1
|
van Weperen VYH, Vaseghi M. Cardiac vagal afferent neurotransmission in health and disease: review and knowledge gaps. Front Neurosci 2023; 17:1192188. [PMID: 37351426 PMCID: PMC10282187 DOI: 10.3389/fnins.2023.1192188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 06/24/2023] Open
Abstract
The meticulous control of cardiac sympathetic and parasympathetic tone regulates all facets of cardiac function. This precise calibration of cardiac efferent innervation is dependent on sensory information that is relayed from the heart to the central nervous system. The vagus nerve, which contains vagal cardiac afferent fibers, carries sensory information to the brainstem. Vagal afferent signaling has been predominantly shown to increase parasympathetic efferent response and vagal tone. However, cardiac vagal afferent signaling appears to change after cardiac injury, though much remains unknown. Even though subsequent cardiac autonomic imbalance is characterized by sympathoexcitation and parasympathetic dysfunction, it remains unclear if, and to what extent, vagal afferent dysfunction is involved in the development of vagal withdrawal. This review aims to summarize the current understanding of cardiac vagal afferent signaling under in health and in the setting of cardiovascular disease, especially after myocardial infarction, and to highlight the knowledge gaps that remain to be addressed.
Collapse
Affiliation(s)
- Valerie Y. H. van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
2
|
Salavatian S, Hoang JD, Yamaguchi N, Lokhandwala ZA, Swid MA, Armour JA, Ardell JL, Vaseghi M. Myocardial infarction reduces cardiac nociceptive neurotransmission through the vagal ganglia. JCI Insight 2022; 7:155747. [PMID: 35015733 PMCID: PMC8876456 DOI: 10.1172/jci.insight.155747] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/05/2022] Open
Abstract
Myocardial infarction causes pathological changes in the autonomic nervous system, which exacerbate heart failure and predispose to fatal ventricular arrhythmias and sudden death. These changes are characterized by sympathetic activation and parasympathetic dysfunction (reduced vagal tone). Reasons for the central vagal withdrawal and, specifically, whether myocardial infarction causes changes in cardiac vagal afferent neurotransmission that then affect efferent tone, remain unknown. The objective of this study was to evaluate whether myocardial infarction causes changes in vagal neuronal afferent signaling. Using in vivo neural recordings from the inferior vagal (nodose) ganglia and immunohistochemical analyses, structural and functional alterations in vagal sensory neurons were characterized in a chronic porcine infarct model and compared with normal animals. Myocardial infarction caused an increase in the number of nociceptive neurons but a paradoxical decrease in functional nociceptive signaling. No changes in mechanosensitive neurons were observed. Notably, nociceptive neurons demonstrated an increase in GABAergic expression. Given that nociceptive signaling through the vagal ganglia increases efferent vagal tone, the results of this study suggest that a decrease in functional nociception, possibly due to an increase in expression of inhibitory neurotransmitters, may contribute to vagal withdrawal after myocardial infarction.
Collapse
Affiliation(s)
- Siamak Salavatian
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Jonathan D Hoang
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Naoko Yamaguchi
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | | | - Mohammed Amer Swid
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA, Los Angeles, United States of America
| |
Collapse
|
3
|
Avraham O, Deng PY, Maschi D, Klyachko VA, Cavalli V. Disrupted Association of Sensory Neurons With Enveloping Satellite Glial Cells in Fragile X Mouse Model. Front Mol Neurosci 2022; 14:796070. [PMID: 35058748 PMCID: PMC8763968 DOI: 10.3389/fnmol.2021.796070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022] Open
Abstract
Among most prevalent deficits in individuals with Fragile X syndrome (FXS) is hypersensitivity to sensory stimuli and somatosensory alterations. Whether dysfunction in peripheral sensory system contributes to these deficits remains poorly understood. Satellite glial cells (SGCs), which envelop sensory neuron soma, play critical roles in regulating neuronal function and excitability. The potential contributions of SGCs to sensory deficits in FXS remain unexplored. Here we found major structural defects in sensory neuron-SGC association in the dorsal root ganglia (DRG), manifested by aberrant covering of the neuron and gaps between SGCs and the neuron along their contact surface. Single-cell RNAseq analyses demonstrated transcriptional changes in both neurons and SGCs, indicative of defects in neuronal maturation and altered SGC vesicular secretion. We validated these changes using fluorescence microscopy, qPCR, and high-resolution transmission electron microscopy (TEM) in combination with computational analyses using deep learning networks. These results revealed a disrupted neuron-glia association at the structural and functional levels. Given the well-established role for SGCs in regulating sensory neuron function, altered neuron-glia association may contribute to sensory deficits in FXS.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Dario Maschi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Vitaly A. Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Guan M, Ying S, Wang Y. Increased expression of transient receptor potential channels and neurogenic factors associates with cough severity in a guinea pig model. BMC Pulm Med 2021; 21:187. [PMID: 34078339 PMCID: PMC8173754 DOI: 10.1186/s12890-021-01556-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies suggest that transient receptor potential (TRP) channels and neurogenic inflammation may be involved in idiopathic pulmonary fibrosis (IPF)-related high cough sensitivity, although the details of mechanism are largely unknown. Here, we aimed to further explore the potential mechanism involved in IPF-related high cough sensitivity to capsaicin challenge in a guinea pig model of pulmonary fibrosis induced by bleomycin. METHODS Western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) were employed to measure the expression of TRP channel subfamily A, member 1 (TRPA1) and TRP vanilloid 1 (TRPV1), which may be involved in the cough reflex pathway. Immunohistochemical analysis and RT-qPCR were used to detect the expression of neuropeptides substance P (SP), Neurokinin-1 receptor (NK1R), and calcitonin gene-related peptide (CGRP) in lung tissues. Concentrations of nerve growth factor (NGF), SP, neurokinin A (NKA), neurokinin B (NKB), and brain-derived neurotrophic factor (BDNF) in lung tissue homogenates were measured by ELISA. RESULTS Cough sensitivity to capsaicin was significantly higher in the model group than that of the sham group. RT-qPCR and immunohistochemical analysis showed that the expression of TRPA1 and TRPV1 in the jugular ganglion and nodal ganglion, and SP, NK1R, and CGRP in lung tissue was significantly higher in the model group than the control group. In addition, expression of TRP and neurogenic factors was positively correlated with cough sensitivity of the experimental animals. CONCLUSION Up-regulated expression of TRPA1 and TRPV1 in the cough reflex pathway and neurogenic inflammation might contribute to the IPF-related high cough sensitivity in guinea pig model.
Collapse
Affiliation(s)
- Mengyue Guan
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, 10010, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, No. 10th Xitoutiao, You'anmenwai Street, Fengtai District, Beijing, China
| | - Yuguang Wang
- Department of Respiratory Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, No. 23rd Art Museum Backstreet, Dongcheng District, Beijing, 10010, China.
| |
Collapse
|
5
|
Pannese E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. BIOLOGY AND PATHOLOGY OF PERINEURONAL SATELLITE CELLS IN SENSORY GANGLIA 2018. [DOI: 10.1007/978-3-319-60140-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Hanani M. Role of satellite glial cells in gastrointestinal pain. Front Cell Neurosci 2015; 9:412. [PMID: 26528140 PMCID: PMC4602093 DOI: 10.3389/fncel.2015.00412] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) pain is a common clinical problem, for which effective therapy is quite limited. Sensations from the GI tract, including pain, are mediated largely by neurons in the dorsal root ganglia (DRG), and to a smaller extent by vagal afferents emerging from neurons in the nodose/jugular ganglia. Neurons in rodent DRG become hyperexcitable in models of GI pain (e.g., gastric or colonic inflammation), and can serve as a source for chronic pain. Glial cells are another element in the pain signaling pathways, and there is evidence that spinal glial cells (microglia and astrocytes) undergo activation (gliosis) in various pain models and contribute to pain. Recently it was found that satellite glial cells (SGCs), the main type of glial cells in sensory ganglia, might also contribute to chronic pain in rodent models. Most of that work focused on somatic pain, but in several studies GI pain was also investigated, and these are discussed in the present review. We have shown that colonic inflammation induced by dinitrobenzene sulfonic acid (DNBS) in mice leads to the activation of SGCs in DRG and increases gap junction-mediated coupling among these cells. This coupling appears to contribute to the hyperexcitability of DRG neurons that innervate the colon. Blocking gap junctions (GJ) in vitro reduced neuronal hyperexcitability induced by inflammation, suggesting that glial GJ participate in SGC-neuron interactions. Moreover, blocking GJ by carbenoxolone and other agents reduces pain behavior. Similar changes in SGCs were also found in the mouse nodose ganglia (NG), which provide sensory innervation to most of the GI tract. Following systemic inflammation, SGCs in these ganglia were activated, and displayed augmented coupling and greater sensitivity to the pain mediator ATP. The contribution of these changes to visceral pain remains to be determined. These results indicate that although visceral pain is unique, it shares basic mechanisms with somatic pain, suggesting that therapeutic approaches to both pain types may be similar. Future research in this field should include additional types of GI injury and also other types of visceral pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus Jerusalem, Israel
| |
Collapse
|
7
|
Koike T, Wakabayashi T, Mori T, Hirahara Y, Yamada H. Sox2 promotes survival of satellite glial cells in vitro. Biochem Biophys Res Commun 2015; 464:269-74. [PMID: 26116536 DOI: 10.1016/j.bbrc.2015.06.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 12/12/2022]
Abstract
Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors.
Collapse
Affiliation(s)
- Taro Koike
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata-City, Osaka 573-1010, Japan.
| | - Taketoshi Wakabayashi
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata-City, Osaka 573-1010, Japan
| | - Tetsuji Mori
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata-City, Osaka 573-1010, Japan
| | - Yukie Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata-City, Osaka 573-1010, Japan
| | - Hisao Yamada
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata-City, Osaka 573-1010, Japan
| |
Collapse
|
8
|
Feldman-Goriachnik R, Belzer V, Hanani M. Systemic inflammation activates satellite glial cells in the mouse nodose ganglion and alters their functions. Glia 2015; 63:2121-2132. [DOI: 10.1002/glia.22881] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 06/08/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Rachel Feldman-Goriachnik
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Vitali Belzer
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| | - Menachem Hanani
- Laboratory of Experimental Surgery; Hadassah-Hebrew University Medical Center; Mount Scopus Jerusalem 91240 Israel
| |
Collapse
|
9
|
Yokoyama T, Fukuzumi S, Hayashi H, Nakamuta N, Yamamoto Y. GABA-mediated modulation of ATP-induced intracellular calcium responses in nodose ganglion neurons of the rat. Neurosci Lett 2014; 584:168-72. [PMID: 25451727 DOI: 10.1016/j.neulet.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 11/16/2022]
Abstract
We examined ATP-induced intracellular Ca(2+) ([Ca(2+)]i) responses in the neurons and satellite cells from one of the viscerosensory ganglia, the nodose ganglion (NG), as well as the GABA-mediated modulation of ATP-induced neuronal [Ca(2+)]i responses using intracellular calcium imaging. In neurons with satellite cells, ATP induced [Ca(2+)]i increases in both the neurons and satellite cells. The P2X receptor agonist, α,β-meATP, induced [Ca(2+)]i increases in neurons and this response was inhibited by the P2X receptor antagonist, PPADS. On the other hand, the P2Y receptor agonist, ADP, induced [Ca(2+)]i increases in satellite cells, and this response was inhibited by the P2Y receptor antagonist, MRS2179. RT-PCR detected the expression of P2X2, P2X3, P2Y1, and P2Y2 receptor mRNAs in NG extracts. Immunohistochemistry revealed that NG neurons and satellite cells were immunoreactive to P2X2 and P2X3, and P2Y1 and P2Y2 receptors, respectively. In isolated neurons, the ATP-evoked [Ca(2+)]i increase was inhibited by GABA. However, in neurons with satellite cells, the GABAA receptor antagonist, bicuculline, enhanced the ATP-induced [Ca(2+)]i increase in neurons. These results suggest that viscerosensory neuronal excitability may be modulated by GABA from satellite cells in NG.
Collapse
Affiliation(s)
- Takuya Yokoyama
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Shou Fukuzumi
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hitomi Hayashi
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Gifu, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, Morioka, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, Gifu, Japan.
| |
Collapse
|
10
|
Evidence for glutamate as a neuroglial transmitter within sensory ganglia. PLoS One 2013; 8:e68312. [PMID: 23844184 PMCID: PMC3699553 DOI: 10.1371/journal.pone.0068312] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.
Collapse
|
11
|
Cadaveira-Mosquera A, Pérez M, Reboreda A, Rivas-Ramírez P, Fernández-Fernández D, Lamas JA. Expression of K2P channels in sensory and motor neurons of the autonomic nervous system. J Mol Neurosci 2012; 48:86-96. [PMID: 22544515 DOI: 10.1007/s12031-012-9780-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/11/2012] [Indexed: 02/20/2023]
Abstract
Several types of neurons within the central and peripheral somatic nervous system express two-pore-domain potassium (K2P) channels, providing them with resting potassium conductances. We demonstrate that these channels are also expressed in the autonomic nervous system where they might be important modulators of neuronal excitability. We observed strong mRNA expression of members of the TRESK and TREK subfamilies in both the mouse superior cervical ganglion (mSCG) and the mouse nodose ganglion (mNG). Motor mSCG neurons strongly expressed mRNA transcripts for TRESK and TREK-2 subunits, whereas TASK-1 and TASK-2 subunits were only moderately expressed, with only few or very few transcripts for TREK-1 and TRAAK (TRESK ≈ TREK-2 > TASK-2 ≈ TASK-1 > TREK-1 > TRAAK). Similarly, the TRESK and TREK-1 subunits were the most strongly expressed in sensorial mNG neurons, while TASK-1 and TASK-2 mRNAs were moderately expressed, and fewer TREK-2 and TRAAK transcripts were detected (TRESK ≈ TREK-1 > TASK-1 ≈ TASK-2 > TREK-2 > TRAAK). Moreover, cell-attached single-channel recordings showed a major contribution of TRESK and TREK-1 channels in mNG. As the level of TRESK mRNA expression was not statistically different between the ganglia analysed, the distinct expression of TREK-1 and TREK-2 subunits was the main difference observed between these structures. Our results strongly suggest that TRESK and TREK channels are important modulators of the sensorial and motor information flowing through the autonomic nervous system, probably exerting a strong influence on vagal reflexes.
Collapse
Affiliation(s)
- Alba Cadaveira-Mosquera
- Department of Functional Biology, Faculty of Biology, University of Vigo, Campus Lagoas-Marcosende, 36310, Vigo, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Satellite glial cells (SGCs) are specialized cells that form a tight sheath around neurons in sensory ganglia. In recent years, there is increasing interest in SGCs and they have been studied in both intact ganglia and in tissue culture. Here we studied phenotypic changes in SGCs in cultured trigeminal ganglia from adult mice, containing both neurons and SGCs, using phase optics, immunohistochemistry and time-lapse photography. Cultures were followed for up to 14 days. After isolation virtually every sensory neuron is ensheathed by SGCs, as in the intact ganglia. After one day in culture, SGCs begin to migrate away from their parent neurons, but in most cases the neurons still retain an intact glial cover. At later times in culture, there is a massive migration of SGCs away from the neurons and they undergo clear morphological changes, and at 7 days they become spindle-shaped. At one day in culture SGCs express the glial marker glutamine synthetase, and also the purinergic receptor P2X7. From day 2 in culture the glutamine synthetase expression is greatly diminished, whereas that of P2X7 is largely unchanged. We conclude that SGCs retain most of their characteristics for about 24 h after culturing, but undergo major phenotypic changes at later times.
Collapse
|
13
|
δ-Aminolevulinic acid and its methyl ester induce the formation of Protoporphyrin IX in cultured sensory neurones. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:583-602. [PMID: 21947250 DOI: 10.1007/s00210-011-0683-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/14/2011] [Indexed: 12/20/2022]
Abstract
Application of δ-aminolevulinic acid (ALA) or its methyl ester (MAL) onto cutaneous tumours increases intracellular Protoporphyrin IX (PpIX), serving as photosensitizer in photodynamic therapy (PDT). While PDT is highly effective as treatment of neoplastic skin lesions, it may induce severe pain in some patients. Here, we investigated ALA and MAL uptake and PpIX formation in sensory neurones as potential contributor to the pain. PpIX formation was induced in cultured sensory neurones from rat dorsal root ganglion by incubation with ALA or MAL. Using inhibitors of GABA transporters (GAT), a pharmacological profile of ALA and MAL uptake was assessed. GAT mRNA expression in the cultures was determined by RT-PCR. Cultured sensory neurones synthesised Protoporphyrin IX (PpIX) from extracellularly administered ALA and MAL. PpIX formation was dose- and time-dependent with considerably different kinetics for both compounds. While partial inhibition occurred using L-arginine, PpIX formation from both ALA and MAL could be fully blocked by the GABA-Transporter (GAT)-2/3 inhibitor (S)-SNAP 5114 with similar K (i) (ALA: 195 ± 6 μM; MAL: 129 ± 13 μM). GAT-1 and GAT-3 could be detected in sensory neurons using RT-PCR on mRNA level and using [³H]-GABA uptake on protein level. Cultured sensory neurones take up ALA and MAL and synthesize PpIX from both, enabling a direct impact of photodynamic therapy on cutaneous free nerve endings. The pharmacological profile of ALA and MAL uptake in our test system was very similar and suggests uptake via GABA and amino acid transporters.
Collapse
|
14
|
Ferrari MFR, Coelho EF, Farizatto KLG, Chadi G, Fior-Chadi DR. Modulation of tyrosine hydroxylase, neuropeptide y, glutamate, and substance p in Ganglia and brain areas involved in cardiovascular control after chronic exposure to nicotine. Int J Hypertens 2011; 2011:216464. [PMID: 21822476 PMCID: PMC3147125 DOI: 10.4061/2011/216464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/03/2011] [Accepted: 06/14/2011] [Indexed: 11/20/2022] Open
Abstract
Considering that nicotine instantly interacts with central and peripheral nervous systems promoting cardiovascular effects after tobacco smoking, we evaluated the modulation of glutamate, tyrosine hydroxylase (TH), neuropeptide Y (NPY), and substance P (SP) in nodose/petrosal and superior cervical ganglia, as well as TH and NPY in nucleus tractus solitarii (NTS) and hypothalamic paraventricular nucleus (PVN) of normotensive Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) after 8 weeks of nicotine exposure. Immunohistochemical and in situ hybridization data demonstrated increased expression of TH in brain and ganglia related to blood pressure control, preferentially in SHR, after nicotine exposure. The alkaloid also increased NPY immunoreactivity in ganglia, NTS, and PVN of SHR, in spite of decreasing its receptor (NPY1R) binding in NTS of both strains. Nicotine increased SP and glutamate in ganglia. In summary, nicotine positively modulated the studied variables in ganglia while its central effects were mainly constrained to SHR.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Departamento de Genetica e Biologia Evolutiva, Instituto de Biociencias, Universidade de São Paulo, Rua do Matao 277, 05508-090 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
15
|
Hübner S, Efthymiadis A. Histochemistry and cell biology: the annual review 2010. Histochem Cell Biol 2011; 135:111-40. [PMID: 21279376 DOI: 10.1007/s00418-011-0781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
This review summarizes recent advances in histochemistry and cell biology which complement and extend our knowledge regarding various aspects of protein functions, cell and tissue biology, employing appropriate in vivo model systems in conjunction with established and novel approaches. In this context several non-expected results and discoveries were obtained which paved the way of research into new directions. Once the reader embarks on reading this review, it quickly becomes quite obvious that the studies contribute not only to a better understanding of fundamental biological processes but also provide use-oriented aspects that can be derived therefrom.
Collapse
Affiliation(s)
- Stefan Hübner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstrasse 6, 97070 Würzburg, Germany.
| | | |
Collapse
|