1
|
Di Martino V, Questiaux J, Lemagoarou T, Weil D, Vendeville S, Engelmann C, Hu J, Singh V, Newsome PN, Lal SB, Sarin SK, Berg T, Thevenot T. Granulocyte colony stimulating factor in decompensated cirrhosis, acute alcoholic hepatitis, and acute-on-chronic liver failure: A comprehensive meta-analysis of randomized controlled trials. Clin Res Hepatol Gastroenterol 2023; 47:102207. [PMID: 37716522 DOI: 10.1016/j.clinre.2023.102207] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND GCSF may improve the prognosis of severe liver disease by promoting liver regeneration and immune restoration. Our Aim was to investigate its controversial efficacy in decompensated cirrhosis, acute alcoholic hepatitis (AAH), or acute-on-chronic liver failure (ACLF) through meta-analysis. METHODS Meta-analysis of proportions (random effect model) including 19 RCTs (1287 patients from 16 Asian and 3 European studies including 487 ACLF, 231 AAH and 569 cirrhotic patients) evaluating survival at day-28, day-90, 6 months, one year, and/or occurrence of sepsis as major outcomes. RESULTS In patients with decompensated cirrhosis, G-CSF administration was associated with a reduction in the weight-adjusted risk of mortality of 9% at day-90 (OR=0.33; 95%CI: 0.18-0.58; p = 0.0002), 16% at 6 months (OR=0.31; 95%CI: 0.15-0.62; p = 0.0009), 26% at one year (OR=0.21; 95%CI:0.12-0.38, p<0.0001) and a weight-adjusted 28% risk reduction for sepsis (OR=0.28; 95%CI: 0.16-0.49; p<0.0001). Only Asian studies were positive. In AAH, G-CSF was associated with an 18% reduction in weight-adjusted mortality risk at day-28 (OR=0.31; 95%CI:0.11-0.83, p = 0.021), 32% at day-90 (OR=0.20; 95%CI:0.09-0.46, p<0.0001) and a weight-adjusted 42% risk reduction for sepsis (OR=0.17; 95%CI: 0.08-0.38; p<0.0001). Only Asian studies, in which corticosteroids were not given systematically in case of severe AAH, were positive. In patients with ACLF, the results on mortality at day-28 were heterogeneous, and GCSF had no beneficial effect on sepsis or survival at day-90. CONCLUSION G-CSF may be effective in patients with decompensated cirrhosis or AAH by reducing the occurrence of sepsis and mortality. Further meta-analyses of individual data, or new, powerful and methodologically flawless therapeutic trials, are warranted to confirm these results, which harbor wide divergences between Asian and European RCTs.
Collapse
Affiliation(s)
- Vincent Di Martino
- Service d'Hépatologie, CHU Jean Minjoz, Besançon, France; Laboratoire EPILAB EA4266, Université de Franche Comté, Besançon, France.
| | | | - Tristan Lemagoarou
- Département d'information Médicale et de Santé Publique, GHPSO CREIL, Creil, France
| | - Delphine Weil
- Service d'Hépatologie, CHU Jean Minjoz, Besançon, France; Laboratoire EPILAB EA4266, Université de Franche Comté, Besançon, France
| | | | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Jinhua Hu
- Department of Hepatology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Virendra Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Philip N Newsome
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Sadhna B Lal
- Division of Paediatric Gastroenterology and Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Shiv K Sarin
- Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Thomas Berg
- Division of Hepatology Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Thierry Thevenot
- Service d'Hépatologie, CHU Jean Minjoz, Besançon, France; Laboratoire EPILAB EA4266, Université de Franche Comté, Besançon, France
| |
Collapse
|
2
|
Butt MF, Jalan R. Review article: Emerging and current management of acute-on-chronic liver failure. Aliment Pharmacol Ther 2023; 58:774-794. [PMID: 37589507 DOI: 10.1111/apt.17659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a clinically and pathophysiologically distinct condition from acutely decompensated cirrhosis and is characterised by systemic inflammation, extrahepatic organ failure, and high short-term mortality. AIMS To provide a narrative review of the diagnostic criteria, prognosis, epidemiology, and general management principles of ACLF. Four specific interventions that are explored in detail are intravenous albumin, extracorporeal liver assist devices, granulocyte-colony stimulating factor, and liver transplantation. METHODS We searched PubMed and Cochrane databases for articles published up to July 2023. RESULTS Approximately 35% of hospital inpatients with decompensated cirrhosis have ACLF. There is significant heterogeneity in the criteria used to diagnose ACLF; different definitions identify different phenotypes with varying mortality. Criteria established by the European Association for the Study of the Liver were developed in prospective patient cohorts and are, to-date, the most well validated internationally. Systemic haemodynamic instability, renal dysfunction, coagulopathy, neurological dysfunction, and respiratory failure are key considerations when managing ACLF in the intensive care unit. Apart from liver transplantation, there are no accepted evidence-based treatments for ACLF, but several different approaches are under investigation. CONCLUSION The recognition of ACLF as a distinct entity from acutely decompensated cirrhosis has allowed for better patient stratification in clinical settings, facilitating earlier engagement with the intensive care unit and liver transplantation teams. Research priorities over the next decade should focus on exploring novel treatment strategies with a particular focus on which, when, and how patients with ACLF should be treated.
Collapse
Affiliation(s)
- Mohsin F Butt
- Centre for Neuroscience, Trauma and Surgery, Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottinghamshire, UK
| | - Rajiv Jalan
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- European Association for the Study of the Liver-Chronic Liver Failure (EASL-CLIF) Consortium, Barcelona, Spain
| |
Collapse
|
3
|
Engelmann C, Habtesion A, Hassan M, Kerbert AJ, Hammerich L, Novelli S, Fidaleo M, Philips A, Davies N, Ferreira-Gonzalez S, Forbes SJ, Berg T, Andreola F, Jalan R. Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF. J Hepatol 2022; 77:1325-1338. [PMID: 35843375 DOI: 10.1016/j.jhep.2022.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Acute-on-chronic liver failure (ACLF) is characterised by high short-term mortality, systemic inflammation, and failure of hepatic regeneration. Its treatment is a major unmet medical need. This study was conducted to explore whether combining TAK-242, a Toll-like receptor-4 (TLR4) antagonist, with granulocyte-colony stimulating factor (G-CSF), could reduce inflammation whilst enhancing liver regeneration. METHODS Two mouse models of ACLF were investigated. Chronic liver injury was induced by carbon tetrachloride; lipopolysaccharide (LPS) or galactosamine (GalN) were then administered as extrahepatic or hepatic insults, respectively. G-CSF and/or TAK-242 were administered daily. Treatment durations were 24 hours and 5 days in the LPS model and 48 hours in the GalN model. RESULTS In a mouse model of LPS-induced ACLF, treatment with G-CSF was associated with significant mortality (66% after 48 hours vs. 0% without G-CSF). Addition of TAK-242 to G-CSF abrogated mortality (0%) and significantly reduced liver cell death, macrophage infiltration and inflammation. In the GalN model, both G-CSF and TAK-242, when used individually, reduced liver injury but their combination was significantly more effective. G-CSF treatment, with or without TAK-242, was associated with activation of the pro-regenerative and anti-apoptotic STAT3 pathway. LPS-driven ACLF was characterised by p21 overexpression, which is indicative of hepatic senescence and inhibition of hepatocyte regeneration. While TAK-242 treatment mitigated the effect on senescence, G-CSF, when co-administered with TAK-242, resulted in a significant increase in markers of hepatocyte regeneration. CONCLUSION The combination of TAK-242 and G-CSF inhibits inflammation, promotes hepatic regeneration and prevents mortality in models of ACLF; thus, this combination could be a potential treatment option for ACLF. LAY SUMMARY Acute-on-chronic liver failure is associated with severe liver inflammation and poor short-term survival. Therefore, effective treatments are urgently needed. Herein, we have shown, using mouse models, that the combination of granulocyte-colony stimulating factor (which can promote liver regeneration) and TAK-242 (which inhibits a receptor that plays a key role in inflammation) could be effective for the treatment of acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health - Charité - Universitätsmedizin Berlin, Germany
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Mohsin Hassan
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Annarein Jc Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Linda Hammerich
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Simone Novelli
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Fidaleo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Biology and Biotechnology "C. Darwin", University of Rome Sapienza, 00185 Rome, Italy
| | - Alexandra Philips
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; European Foundation of the Study of Chronic Liver Failure, Barcelona, Spain.
| |
Collapse
|
4
|
Zhang J, Chang J, Beg MA, Huang W, Zhao Y, Dai W, Wu X, Cui W, Pillai SS, Lakhani HV, Sodhi K, Shapiro JI, Sahoo D, Zheng Z, Silverstein RL, Chen Y. Na/K-ATPase suppresses LPS-induced pro-inflammatory signaling through Lyn. iScience 2022; 25:104963. [PMID: 36072548 PMCID: PMC9442361 DOI: 10.1016/j.isci.2022.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Na/K-ATPase (NKA), besides its ion transporter function, is a signal transducer by regulating Src family kinases (SFK). The signaling NKA contributes to oxidized LDL-induced macrophage foam cell formation and interacts with TLR4. However, its role in lipopolysaccharides (LPS)-induced signaling and glycolytic switch in macrophages remains unclear. Using peritoneal macrophages from NKA α1 haploinsufficient mice (NKA α1+/-), we found that NKA α1 haploinsufficiency led to enhanced LPS-stimulated NF-κB pathway, ROS signaling, and pro-inflammatory cytokines. Intraperitoneal injection of LPS resulted in more severe lung inflammation and injury with lower survival rate in NKA α1+/- mice. Additionally, LPS induced a higher extent of the metabolic switch from oxidative phosphorylation to glycolysis. Mechanistically, NKA α1 interacted with TLR4 and Lyn. The presence of NKA α1 in this complex attenuated Lyn activation by LPS, which subsequently restricted the downstream ROS and NF-κB signaling. In conclusion, we demonstrated that NKA α1 suppresses LPS-induced macrophage pro-inflammatory signaling through Lyn.
Collapse
Affiliation(s)
- Jue Zhang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Jackie Chang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | | | - Wenxin Huang
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Yiqiong Zhao
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Wen Dai
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Xiaopeng Wu
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
| | - Weiguo Cui
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sneha S. Pillai
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Hari Vishal Lakhani
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Komal Sodhi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Roy L. Silverstein
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
5
|
G-CSF treatment in decompensated liver disease: a double-edged sword? Hepatol Int 2022; 16:979-982. [PMID: 36053413 PMCID: PMC9525346 DOI: 10.1007/s12072-022-10379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022]
|
6
|
The Effects of Bacterial Lipopolysaccharide (LPS) on Turkey Poults: Assessment of Biochemical Parameters and Histopathological Changes. Vet Sci 2022; 9:vetsci9050240. [PMID: 35622768 PMCID: PMC9146353 DOI: 10.3390/vetsci9050240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/30/2023] Open
Abstract
A lipopolysaccharide (LPS) is a large molecule and an outer membrane glycolipid found in Gram-negative bacteria, including Escherichia coli (E. coli). These molecules (LPS) target acute inflammatory responses and significant physiological changes. Importantly, E. coli is considered one of the most important bacterial causes of avian colibacillosis that affect domestic turkey industry. However, little information is available about the potential influence of LPS on the biochemical parameters and histopathological changes in turkey poults. Therefore, this study aimed to evaluate the influence of bacterial lipopolysaccharide (LPS) molecules on serum biomarkers and histopathological changes in turkey poults. The birds were randomly divided into five groups, as follows: group I did not receive any inoculation; group II was inoculated with sterile saline; and groups III, IV, and V were inoculated intraperitoneally with LPS at 0.01, 0.1, and 1 mg/kg of body weight (BW), respectively. The biochemical parameters and the histopathology of different organs were examined in all birds one day post-inoculation. Our results revealed hypolipidemia, hypoglycemia, a significant decrease in uric acid, and a significant increase in serum activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and creatine kinase (CK), as well as cardiac troponin T concentrations in treated groups. Moreover, there was a significant increase in α1-, β-, and γ-globulin concentrations and a decrease in albumin and α2-globulin concentrations in group V. However, a significant increase in α2- and γ-globulin levels and a decrease in albumin levels were detected in groups III and IV. In addition, significant decreases in the albumin/globulin ratio were recorded in all LPS-treated groups. Hepatocellular and cardiac muscle necrosis, slight renal changes, and massive pulmonary inflammatory reactions were recorded. This study provides valuable information about serum biomarkers, protein fractions, and histopathological changes in turkey poults treated with LPS for further investigations of pathophysiological mechanisms in avian medicine along with biomedical research.
Collapse
|
7
|
Engelmann C, Martino VD, Kerbert AJC, Weil-Verhoeven D, Aehling NF, Herber A, Thévenot T, Berg T. The Current Status of Granulocyte-Colony Stimulating Factor to Treat Acute-on-Chronic Liver Failure. Semin Liver Dis 2021; 41:298-307. [PMID: 33992029 DOI: 10.1055/s-0041-1723034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patients with acute-on-chronic liver failure (ACLF) have a devastating prognosis and therapeutic options are limited. Granulocyte-colony stimulating factor (G-CSF) mobilizes immune and stem cells and possess immune-modulatory and proregenerative capacities. In this review, we aim to define the current evidence for the treatment with G-CSF in end-stage liver disease. Several smaller clinical trials in patients with different severity grades of end-stage liver disease have shown that G-CSF improves survival and reduces the rate of complications. Adequately powered multicenter European trials could not confirm these beneficial effects. In mouse models of ACLF, G-CSF increased the toll-like receptor (TLR)-mediated inflammatory response which led to an increase in mortality. Adding a TLR4 signaling inhibitor allowed G-CSF to unfold its proregenerative properties in these ACLF models. These data suggest that G-CSF requires a noninflammatory environment to exert its protective properties.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany.,Division of Hepatology and Gastroenterology, Department of Medical, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincent Di Martino
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, 25000 Besançon, France
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Delphine Weil-Verhoeven
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, 25000 Besançon, France
| | - Niklas Friedemann Aehling
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Adam Herber
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Thierry Thévenot
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, 25000 Besançon, France
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
8
|
Ahmed EA, Abd-Eldayem AM, Ahmed E. Can granulocyte colony stimulating factor (G-CSF) ameliorate acetaminophen-induced hepatotoxicity? Hum Exp Toxicol 2021; 40:1755-1766. [PMID: 33882750 DOI: 10.1177/09603271211008522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetaminophen (APAP) is often used as an antipyretic and analgesic agent. Overdose hepatotoxicity, which often results in liver cell failure and liver transplantation, is a severe complication of APAP usage. To save the liver and save lives from acute liver damage caused by APAP, the search for new strategies for liver defense is important. Wistar rats have been used for the induction of APAP hepatotoxicity. Elevated levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were evaluated for liver toxicity. In addition, the levels of hepatic tissue oxidative markers such as malondialdehyde (MDA), nitric oxide (NO) increased while glutathione (GSH) was depleted and catalase (CAT) activity was curtailed. The biochemical findings were consistent with the changes in histology that suggested liver damage and inflammation. Treated rats with N-acetylcysteine (N-AC) and granulocyte colony stimulating factor (G-CSF) showed a decrease in serum levels of ALT, AST and LDH, while the level of ALP in the G-CSF group was still high. After administration of APAP, treatment with N-AC or G-CSF substantially reduced the level of MDA and NO while maintaining the GSH content and CAT activity. Treatment with N-AC and G-CSF after administration of APAP has also attenuated inflammation and hepatocytes necrosis. The results of this study showed that G-CSF could be viewed as an alternative hepatoprotective agent against APAP-induced acute liver injury compared to N-AC.
Collapse
Affiliation(s)
- E A Ahmed
- Department of Pharmacology, Faculty of Medicine, 68796Assiut University, Assiut, Egypt.,Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - A M Abd-Eldayem
- Department of Pharmacology, Faculty of Medicine, 68796Assiut University, Assiut, Egypt.,Al-Ghad International Colleges of Applied Medical Sciences, ABHA / Male, Saudi Arabia
| | - E Ahmed
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, 68796Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Yang R, Yu H, Chen J, Zhu J, Song C, Zhou L, Sun Y, Zhang Q. Limonin Attenuates LPS-Induced Hepatotoxicity by Inhibiting Pyroptosis via NLRP3/Gasdermin D Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:982-991. [PMID: 33427450 DOI: 10.1021/acs.jafc.0c06775] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lipopolysaccharide (LPS)-induced liver injury is the main factor in acute liver failure. The current study aims to investigate the protection of limonin, an antioxidant compound from citrus fruit, against LPS-induced liver toxicity and elucidate the potential mechanisms. We found that limonin elevated cell viability and reduced LDH release in LPS-treated HepG2 cells. Limonin also inhibited LPS-induced pyroptosis by inhibiting membrane rupture, reducing ROS generation, and decreasing gasdermin D activation. Moreover, limonin inhibited the formation of a NOD-like receptor protein 3 (NLRP3)/Apoptosis-associated speck-like protein containing a CARD (ASC) complex by reducing the related protein expression and the colocalization cytosolic of NLRP3 and caspase-1 and then suppressed IL-1β maturation. Ultimately, we established LPS-induced hepatotoxicity in vivo by using C57BL/6 mice administrated LPS (10 mg/kg) intraperitoneally and limonin (50 and 100 mg/kg) orally. We found that limonin dereased the serum ALT and AST activity and LDH release and increased the hepatic GSH amount in LPS-treated mice. Additionally, the liver histological evaluation revealed that limonin protects against LPS-induced liver damage. We further demonstrated that limonin ameliorated LPS-induced hepatotoxicity by inhibiting pyroptosis via the NLRP3/gasdermin D signaling pathway. In summary, this study uncovered the mechanism whereby limonin mitigated LPS-induced hepatotoxicity and documented that limonin might be a promising candidate drug for LPS-induced hepatotoxicity.
Collapse
Affiliation(s)
- Runyu Yang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hanxi Yu
- College of Overseas Education, Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jianwei Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Changqin Song
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lvqi Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
10
|
Stimulating More Than Just the Granulocytes: Drug-Induced Liver Injury From Filgrastim. ACG Case Rep J 2019; 6:e00098. [PMID: 31616768 PMCID: PMC6722345 DOI: 10.14309/crj.0000000000000098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
Granulocyte-colony-stimulating factors such as filgrastim are currently used for multiple indications, one of which is administration to healthy donors for allogeneic stem cell collection. So far, filgrastim has not been described as a cause of drug-induced liver injury. We report a case of drug-induced liver injury secondary to filgrastim use in a 54-year-old healthy donor. The patient presented with an upsurge of liver enzymes a week from the drug administration with a rapid downtrend over the next few weeks. We wish to highlight the possibility of a similar idiosyncratic adverse drug reaction in other healthy individuals.
Collapse
|
11
|
Qiu P, Liu Y, Zhang J. Recent Advances in Studies of Molecular Hydrogen against Sepsis. Int J Biol Sci 2019; 15:1261-1275. [PMID: 31223285 PMCID: PMC6567800 DOI: 10.7150/ijbs.30741] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a syndrome comprised of a series of life-threatening organ dysfunctions caused by a maladjusted body response to infection with no effective treatment. Molecular hydrogen is a new type of antioxidant with strong free radical scavenging ability, which has been demonstrated to be effective for treating various diseases, such as infection, trauma, poisoning, organ ischemia-reperfusion, metabolic diseases, and tumors. Molecular hydrogen exerts multiple biological effects involving anti-inflammation, anti-oxidation, anti-apoptosis, anti-shock, and autophagy regulation, which may attenuate the organ and barrier damage caused by sepsis. However, the underlying molecular mechanisms remain elusive, but are likely related to the signaling pathways involved. This review focuses on the research progress and potential mechanisms of molecular hydrogen against sepsis to provide a theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Peng Qiu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Fang H, Liu A, Chen X, Cheng W, Dirsch O, Dahmen U. The severity of LPS induced inflammatory injury is negatively associated with the functional liver mass after LPS injection in rat model. JOURNAL OF INFLAMMATION-LONDON 2018; 15:21. [PMID: 30473633 PMCID: PMC6238277 DOI: 10.1186/s12950-018-0197-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/25/2018] [Indexed: 11/12/2022]
Abstract
Background High levels of serum lipopolysaccharide (LPS) were observed in sepsis patients with liver injury and high mortality. However, the role of liver in modulation LPS induced inflammatory injury was ill investigated. In the present study, the severity of LPS induced inflammatory response was observed after liver resection or portal branch occlusion to decreasing functional liver mass. The local and systemic damage was observed to investigate the role of liver in modulation inflammatory injury. Methods First, 30%, 70%, and 90% partial hepatectomy (PH) were performed, and serum TNF-α, survival rate, and hepatic LPS uptake was observed. Second, LPS-exposure of the functional liver mass was decreased by selectively blocking the RL prior to LPS-injection, which was given 30 min before a 70% PH, and the inflammatory response was compared in the occluded and the non-occluded liver. The control group was subjected to LPS injection 30 min prior to liver resection without blocking the RL transiently. The serum TNF-α, ALT, AST, creatinine levels, and urea levels, survival rate, hepatic LPS uptake, and hepatic inflammatory cytokines was observed. Results The decreasing of functional liver mass after 90%, 70%, and 30% PH was associated with decreased serum TNF-α, survival rate, and increased hepatic LPS uptake after LPS injection. Occluding the right lobes (RL) prior to LPS administration reversed the liver injury caused by 70% PH, indicated by 100% survival rate and decreased liver and kidney injury, and systemic inflammatory response. The induction of inflammatory response in occluding liver lobes were lower than un-occluding liver lobes. Conclusions The severity of the LPS-induced systemic inflammatory injury is determined by functional liver volume. This observation suggests that the liver is the central organ for the initiation of the inflammatory response, and is involved in causing a severe SIRS with systemic damage and death. Electronic supplementary material The online version of this article (10.1186/s12950-018-0197-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haoshu Fang
- 1Department of Pathophysiology, Anhui Medical University, Hefei, 230032 China.,2Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Drackendorferstraße1, 07747 Jena, Germany.,3Laboratory Animal Research Center, College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Anding Liu
- 2Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Drackendorferstraße1, 07747 Jena, Germany.,4Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xulin Chen
- 5Department of Burns, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022 China
| | - Wenhui Cheng
- 3Laboratory Animal Research Center, College of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Olaf Dirsch
- 6Institute of Pathology Hospital of Chemnitz, Chemnitz, Germany
| | - Uta Dahmen
- 2Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Friedrich-Schiller-University Jena, Drackendorferstraße1, 07747 Jena, Germany
| |
Collapse
|
13
|
The LPS Responsiveness in BN and LEW Rats and Its Severity Are Modulated by the Liver. J Immunol Res 2018; 2018:6328713. [PMID: 30151394 PMCID: PMC6091288 DOI: 10.1155/2018/6328713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022] Open
Abstract
Differences in LPS responsiveness influence the outcome of patients with sepsis. The intensity of the response is highly variable in patients and strain dependent in rodents. However, the role of the liver for initiating the LPS response remains ill defined. We hypothesize that hepatic LPS uptake is a key event for initiating the LPS response. In the present study, the severity of the LPS-induced inflammatory response and the hepatic LPS uptake was compared in two rat strains (Lewis (LEW) rats and Brown Norway (BN) rats). Using a transplantation model, we demonstrated the decisive role of the liver. The expression of hepatic TNF-α, IL-6, and IL-1β mRNA levels in BN rats was significantly lower than that in LEW rats. LEW rats were sensitized to LPS via G-CSF pretreatment. Sensitization caused by G-CSF pretreatment induced severe liver injury and mortality in LEW rats, but not in BN rats (survival rate: 0% (LEW) versus 100% (BN), p < 0.01). LEW rats presented with higher liver enzymes, more alterations in histology, and higher expression of caspase 3 and higher cytokines levels. One of the reasons could be the increased hepatic LPS uptake, which was only observed in LEW but not in BN livers. Using the transplantation model revealed the decisive role of the LPS responsiveness of the liver. Injection of LPS to the high-responding LEW recipient before transplantation of a low-responder BN liver resulted in a 50% survival rate. In contrast, injecting the same dose of LPS into the high-responding LEW recipient after transplanting the low-responding BN liver resulted in a 100% survival rate. The severity of inflammatory response in different strains might be related to the differences in hepatic LPS uptake. This observation suggests that the liver plays a genetically defined decisive role in modulating the inflammatory severity.
Collapse
|
14
|
Preadministration of Hydrogen-Rich Water Protects Against Lipopolysaccharide-Induced Sepsis and Attenuates Liver Injury. Shock 2018; 48:85-93. [PMID: 27918369 DOI: 10.1097/shk.0000000000000810] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant advances in antibiotic therapy and intensive care, sepsis remains the most common cause of death in intensive care units. We previously reported that molecular hydrogen (H2) acts as a therapeutic and preventive antioxidant. Here, we show that preadministration of H2-dissolved water (HW) suppresses lipopolysaccharide (LPS)-induced endotoxin shock in mice. Drinking HW for 3 days before LPS injection prolonged survival in a mouse model of sepsis. The H2 concentration immediately increased in the liver but not in the kidney after drinking HW. The protective effects of the preadministration of HW on LPS-induced liver injury were examined. Twenty-four hours after LPS injection, preadministration of HW reduced the increase in both apoptosis and oxidative stress. Moreover, preadministration of HW enhanced LPS-induced expression of heme oxyganase-1 and reduced endothelin-1 expression. These results indicate the therapeutic potential of HW in preventing acute injury of the liver with attenuation of an increase in oxidative stress. HW is likely to trigger adaptive responses against oxidative stress.
Collapse
|
15
|
Liu A, Weiss S, Fang H, Claus RA, Rödel J, Dirsch O, Dahmen U. Lipopolysaccharide-Binding Protein (LBP) Blockade Augments the Protective Effect of Granulocyte Colony-Stimulating Factor (G-CSF) in a Rat Sepsis Model. Shock 2015; 43:497-503. [DOI: 10.1097/shk.0000000000000338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
The Histochemistry and Cell Biology pandect: the year 2014 in review. Histochem Cell Biol 2015; 143:339-68. [PMID: 25744491 DOI: 10.1007/s00418-015-1313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
This review encompasses a brief synopsis of the articles published in 2014 in Histochemistry and Cell Biology. Out of the total of 12 issues published in 2014, two special issues were devoted to "Single-Molecule Super-Resolution Microscopy." The present review is divided into 11 categories, providing an easy format for readers to quickly peruse topics of particular interest to them.
Collapse
|