1
|
Yang LK, Wang W, Guo DY, Dong B. Non-canonical signaling initiated by hormone-responsive G protein-coupled receptors from subcellular compartments. Pharmacol Ther 2025; 266:108788. [PMID: 39722422 DOI: 10.1016/j.pharmthera.2024.108788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/13/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
G protein-coupled receptors (GPCRs), the largest family of membrane receptors in the mammalian genomes, regulate almost all known physiological processes by transducing numerous extracellular stimuli including almost two-thirds of endogenous hormones and neurotransmitters. The traditional view held that GPCR signaling occurs exclusively at the cell surface, where the receptors bind with the ligands and undergo conformational changes to recruit and activate heterotrimeric G proteins. However, with the application of advanced biochemical and biophysical techniques, this conventional model is challenged by the elucidation of spatiotemporal GPCR activation with the evidence that receptors can signal from subcellular compartments to exhibit various molecular and cellular responses with physiological and pathophysiological relevance. Thus, this 'location bias' of GPCR signaling has become another layer of complexity of GPCR signal transduction. In this review, we generally introduce the development of the concept of compartmentalized GPCR signaling and comprehensively summarize the receptors reported to be localized on the membranes of different intracellular organelles. We review the physiological functions of these compartmentalized GPCRs with emphasis on some well-characterized prototypical hormone/neurotransmitter-binding receptors, including β2-adrenergic receptor, opioid receptors, parathyroid hormone type 1 receptor, thyroid-stimulating hormone receptor, cannabinoid receptor type 1, and metabotropic glutamate receptor 5, as examples. In addition, the therapeutic implications of compartmentalized GPCR signaling by introducing lipophilic or hydrophilic ligands for intracellular targeting, lipid conjugation anchor drugs, and strategy to modulate receptor internalization/resensitization, are highlighted and open new avenues in GPCR pharmacology and therapeutics.
Collapse
Affiliation(s)
- Li-Kun Yang
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Bo Dong
- Fang Zongxi Center for Marine EvoDevo, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Insititute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China..
| |
Collapse
|
2
|
Allen BG, Merlen C, Branco AF, Pétrin D, Hébert TE. Understanding the impact of nuclear-localized GPCRs on cellular signalling. Cell Signal 2024; 123:111358. [PMID: 39181220 DOI: 10.1016/j.cellsig.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
G protein-coupled receptors (GPCRs) have historically been associated with signalling events driven from the plasma membrane. More recently, signalling from endosomes has been recognized as a feature of internalizing receptors. However, there was little consideration given to the notion that GPCRs can be targeted to distinct subcellular locations that did not involve an initial trafficking to the cell surface. Here, we focus on the evidence for and the potential impact of GPCR signalling specifically initiated from the nuclear membrane. We also discuss the possibilities for selectively targeting this and other internal pools of receptors as novel venues for drug discovery.
Collapse
Affiliation(s)
- Bruce G Allen
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada; Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | - Ana F Branco
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
3
|
Balijepalli P, Meier KE. From outside to inside and back again: the lysophosphatidic acid-CCN axis in signal transduction. J Cell Commun Signal 2023; 17:845-849. [PMID: 36795277 PMCID: PMC10409932 DOI: 10.1007/s12079-023-00728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
CCN1 and CCN2 are matricellular proteins that are transcriptionally induced by various stimuli, including growth factors. CCN proteins act to facilitate signaling events involving extracellular matrix proteins. Lysophosphatidic acid (LPA) is a lipid that activates G protein-coupled receptors (GPCRs), enhancing proliferation, adhesion, and migration in many types of cancer cells. Our group previously reported that LPA induces production of CCN1 protein in human prostate cancer cell lines within 2-4 h. In these cells, the mitogenic activity of LPA is mediated by LPA Receptor 1 (LPAR1), a GPCR. There are multiple examples of the induction of CCN proteins by LPA, and by the related lipid mediator sphingosine-1-phosphate (S1P), in various cellular models. The signaling pathways responsible for LPA/S1P-induced CCN1/2 typically involve activation of the small GTP-binding protein Rho and the transcription factor YAP. Inducible CCNs can potentially play roles in downstream signal transduction events required for LPA and S1P-induced responses. Specifically, CCNs secreted into the extracellular space can facilitate the activation of additional receptors and signal transduction pathways, contributing to the biphasic delayed responses typically seen in response to growth factors acting via GPCRs. In some model systems, CCN1 and CCN2 play key roles in LPA/S1P-induced cell migration and proliferation. In this way, an extracellular signal (LPA or S1P) can activate GPCR-mediated intracellular signaling to induce the production of extracellular modulators (CCN1 and CCN2) that in turn initiate another round of intracellular signaling.
Collapse
Affiliation(s)
- Pravita Balijepalli
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA USA
| | - Kathryn E. Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA USA
| |
Collapse
|
4
|
Jong YI, Harmon SK, O'Malley KL. GPCR
Signaling from Intracellular Membranes. GPCRS AS THERAPEUTIC TARGETS 2022:216-298. [DOI: 10.1002/9781119564782.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Pal S, Gashev A, Roy D. Nuclear localization of histamine receptor 2 in primary human lymphatic endothelial cells. Biol Open 2022; 11:bio059191. [PMID: 35776777 PMCID: PMC9257380 DOI: 10.1242/bio.059191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Histamine exerts its physiological functions through its four receptor subtypes. In this work, we report the subcellular localization of histamine receptor 2 (H2R), a G protein-coupled receptor (GPCR), which is expressed in a wide variety of cell and tissue types. A growing number of GPCRs have been shown to be localized in the nucleus and contribute toward transcriptional regulation. In this study, for the first time, we demonstrate the nuclear localization of H2R in lymphatic endothelial cells. In the presence of its ligand, we show significant upregulation of H2R nuclear translocation kinetics. Using fluorescently tagged histamine, we explored H2R-histamine binding interaction, which exhibits a critical role in this translocation event. Altogether, our results highlight the previously unrecognized nuclear localization pattern of H2R. At the same time, H2R as a GPCR imparts many unresolved questions, such as the functional relevance of this localization, and whether H2R can contribute directly to transcriptional regulation and can affect lymphatic specific gene expression. H2R blockers are commonly used medications that recently have shown significant side effects. Therefore, it is imperative to understand the precise molecular mechanism of H2R biology. In this aspect, our present data shed new light on the unexplored H2R signaling mechanisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, USA
| | - Anatoliy Gashev
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX 77843, USA
| | - Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS 39096, USA
| |
Collapse
|
6
|
Gonçalves-Monteiro S, Ribeiro-Oliveira R, Vieira-Rocha MS, Vojtek M, Sousa JB, Diniz C. Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals (Basel) 2021; 14:439. [PMID: 34066915 PMCID: PMC8148550 DOI: 10.3390/ph14050439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) comprise a large protein superfamily divided into six classes, rhodopsin-like (A), secretin receptor family (B), metabotropic glutamate (C), fungal mating pheromone receptors (D), cyclic AMP receptors (E) and frizzled (F). Until recently, GPCRs signaling was thought to emanate exclusively from the plasma membrane as a response to extracellular stimuli but several studies have challenged this view demonstrating that GPCRs can be present in intracellular localizations, including in the nuclei. A renewed interest in GPCR receptors' superfamily emerged and intensive research occurred over recent decades, particularly regarding class A GPCRs, but some class B and C have also been explored. Nuclear GPCRs proved to be functional and capable of triggering identical and/or distinct signaling pathways associated with their counterparts on the cell surface bringing new insights into the relevance of nuclear GPCRs and highlighting the nucleus as an autonomous signaling organelle (triggered by GPCRs). Nuclear GPCRs are involved in physiological (namely cell proliferation, transcription, angiogenesis and survival) and disease processes (cancer, cardiovascular diseases, etc.). In this review we summarize emerging evidence on nuclear GPCRs expression/function (with some nuclear GPCRs evidencing atypical/disruptive signaling pathways) in non-communicable disease, thus, bringing nuclear GPCRs as targets to the forefront of debate.
Collapse
Affiliation(s)
- Salomé Gonçalves-Monteiro
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ribeiro-Oliveira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Martin Vojtek
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana B. Sousa
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.G.-M.); (R.R.-O.); (M.S.V.-R.); (M.V.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Mohammad Nezhady MA, Rivera JC, Chemtob S. Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery. iScience 2020; 23:101643. [PMID: 33103080 PMCID: PMC7569339 DOI: 10.1016/j.isci.2020.101643] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
GPCRs are the largest receptor family that are involved in virtually all biological processes. Pharmacologically, they are highly druggable targets, as they cover more than 40% of all drugs in the market. Our knowledge of biased signaling provided insight into pharmacology vastly improving drug design to avoid unwanted effects and achieve higher efficacy and selectivity. However, yet another feature of GPCR biology is left largely unexplored, location bias. Recent developments in this field show promising avenues for evolution of new class of pharmaceuticals with greater potential for higher level of precision medicine. Further consideration and understanding of this phenomenon with deep biochemical and molecular insights would pave the road to success. In this review, we critically analyze this perspective and discuss new avenues of investigation.
Collapse
Affiliation(s)
- Mohammad Ali Mohammad Nezhady
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Corresponding author
| | | | - Sylvain Chemtob
- Programmes en Biologie Moléculaire, Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche du CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
- Maisonneuve-Rosemont Hospital Research Centre, Montreal, QC, Canada
| |
Collapse
|
8
|
Ribeiro-Oliveira R, Vojtek M, Gonçalves-Monteiro S, Vieira-Rocha MS, Sousa JB, Gonçalves J, Diniz C. Nuclear G-protein-coupled receptors as putative novel pharmacological targets. Drug Discov Today 2019; 24:2192-2201. [DOI: 10.1016/j.drudis.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
|
9
|
Talmont F, Moulédous L, Baranger M, Gomez-Brouchet A, Zajac JM, Deffaud C, Cuvillier O, Hatzoglou A. Development and characterization of sphingosine 1-phosphate receptor 1 monoclonal antibody suitable for cell imaging and biochemical studies of endogenous receptors. PLoS One 2019; 14:e0213203. [PMID: 30845158 PMCID: PMC6405204 DOI: 10.1371/journal.pone.0213203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/15/2019] [Indexed: 11/18/2022] Open
Abstract
Although sphingosine-1-phosphate receptor 1 (S1P1) has been shown to trigger several S1P targeted functions such as immune cell trafficking, cell proliferation, migration, or angiogenesis, tools that allow the accurate detection of endogenous S1P1 localization and trafficking remain to be obtained and validated. In this study, we developed and characterized a novel monoclonal S1P1 antibody. Mice were immunized with S1P1 produced in the yeast Pichia pastoris and nine hybridoma clones producing monoclonal antibodies were created. Using different technical approaches including Western blot, immunoprecipitation and immunocytochemistry, we show that a selected clone, hereinafter referred to as 2B9, recognizes human and mouse S1P1 in various cell lineages. The interaction between 2B9 and S1P1 is specific over receptor subtypes, as the antibody does not binds to S1P2 or S1P5 receptors. Using cell-imaging methods, we demonstrate that 2B9 binds to an epitope located at the intracellular domain of S1P1; reveals cytosolic and membrane localization of the endogenous S1P1; and receptor internalization upon S1P or FTY720-P stimulation. Finally, loss of 2B9 signal upon knockdown of endogenous S1P1 by specific small interference RNAs further confirms its specificity. 2B9 was also able to detect S1P1 in human kidney and spinal cord tissue by immunohistochemistry. Altogether, our results suggest that 2B9 could be a useful tool to detect, quantify or localize low amounts of endogenous S1P1 in various physiological and pathological processes.
Collapse
Affiliation(s)
- Franck Talmont
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Moulédous
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Anne Gomez-Brouchet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France.,Service d'anatomie et cytologie pathologiques, IUCT Oncopole, Toulouse, France
| | - Jean-Marie Zajac
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anastassia Hatzoglou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Abstract
The trillions of synaptic connections within the human brain are shaped by experience and neuronal activity, both of which underlie synaptic plasticity and ultimately learning and memory. G protein-coupled receptors (GPCRs) play key roles in synaptic plasticity by strengthening or weakening synapses and/or shaping dendritic spines. While most studies of synaptic plasticity have focused on cell surface receptors and their downstream signaling partners, emerging data point to a critical new role for the very same receptors to signal from inside the cell. Intracellular receptors have been localized to the nucleus, endoplasmic reticulum, lysosome, and mitochondria. From these intracellular positions, such receptors may couple to different signaling systems, display unique desensitization patterns, and/or show distinct patterns of subcellular distribution. Intracellular GPCRs can be activated at the cell surface, endocytosed, and transported to an intracellular site or simply activated in situ by de novo ligand synthesis, diffusion of permeable ligands, or active transport of non-permeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in synaptic plasticity and learning and memory. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools.
Collapse
Affiliation(s)
- Yuh-Jiin I. Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
11
|
Yu R, Liu H, Peng X, Cui Y, Song S, Wang L, Zhang H, Hong A, Zhou T. The palmitoylation of the N-terminal extracellular Cys37 mediates the nuclear translocation of VPAC1 contributing to its anti-apoptotic activity. Oncotarget 2018; 8:42728-42741. [PMID: 28473666 PMCID: PMC5522101 DOI: 10.18632/oncotarget.17449] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/14/2017] [Indexed: 12/17/2022] Open
Abstract
VPAC1 is class B G protein-coupled receptors (GPCR) shared by pituitary adenylate cyclase activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP). The first cysteine (Cys37) in the N-terminal extracellular domain of mature VPAC1 is a free Cys not involved in the formation of conserved intramolecular disulfide bonds. In order to investigate the biological role of this Cys37 in VPAC1, the wild-type VPAC1 and Cys37/Ala mutant (VPAC1-C37/A) were expressed stably as fusion proteins with enhanced yellow fluorescent protein (EYFP) respectively in Chinese hamster ovary (CHO) cells. Both VPAC1-EYFP and VPAC1-C37/A-EYFP trafficked to the plasma membrane normally, and CHO cells expressing VPAC1-EYFP displayed higher anti-apoptotic activity against camptothecin (CPT) induced apoptosis than the cells expressing VPAC1-C37/A-EYFP, while VPAC1-C37/A-CHO cells showed higher proliferative activity than VPAC1-CHO cells. Confocal microscopic analysis, western blotting and fluorescence quantification assay showed VPAC1-EYFP displayed significant nuclear translocation while VPAC1-C37/A-EYFP did not transfer into nucleus under the stimulation of VIP (0.1 nM). Acyl-biotin exchange assay and click chemistry-based palmitoylation assay confirmed for the first time the palmitoylation of Cys37, which has been predicted by bioinformatics analysis. And the palmitoylation inhibitor 2-bromopalmitate significantly inhibited the nuclear translocation of VPAC1-EYFP and its anti-apoptotic activity synchronously. These results indicated the palmitoylation of the Cys37 in the N-terminal extracellular domain of VPAC1 mediates the nuclear translocation of VPAC1 contributing to its anti-apoptotic activity. These findings reveal for the first time the lipidation-mediating nuclear translocation of VPAC1 produces a novel anti-apoptotic signal pathway, which may help to promote new drug development strategy targeting VPAC1.
Collapse
Affiliation(s)
- Rongjie Yu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongyu Liu
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xinhe Peng
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yue Cui
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Suqin Song
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Like Wang
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Huahua Zhang
- Department of Medical Genetics, Guangdong Medical University, Dongguan, Guangdong, China
| | - An Hong
- Institute of Biomedicine, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China.,National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Tianhong Zhou
- Department of Bioengineering, School of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Jong YJI, Harmon SK, O'Malley KL. GPCR signalling from within the cell. Br J Pharmacol 2017; 175:4026-4035. [PMID: 28872669 DOI: 10.1111/bph.14023] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/08/2017] [Accepted: 08/17/2017] [Indexed: 12/22/2022] Open
Abstract
Traditionally, signal transduction from GPCRs is thought to emanate from the cell surface where receptor interactions with external stimuli can be transformed into a broad range of cellular responses. However, emergent data show that numerous GPCRs are also associated with various intracellular membranes where they may couple to different signalling systems, display unique desensitization patterns and/or exhibit distinct patterns of subcellular distribution. Although many GPCRs can be activated at the cell surface and subsequently endocytosed and transported to a unique intracellular site, other intracellular GPCRs can be activated in situ either via de novo ligand synthesis, diffusion of permeable ligands or active transport of nonpermeable ligands. Current findings reinforce the notion that intracellular GPCRs play a dynamic role in various biological functions including learning and memory, contractility and angiogenesis. As new intracellular GPCR roles are defined, the need to selectively tailor agonists and/or antagonists to both intracellular and cell surface receptors may lead to the development of more effective therapeutic tools. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Steven K Harmon
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Karen L O'Malley
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Bhosle VK, Rivera JC, Chemtob S. New insights into mechanisms of nuclear translocation of G-protein coupled receptors. Small GTPases 2017; 10:254-263. [PMID: 28125336 DOI: 10.1080/21541248.2017.1282402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The G-protein coupled receptor (GPCR) signaling was long believed to involve activation of receptor exclusively at the cell surface, followed by its binding to heterotrimeric G-proteins and arrestins to trigger various intracellular signaling cascades, and termination of signaling by internalization of the receptor. It is now accepted that many GPCRs continue to signal after internalization in the endosomes. Since the breakthrough discoveries of nuclear binding sites for their ligands in 1980s, several GPCRs have been detected at cell nuclei. But mechanisms of nuclear localization of GPCRs, many of whom contain putative nuclear localization signals, remain poorly understood to date. Nevertheless, it is known that subcellular trafficking of GPCRs is regulated by members of Ras superfamily of small GTPases, most notably by Rab and Arf GTPases. In this commentary, we highlight several recent studies which suggest novel roles of small GTPases, importins and sorting nexin proteins in the nuclear translocation of GPCRs via vesicular transport pathways. Taken together with increasing evidence for in vivo functionality of the nuclear GPCRs, better understanding of their trafficking will provide valuable clues in cell biology.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,e Cell Biology Program , Peter Gilgan Centre for Research and Learning , Toronto , Ontario , Canada
| | - José Carlos Rivera
- b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada
| | - Sylvain Chemtob
- a Department of Pharmacology and Therapeutics , McGill University , Montréal , Québec , Canada.,b CHU Sainte-Justine Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,c Maisonneuve-Rosemont Hospital Research Centre , University of Montréal , Montréal , Québec , Canada.,d Departments of Pediatrics, Ophthalmology and Pharmacology , University of Montréal , Montréal , Québec , Canada
| |
Collapse
|
14
|
Di Benedetto A, Sun L, Zambonin CG, Tamma R, Nico B, Calvano CD, Colaianni G, Ji Y, Mori G, Grano M, Lu P, Colucci S, Yuen T, New MI, Zallone A, Zaidi M. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor. Proc Natl Acad Sci U S A 2014; 111:16502-7. [PMID: 25378700 PMCID: PMC4246276 DOI: 10.1073/pnas.1419349111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We report that oxytocin (Oxt) receptors (Oxtrs), on stimulation by the ligand Oxt, translocate into the nucleus of osteoblasts, implicating this process in the action of Oxt on osteoblast maturation. Sequential immunocytochemistry of intact cells or isolated nucleoplasts stripped of the outer nuclear membrane showed progressive nuclear localization of the Oxtr; this nuclear translocation was confirmed by monitoring the movement of Oxtr-EGFP as well as by immunogold labeling. Nuclear Oxtr localization was conclusively shown by Western immunoblotting and MS of nuclear lysate proteins. We found that the passage of Oxtrs into the nucleus was facilitated by successive interactions with β-arrestins (Arrbs), the small GTPase Rab5, importin-β (Kpnb1), and transportin-1 (Tnpo1). siRNA-mediated knockdown of Arrb1, Arrb2, or Tnpo1 abrogated Oxt-induced expression of the osteoblast differentiation genes osterix (Sp7), Atf4, bone sialoprotein (Ibsp), and osteocalcin (Bglap) without affecting Erk phosphorylation. Likewise and again, without affecting pErk, inhibiting Arrb recruitment by mutating Ser rich clusters of the nuclear localization signal to Ala abolished nuclear import and Oxtr-induced gene expression. These studies define a previously unidentified mechanism for Oxtr action on bone and open possibilities for direct transcriptional modulation by nuclear G protein-coupled receptors.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy; Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Li Sun
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Carlo G Zambonin
- Department of Chemistry, University of Bari Aldo Moro, Bari 70126, Italy; and
| | - Roberto Tamma
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Beatrice Nico
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, Bari 70126, Italy; and
| | - Graziana Colaianni
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Yaoting Ji
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Maria Grano
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Ping Lu
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | - Silvia Colucci
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Tony Yuen
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Alberta Zallone
- Department of Basic Medical Science, Neurosciences and Sensory Organs, University of Bari Aldo Moro Medical School, Bari 70126, Italy
| | - Mone Zaidi
- Mount Sinai Bone Program and Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029; Structural and Chemical Biology, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
15
|
Ieronimakis N, Pantoja M, Hays AL, Dosey TL, Qi J, Fischer KA, Hoofnagle AN, Sadilek M, Chamberlain JS, Ruohola-Baker H, Reyes M. Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice. Skelet Muscle 2013; 3:20. [PMID: 23915702 PMCID: PMC3750760 DOI: 10.1186/2044-5040-3-20] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/22/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Presently, there is no effective treatment for the lethal muscle wasting disease Duchenne muscular dystrophy (DMD). Here we show that increased sphingosine-1-phoshate (S1P) through direct injection or via the administration of the small molecule 2-acetyl-4(5)-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, has beneficial effects in acutely injured dystrophic muscles of mdx mice. METHODS We treated mdx mice with and without acute injury and characterized the histopathological and functional effects of increasing S1P levels. We also tested exogenous and direct administration of S1P on mdx muscles to examine the molecular pathways under which S1P promotes regeneration in dystrophic muscles. RESULTS Short-term treatment with THI significantly increased muscle fiber size and extensor digitorum longus (EDL) muscle specific force in acutely injured mdx limb muscles. In addition, the accumulation of fibrosis and fat deposition, hallmarks of DMD pathology and impaired muscle regeneration, were lower in the injured muscles of THI-treated mdx mice. Furthermore, increased muscle force was observed in uninjured EDL muscles with a longer-term treatment of THI. Such regenerative effects were linked to the response of myogenic cells, since intramuscular injection of S1P increased the number of Myf5nlacz/+ positive myogenic cells and newly regenerated myofibers in injured mdx muscles. Intramuscular injection of biotinylated-S1P localized to muscle fibers, including newly regenerated fibers, which also stained positive for S1P receptor 1 (S1PR1). Importantly, plasma membrane and perinuclear localization of phosphorylated S1PR1 was observed in regenerating muscle fibers of mdx muscles. Intramuscular increases of S1P levels, S1PR1 and phosphorylated ribosomal protein S6 (P-rpS6), and elevated EDL muscle specific force, suggest S1P promoted the upregulation of anabolic pathways that mediate skeletal muscle mass and function. CONCLUSIONS These data show that S1P is beneficial for muscle regeneration and functional gain in dystrophic mice, and that THI, or other pharmacological agents that raise S1P levels systemically, may be developed into an effective treatment for improving muscle function and reducing the pathology of DMD.
Collapse
Affiliation(s)
- Nicholas Ieronimakis
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alshaker H, Sauer L, Monteil D, Ottaviani S, Srivats S, Böhler T, Pchejetski D. Therapeutic potential of targeting SK1 in human cancers. Adv Cancer Res 2013; 117:143-200. [PMID: 23290780 DOI: 10.1016/b978-0-12-394274-6.00006-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sphingosine kinase 1 (SK1) is a lipid enzyme with oncogenic properties that converts the proapoptotic lipids ceramide and sphingosine into the antiapoptotic lipid sphingosine-1-phosphate and activates the signal transduction pathways that lead to cell proliferation, migration, the activation of the inflammatory response, and the impairment of apoptosis. There is compelling evidence that SK1 activation contributes to cancer progression leading to increased oncogenic transformation, tumor growth, resistance to therapies, tumor neovascularization, and metastatic spread. High levels of SK1 expression or activity have been associated with a poor prognosis in several human cancers. Recent studies using cancer cell and mouse models demonstrate a significant potential for SK1-targeting therapies to synergize with the effects of chemotherapy and radiotherapy; however, until recently the absence of clinically applicable SK1 inhibitors has limited the translation of these findings into patients. With the recent discovery of SK1 inhibiting properties of a clinically approved drug FTY720 (Fingolimod), SK1 has gained significant attention from both clinicians and the pharmaceutical industry and it is hoped that trials of newly developed SK1 inhibitors may follow soon. This review provides an overview of the SK1 signaling, its relevance to cancer progression, and the potential clinical significance of targeting SK1 for improved local or systemic control of human cancers.
Collapse
Affiliation(s)
- Heba Alshaker
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Fang SH, Lin KN, Huang XQ, Lu YB, Zhang WP, Wei EQ. Nuclear translocation of cysteinyl leukotriene receptor 1 is involved in oxygen-glucose deprivation-induced damage to endothelial cells. Acta Pharmacol Sin 2012; 33:1511-7. [PMID: 23085741 DOI: 10.1038/aps.2012.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Cysteinyl leukotriene receptor 1 (CysLT(1) receptor) is located in epithelial cells, and translocates from the plasma membrane to the nucleus in a ligand-dependent manner. Here, we investigated whether CysLT(1) receptors translocated to the nucleus in endothelial cells after ischemic insult in vitro and whether it was involved in ischemic injury to endothelial cells. METHODS EA.hy926 cell line, derived from human umbilical vein endothelial cells, was subjected to oxygen-glucose deprivation (OGD). The expression and distribution of CysLT(1) receptors were detected by immunofluorescent staining, immunogold labeling and immunoblotting analyses. Cell viability was evaluated using MTT reduction assay. Necrosis and apoptosis were determined by double fluorescent staining with propidium iodide and Hoechst 33342. RESULTS CysLT(1) receptors were primarily distributed in the cytoplasm and nucleus in EA.hy926 cells, and few was found in the cell membrane. OGD induced the translocation of CysLT(1) receptors from the cytoplasm to the nucleus in a time-depen dent manner, with a peak reached at 6 h. OGD-induced nuclear translocation of CysLT(1) receptors was inhibited by pretreatment with the CysLT(1) receptor antagonist pranlukast (10 μmol/L), or by preincubation with NLS-pep, a peptide corresponding to the nuclear localization sequence of CysLT(1) receptor (10 μg/mL). However, zileuton, an inhibitor of 5-lipoxygenase that was a key enzyme in cysteinyl leukotriene generation, did not inhibit the nuclear translocation of CysLT(1) receptors. Moreover, preincubation with NLS-pep (0.4 μg/mL) significantly ameliorated OGD-induced cell viability reduction and necrosis. CONCLUSION CysLT(1) receptors in endothelial cells translocate to the nucleus in a ligand-independent manner after ischemic insult in vitro, and it is involved in the ischemic injury.
Collapse
|
18
|
El-Shewy HM, Sohn M, Wilson P, Lee MH, Hammad SM, Luttrell LM, Jaffa AA. Low-density lipoprotein induced expression of connective tissue growth factor via transactivation of sphingosine 1-phosphate receptors in mesangial cells. Mol Endocrinol 2012; 26:833-45. [PMID: 22422617 DOI: 10.1210/me.2011-1261] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pro-fibrotic connective tissue growth factor (CTGF) has been linked to the development and progression of diabetic vascular and renal disease. We recently reported that low-density lipoproteins (LDL) induced expression of CTGF in aortic endothelial cells. However, the molecular mechanisms are not fully defined. Here, we have studied the mechanism by which LDL regulates CTGF expression in renal mesangial cells. In these cells, treatment with pertussis toxin abolished LDL-stimulated activation of ERK1/2 and c-Jun N-terminal kinase (JNK), indicating the involvement of heterotrimeric G proteins in LDL signaling. Treatment with LDL promoted activation and translocation of endogenous sphingosine kinase 1 (SK1) from the cytosol to the plasma membrane concomitant with production of sphingosine-1-phosphate (S1P). Pretreating cells with SK inhibitor, dimethylsphinogsine or down-regulation of SK1 and SK2 revealed that LDL-dependent activation of ERK1/2 and JNK is mediated by SK1. Using a green fluorescent protein-tagged S1P₁ receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that LDL induced S1P receptor activation. Pretreating cells with S1P₁/S1P₃ receptor antagonist VPC23019 significantly inhibited activation of ERK1/2 and JNK by LDL, suggesting that LDL elicits G protein-dependent activation of ERK1/2 and JNK by stimulating SK1-dependent transactivation of S1P receptors. Furthermore, S1P stimulation induced expression of CTGF in a dose-dependent manner that was markedly inhibited by blocking the ERK1/2 and JNK signaling pathways. LDL-induced CTGF expression was pertussis toxin sensitive and inhibited by dimethylsphinogsine down-regulation of SK1 and VPC23019 treatment. Our data suggest that SK1-dependent S1P receptor transactivation is upstream of ERK1/2 and JNK and that all three steps are required for LDL-regulated expression of CTGF in mesangial cells.
Collapse
Affiliation(s)
- Hesham M El-Shewy
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hsu A, Zhang W, Lee JF, An J, Ekambaram P, Liu J, Honn KV, Klinge CM, Lee MJ. Sphingosine-1-phosphate receptor-3 signaling up-regulates epidermal growth factor receptor and enhances epidermal growth factor receptor-mediated carcinogenic activities in cultured lung adenocarcinoma cells. Int J Oncol 2012; 40:1619-26. [PMID: 22344462 DOI: 10.3892/ijo.2012.1379] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) regulates a wide array of biological functions. However, the role of S1P signaling in tumorigenesis remains to be elucidated. In this study, we show that S1P receptor subtype 3 (S1P₃) is markedly up-regulated in a subset of lung adenocarcinoma cells compared to normal lung epithelial cells. Specific knockdown of S1P₃ receptors inhibits proliferation and anchorage-independent growth of lung adenocarcinoma cells. Mechanistically, we demonstrate that S1P₃ signaling increases epidermal growth factor receptor (EGFR) expression via the Rho kinase (ROCK) pathway in lung adenocarcinoma cells. Nuclear run-off analysis indicates that S1P/S1P₃ signaling transcriptionally increases EGFR expression. Knockdown of S1P₃ receptors diminishes the S1P-stimulated EGFR expression in lung adenocarcinoma cells. Moreover, S1P treatment greatly enhances EGF-stimulated colony formation, proliferation and invasion of lung adenocarcinoma cells. Together, these results suggest that the enhanced S1P₃-EGFR signaling axis may contribute to the tumorigenesis or progression of lung adenocarcinomas.
Collapse
Affiliation(s)
- Andrew Hsu
- Bioactive Lipid Research Program, Department of Pathology, Wayne State University School of Medicine, 423 Chemistry Building, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Argraves KM, Wilkerson BA, Argraves WS. Sphingosine-1-phosphate signaling in vasculogenesis and angiogenesis. World J Biol Chem 2010; 1:291-7. [PMID: 21537462 PMCID: PMC3083932 DOI: 10.4331/wjbc.v1.i10.291] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/29/2010] [Accepted: 09/05/2010] [Indexed: 02/05/2023] Open
Abstract
Blood vessels either form de novo through the process of vasculogenesis or through angiogenesis that involves the sprouting and proliferation of endothelial cells in pre-existing blood vessels. A complex interactive network of signaling cascades downstream from at least three of the nine known G-protein-coupled sphingosine-1-phosphate (S1P) receptors act as a prime effector of neovascularization that occurs in embryonic development and in association with various pathologies. This review focuses on the current knowledge of the roles of S1P signaling in vasculogenesis and angiogenesis, with particular emphasis on vascular cell adhesion and motility responses.
Collapse
Affiliation(s)
- Kelley M Argraves
- Kelley M Argraves, Brent A Wilkerson, W Scott Argraves, Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, United States
| | | | | |
Collapse
|
21
|
Abstract
Sphingolipids comprise a complex family of naturally occurring molecules that are enriched in lipid rafts and contribute to their unique biochemical properties. Membrane sphingolipids also serve as a reservoir for bioactive metabolites including sphingosine, ceramide, sphingosine-1-phosphate and ceramide-1-phosphate. Among these, sphingosine-1-phosphate has emerged as a central regulator of mammalian biology. Sphingosine-1-phosphate is essential for mammalian brain and cardiac development and for maturation of the systemic circulatory system and lymphatics. In addition, sphingosine-1-phosphate contributes to trafficking and effector functions of lymphocytes and other hematopoietic cells and protects against various forms of tissue injury. However, sphingosine-1-phosphate is also an oncogenic lipid that promotes tumor growth and progression. Recent preclinical and clinical investigations using pharmacological agents that target sphingosine-1-phosphate, its receptors and the enzymes required for its biosynthesis and degradation demonstrate the promise and potential risks of modulating sphingosine-1-phosphate signaling in treatment strategies for autoimmunity, cancer, cardiovascular disease and other pathological conditions.
Collapse
|
22
|
Verzijl D, Peters SLM, Alewijnse AE. Sphingosine-1-phosphate receptors: zooming in on ligand-induced intracellular trafficking and its functional implications. Mol Cells 2010; 29:99-104. [PMID: 20127285 DOI: 10.1007/s10059-010-0041-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 12/27/2009] [Indexed: 01/10/2023] Open
Abstract
Regulatory processes including receptor phosphorylation and intracellular trafficking, also referred to as receptor internalization, are important processes to terminate G protein-coupled receptor (GPCR) signaling. Compelling evidence now indicates that internalization of a receptor is not necessarily the endpoint of signaling, but can also be the beginning of the activation of intracellular signaling pathways. Sphingosine-1-phosphate (S1P) receptors, which are activated by the endogenous phospholipid S1P, belong to the family of GPCRs. Interestingly, there is evidence indicating differential intracellular trafficking of one of the S1P receptor subtypes, the S1P1 receptor, upon agonist activation by either S1P or the synthetic agonist FTY720-P. Moreover, the differential effect of FTY720-P on S1P1 receptor regulation has been suggested to be the mechanism of action of this drug, which is now in Phase III clinical trials for the treatment of multiple sclerosis. It is thus of importance to get a good insight into the regulation of S1P receptors. This review therefore gives a detailed overview about the current state of knowledge on S1P receptor internalization and its functional implications, including some data on nuclear signaling of S1P receptors.
Collapse
Affiliation(s)
- Dennis Verzijl
- Department Pharmacology and Pharmacotherapy, Academic Medical Center, Amsterdam, the Netherlands
| | | | | |
Collapse
|
23
|
Extending the knowledge in histochemistry and cell biology. Histochem Cell Biol 2009; 133:1-40. [PMID: 19946696 DOI: 10.1007/s00418-009-0665-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2009] [Indexed: 01/21/2023]
Abstract
Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.
Collapse
|