodeling associated with secondary pulmonary hypertension attributable to bleomycin-induced lung fibrosis.
Collapse
Affiliation(s)
- Zachary Van Rheen
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cheryl Fattman
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shannon Domarski
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Susan Majka
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dwight Klemm
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kurt R. Stenmark
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Nozik-Grayck
- Department of Pediatrics and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado; and Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Laskin DL, Sunil VR, Fakhrzadeh L, Groves A, Gow AJ, Laskin JD. Macrophages, reactive nitrogen species, and lung injury. Ann N Y Acad Sci 2010; 1203:60-5. [PMID: 20716284 DOI: 10.1111/j.1749-6632.2010.05607.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evidence has accumulated over the past several years demonstrating that lung injury following inhalation of irritants like ozone is due, not only to direct effects of the chemical, but also indirectly to the actions of inflammatory mediators released by infiltrating macrophages. Among the mediators involved in the cytotoxic process, reactive nitrogen species (RNS) are of particular interest because of their well-documented cytotoxic potential. Findings that macrophage suppression blocks RNS production and ozone-induced toxicity provide strong support for a role of these cells and inflammatory mediators in lung injury. Recent investigations have focused on understanding pathways by which macrophages become activated to release RNS. One protein that has attracted considerable attention is caveolin-1, a membrane scaffolding molecule that functions to negatively regulate cell signaling. The fact that expression of caveolin-1 is down-regulated in macrophages after ozone inhalation suggests a mechanism controlling the release of cytotoxic mediators by these inflammatory cells.
Collapse
|
27
|
Tanaka KI, Ishihara T, Azuma A, Kudoh S, Ebina M, Nukiwa T, Sugiyama Y, Tasaka Y, Namba T, Ishihara T, Sato K, Mizushima Y, Mizushima T. Therapeutic effect of lecithinized superoxide dismutase on bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2009; 298:L348-60. [PMID: 20034962 DOI: 10.1152/ajplung.00289.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to involve inflammatory infiltration of leukocytes, lung injury induced by reactive oxygen species (ROS), in particular superoxide anion, and fibrosis (collagen deposition). No treatment has been shown to improve definitively the prognosis for IPF patients. Superoxide dismutase (SOD) catalyzes the dismutation of superoxide anion to hydrogen peroxide, which is subsequently detoxified by catalase. Lecithinized SOD (PC-SOD) has overcome clinical limitations of SOD, including low tissue affinity and low stability in plasma. In this study, we examined the effect of PC-SOD on bleomycin-induced pulmonary fibrosis. Severity of the bleomycin-induced fibrosis in mice was assessed by various methods, including determination of hydroxyproline levels in lung tissue. Intravenous administration of PC-SOD suppressed the bleomycin-induced increase in the number of leukocytes in bronchoalveolar lavage fluid. Bleomycin-induced collagen deposition and increased hydroxyproline levels in the lung were also suppressed in animals treated with PC-SOD, suggesting that PC-SOD suppresses bleomycin-induced pulmonary fibrosis. The dose-response profile of PC-SOD was bell-shaped, but concurrent administration of catalase restored the ameliorative effect at high doses of PC-SOD. Intratracheal administration or inhalation of PC-SOD also attenuated the bleomycin-induced inflammatory response and fibrosis. The bell-shaped dose-response profile of PC-SOD was not observed for these routes of administration. We consider that, compared with intravenous administration, inhalation of PC-SOD may be a more therapeutically beneficial route of administration due to the higher safety and quality of life of the patient treated with this drug.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu Y, Azad N, Wang L, Iyer AKV, Castranova V, Jiang BH, Rojanasakul Y. Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production. Am J Respir Cell Mol Biol 2009; 42:432-41. [PMID: 19520917 DOI: 10.1165/rcmb.2009-0002oc] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abnormal repair and dysregulated angiogenesis have been implicated in the pathogenesis of pulmonary fibrosis, but the underlying mechanisms of regulation are not well understood. The present study investigated the role of phosphatidylinositol-3-kinase (PI3K)/Akt in fibrogenesis of human lung fibroblasts and its regulation by reactive oxygen species (ROS). Exposure of lung fibroblasts to bleomycin, a known inducer of fibrosis, resulted in rapid activation of PI3K/Akt and a parallel increase in fibroblast proliferation and collagen production, characteristics of lung fibrosis. Bleomycin had no significant effect on total Akt protein expression but induced phosphorylation of the protein at threonine 308 and serine 473 positions. Inhibition of this phosphorylation by PI3K inhibitors or by dominant-negative Akt (T308A/S473A) expression abrogated the effects of bleomycin on fibroblast proliferation and collagen production, suggesting the role of PI3K/Akt in the fibrogenic process. Activation of PI3K/Akt by bleomycin also led to transcriptional activation and protein expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and vascular endothelial growth factor, which contributed to the fibroproliferative and collagen-inducing effects of bleomycin. The fibrogenic effects of bleomycin were dependent on ROS generation, particularly superoxide anion and hydrogen peroxide, which were induced by bleomycin. Inhibition of ROS generation by antioxidant enzymes, catalase and superoxide dismutase mimetic MnTBAP, abrogated the fibrogenic effects of bleomycin as well as its induction of PI3K/Akt and HIF-1alpha activation. Together, our results indicate a novel role of PI3K/Akt in fibrogenesis of human lung fibroblasts and its regulation by ROS, which could be exploited for the treatment of pulmonary fibrosis and related disorders.
Collapse
Affiliation(s)
- Yongju Lu
- West Virginia University, Department of Pharmaceutical Sciences, P.O. Box 9530, Morgantown, WV 26506, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kokot A, Sindrilaru A, Schiller M, Sunderkötter C, Kerkhoff C, Eckes B, Scharffetter-Kochanek K, Luger TA, Böhm M. α-melanocyte-stimulating hormone suppresses bleomycin-induced collagen synthesis and reduces tissue fibrosis in a mouse model of scleroderma: Melanocortin peptides as a novel treatment strategy for scleroderma? ACTA ACUST UNITED AC 2009; 60:592-603. [DOI: 10.1002/art.24228] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Scriabine A, Rabin DU. New Developments in the Therapy of Pulmonary Fibrosis. ADVANCES IN PHARMACOLOGY 2009; 57:419-64. [DOI: 10.1016/s1054-3589(08)57011-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
MERT H, YORUK I, ERTEKIN A, DEDE S, DEGER Y, YUR F, MERT N. Vitamin Levels in Lung Tissue of Rats with Bleomycin Induced Pulmonary Fibrosis. J Nutr Sci Vitaminol (Tokyo) 2009; 55:186-90. [DOI: 10.3177/jnsv.55.186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Handan MERT
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil
| | - Ibrahim YORUK
- Department of Chemistry, Faculty of Art and Science, University of Yuzuncu Yil
| | - Ali ERTEKIN
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil
| | - Semiha DEDE
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil
| | - Yeter DEGER
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil
| | - Fatmagul YUR
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil
| | - Nihat MERT
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil
| |
Collapse
|
32
|
Eberlein M, Scheibner KA, Black KE, Collins SL, Chan-Li Y, Powell JD, Horton MR. Anti-oxidant inhibition of hyaluronan fragment-induced inflammatory gene expression. JOURNAL OF INFLAMMATION-LONDON 2008; 5:20. [PMID: 18986521 PMCID: PMC2627834 DOI: 10.1186/1476-9255-5-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/05/2008] [Indexed: 01/01/2023]
Abstract
Background The balance between reactive oxygen species (ROS) and endogenous anti-oxidants is important in maintaining healthy tissues. Excessive ROS states occur in diseases such as ARDS and Idiopathic Pulmonary Fibrosis. Redox imbalance breaks down the extracellular matrix component hyaluronan (HA) into fragments that activate innate immune responses and perpetuate tissue injury. HA fragments, via a TLR and NF-κB pathway, induce inflammatory gene expression in macrophages and epithelial cells. NAC and DMSO are potent anti-oxidants which may help balance excess ROS states. Methods We evaluated the effect of H2O2, NAC and DMSO on HA fragment induced inflammatory gene expression in alveolar macrophages and epithelial cells. Results NAC and DMSO inhibit HA fragment-induced expression of TNF-α and KC protein in alveolar and peritoneal macrophages. NAC and DMSO also show a dose dependent inhibition of IP-10 protein expression, but not IL-8 protein, in alveolar epithelial cells. In addition, H2O2 synergizes with HA fragments to induce inflammatory genes, which are inhibited by NAC. Mechanistically, NAC and DMSO inhibit HA induced gene expression by inhibiting NF-κB activation, but NAC had no influence on HA-fragment-AP-1 mediated gene expression. Conclusion ROS play a central role in a pathophysiologic "vicious cycle" of inflammation: tissue injury generates ROS, which fragment the extracellular matrix HA, which in turn synergize with ROS to activate the innate immune system and further promote ROS, HA fragment generation, inflammation, tissue injury and ultimately fibrosis. The anti-oxidants NAC and DMSO, by inhibiting the HA induced inflammatory gene expression, may help re-balance excessive ROS induced inflammation.
Collapse
Affiliation(s)
- Michael Eberlein
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Yoshizaki A, Komura K, Iwata Y, Ogawa F, Hara T, Muroi E, Takenaka M, Shimizu K, Hasegawa M, Fujimoto M, Sato S. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: association with disease severity. J Clin Immunol 2008; 29:180-9. [PMID: 18825489 DOI: 10.1007/s10875-008-9252-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 09/05/2008] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The high mobility group box 1 protein (HMGB-1)/advanced glycation end products (RAGE) system is recently shown to play an important part in immune/inflammatory disorders. However, the association of this system in systemic sclerosis (SSc) remains unknown. MATERIALS AND METHODS To determine clinical association of serum levels of HMGB-1 and soluble RAGE (sRAGE) in patients with SSc, sera from 70 patients with SSc and 25 healthy controls were examined by enzyme-linked immunosorbent assay. Sera from tight-skin mice and bleomycin-induced scleroderma mice, animal models for SSc, were also examined. Skin HMGB-1 and RAGE expression was assessed by immunohistochemistry. RESULTS AND DISCUSSION Serum HMGB-1 and sRAGE levels in SSc were higher than those in controls. Similarly, HMGB-1 and sRAGE levels in animal SSc models were higher than those in control mice. SSc patients with elevated HMGB-1 and sRAGE levels had more frequent involvement of several organs and immunological abnormalities compared to those with normal levels. Furthermore, HMGB-1 and sRAGE levels correlated positively with modified Rodnan total skin thickness score and negatively with pulmonary function test. CONCLUSIONS HMGB-1 and sRAGE expression in the sclerotic skin was more intense than normal skin. These results suggest that elevated serum HMGB-1 and sRAGE levels are associated with the disease severity and immunological abnormalities in SSc.
Collapse
Affiliation(s)
- Ayumi Yoshizaki
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
YOSHIMI M, MAEYAMA T, YAMADA M, HAMADA N, FUKUMOTO J, KAWAGUCHI T, KUWANO K, NAKANISHI Y. Recombinant human erythropoietin reduces epithelial cell apoptosis and attenuates bleomycin-induced pneumonitis in mice. Respirology 2008; 13:639-45. [DOI: 10.1111/j.1440-1843.2008.01324.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Rabbani ZN, Salahuddin FK, Yarmolenko P, Batinic-Haberle I, Thrasher BA, Gauter-Fleckenstein B, Dewhirst MW, Anscher MS, Vujaskovic Z. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res 2008; 41:1273-82. [PMID: 17957541 DOI: 10.1080/10715760701689550] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The objective of this study was to determine whether administration of a catalytic antioxidant, Mn(III) tetrakis(N,N'-diethylimidazolium-2-yl) porphyrin, AEOL10150, reduces the severity of long-term lung injury induced by fractionated radiation (RT). Fisher 344 rats were randomized into five groups: RT+AEOL10150 (2.5 mg/kg BID), AEOL10150 (2.5 mg/kg BID) alone, RT+ AEOL10150 (5 mg/kg BID), AEOL10150 (5 mg/kg BID) alone and RT alone. Animals received five 8 Gy fractions of RT to the right hemithorax. AEOL10150 was administered 15 min before RT and 8 h later during the period of RT treatment (5 days), followed by subcutaneous injections for 30 days, twice daily. Lung histology at 26 weeks revealed a significant decrease in lung structural damage and collagen deposition in RT+AEOL10150 (5 mg/kg BID) group, in comparison to RT alone. Immunohistochemistry studies revealed a significant reduction in tissue hypoxia (HIF1alpha, CAIX), angiogenic response (VEGF, CD-31), inflammation (ED-1), oxidative stress (8-OHdG, 3-nitrotyrosine) and fibrosis pathway (TGFbeta1, Smad3, p-Smad2/3), in animals receiving RT+ AEOL10150 (5 mg/kg BID). Administration of AEOL10150 at 5 mg/kg BID during and after RT results in a significant protective effect from long-term RT-induced lung injury. Low dose (2.5 mg/kg BID) delivery of AEOL10150 has no beneficial radioprotective effects.
Collapse
Affiliation(s)
- Zahid N Rabbani
- Department of Radiation Oncology, Durham Regional Hospital/Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Interstitial lung disease encompasses a large group of chronic lung disorders associated with excessive tissue remodeling, scarring, and fibrosis. The evidence of a redox imbalance in lung fibrosis is substantial, and the rationale for testing antioxidants as potential new therapeutics for lung fibrosis is appealing. Current animal models of lung fibrosis have clear involvement of ROS in their pathogenesis. New classes of antioxidant agents divided into catalytic antioxidant mimetics and antioxidant scavengers are being developed. The catalytic antioxidant class is based on endogenous antioxidant enzymes and includes the manganese-containing macrocyclics, porphyrins, salens, and the non-metal-containing nitroxides. The antioxidant scavenging class is based on endogenous antioxidant molecules and includes the vitamin E analogues, thiols, lazaroids, and polyphenolic agents. Numerous studies have shown oxidative stress to be associated with many interstitial lung diseases and that these agents are effective in attenuating fibroproliferative responses in the lung of animals and humans.
Collapse
Affiliation(s)
- Brian J Day
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| |
Collapse
|
37
|
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix (ECM) in basement membranes and interstitial tissues, resulting from increased synthesis or decreased degradation of ECM or both. The plasminogen activator/plasmin system plays an important role in ECM degradation, whereas the plasminogen activator inhibitor 1 (PAI-1) is a physiologic inhibitor of plasminogen activators. PAI-1 expression is increased in the lung fibrotic diseases and in experimental fibrosis models. The deletion of the PAI-1 gene reduces, whereas the overexpression of PAI-1 enhances, the susceptibility of animals to lung fibrosis induced by different stimuli, indicating an important role of PAI-1 in the development of lung fibrosis. Many growth factors, including transforming growth factor beta (TGF-beta) and tumor necrosis factor alpha (TNF-alpha), as well as other chemicals/agents, induce PAI-1 expression in cultured cells and in vivo. Reactive oxygen and nitrogen species (ROS/RNS) have been shown to mediate the induction of PAI-1 by many of these stimuli. This review summarizes some recent findings that help us to understand the role of PAI-1 in the development of lung fibrosis and ROS/RNS in the regulation of PAI-1 expression during fibrogenesis.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
38
|
Abstract
The progress in discerning the structure and function of cells and tissues in health and disease has been achieved to a large extent by the continued development of new reagents for histochemistry, the improvement of existing techniques and new imaging techniques. This review will highlight some advancements made in these fields.
Collapse
|
39
|
Shvedova AA, Kisin ER, Murray AR, Gorelik O, Arepalli S, Castranova V, Young SH, Gao F, Tyurina YY, Oury TD, Kagan VE. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol 2007; 221:339-48. [PMID: 17482224 PMCID: PMC2266092 DOI: 10.1016/j.taap.2007.03.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/13/2007] [Accepted: 03/15/2007] [Indexed: 11/18/2022]
Abstract
Exposure of mice to single-walled carbon nanotubes (SWCNTs) induces an unusually robust pulmonary inflammatory response with an early onset of fibrosis, which is accompanied by oxidative stress and antioxidant depletion. The role of specific components of the antioxidant protective system, specifically vitamin E, the major lipid-soluble antioxidant, in the SWCNT-induced reactions has not been characterized. We used C57BL/6 mice, maintained on vitamin E-sufficient or vitamin E-deficient diets, to explore and compare the pulmonary inflammatory reactions to aspired SWCNTs. The vitamin E-deficient diet caused a 90-fold depletion of alpha-tocopherol in the lung tissue and resulted in a significant decline of other antioxidants (GSH, ascorbate) as well as accumulation of lipid peroxidation products. A greater decrease of pulmonary antioxidants was detected in SWCNT-treated vitamin E-deficient mice as compared to controls. Lowered levels of antioxidants in vitamin E-deficient mice were associated with a higher sensitivity to SWCNT-induced acute inflammation (total number of inflammatory cells, number of polymorphonuclear leukocytes, released LDH, total protein content and levels of pro-inflammatory cytokines, TNF-alpha and IL-6) and enhanced profibrotic responses (elevation of TGF-beta and collagen deposition). Exposure to SWCNTs markedly shifted the ratio of cleaved to full-length extracellular superoxide dismutase (EC-SOD). Given that pulmonary levels of vitamin E can be manipulated through diet, its effects on SWCNT-induced inflammation may be of practical importance in optimizing protective strategies.
Collapse
Affiliation(s)
- Anna A. Shvedova
- Pathology/Physiology Research Branch, HELD, NIOSH, Morgantown, WV
| | - Elena R. Kisin
- Pathology/Physiology Research Branch, HELD, NIOSH, Morgantown, WV
| | - Ashley R. Murray
- Pathology/Physiology Research Branch, HELD, NIOSH, Morgantown, WV
| | - Olga Gorelik
- Lockheed Martin Corporation, Engineering Directorate, Materials and Processes Branch, and Nanotube Team, GBTech, Inc., NASA-JSC, Houston, TX
| | - Sivaram Arepalli
- Lockheed Martin Corporation, Engineering Directorate, Materials and Processes Branch, and Nanotube Team, GBTech, Inc., NASA-JSC, Houston, TX
| | | | | | - Fei Gao
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, and Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Tim D. Oury
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health, Graduate School of Public Health, and Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
40
|
Hsu YC, Wang LF, Chien YW. Nitric oxide in the pathogenesis of diffuse pulmonary fibrosis. Free Radic Biol Med 2007; 42:599-607. [PMID: 17291983 DOI: 10.1016/j.freeradbiomed.2006.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/26/2006] [Accepted: 11/24/2006] [Indexed: 11/26/2022]
Abstract
By studying the responses of nitric oxide in pulmonary fibrosis, the role of inducible nitric oxide synthase in diffuse pulmonary fibrosis as caused by lipopolysaccharide (LPS) treatment was investigated. When compared to rats treated with LPS only, the rats pretreated with 1400W (an iNOS-specific inhibitor) were found to exhibit a reduced level in: (i) NOx (nitrate/nitrite) production, (ii) collagen type I protein expression, (iv) soluble collagen production, and (iv) the loss of body weight and carotid artery PO2. In the pulmonary fibroblast culture, exogenous NO from LPS-stimulated secretion by macrophages or from a NO donor, such as DETA NONOate, was observed to induce the expression of TIMP-1, HSP47, TGF-beta1, and collagen type I as well as the phosphorylation of SMAD-2. After inhalation of NO for 24 h, an up-regulation of collagen type I protein was also noted to occur in rat pulmonary tissue. The results suggest that the NO signal pathway enhanced the expression of TGF-beta1, TIMP-1, and HSP47 in pulmonary fibroblasts, which collectively demonstrate that the NO signal pathway could activate the SMAD-signal cascade, by initiating a rapid increase in TGF-beta1, thereby increasing the expression of TIMP-1 and HSP47 in pulmonary fibroblasts, and play an important role in pulmonary fibrosis.
Collapse
Affiliation(s)
- Yi-Chiang Hsu
- InnovaTherapeutics Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | |
Collapse
|
41
|
Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys 2006; 66:1281-93. [PMID: 17126203 DOI: 10.1016/j.ijrobp.2006.08.058] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 12/11/2022]
Abstract
Radiation pneumonitis and subsequent radiation pulmonary fibrosis are the two main dose-limiting factors when irradiating the thorax that can have severe implications for patients' quality of life. In this article, the current concepts about the pathogenetic mechanisms underlying radiation pneumonitis and fibrosis are presented. The clinical course of fibrosis, a postulated acute inflammatory stage, and a late fibrotic and irreversible stage are discussed. The interplay of cells and the wide variety of molecules orchestrating the immunologic response to radiation, their interactions with specific receptors, and the cascade of events they trigger are elucidated. Finally, the implications of this knowledge with respect to the therapeutic interventions are critically presented.
Collapse
Affiliation(s)
- Pelagia G Tsoutsou
- Department of Radiation Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | | |
Collapse
|
42
|
Taatjes DJ, Zuber C, Roth J. The histochemistry and cell biology vade mecum: a review of 2005–2006. Histochem Cell Biol 2006; 126:743-88. [PMID: 17149649 DOI: 10.1007/s00418-006-0253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2006] [Indexed: 02/07/2023]
Abstract
The procurement of new knowledge and understanding in the ever expanding discipline of cell biology continues to advance at a breakneck pace. The progress in discerning the physiology of cells and tissues in health and disease has been driven to a large extent by the continued development of new probes and imaging techniques. The recent introduction of semi-conductor quantum dots as stable, specific markers for both fluorescence light microscopy and electron microscopy, as well as a virtual treasure-trove of new fluorescent proteins, has in conjunction with newly introduced spectral imaging systems, opened vistas into the seemingly unlimited possibilities for experimental design. Although it oftentimes proves difficult to predict what the future will hold with respect to advances in disciplines such as cell biology and histochemistry, it is facile to look back on what has already occurred. In this spirit, this review will highlight some advancements made in these areas in the past 2 years.
Collapse
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology, Microscopy Imaging Center, College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|