1
|
Yan D, Zhou M, Tian T, Wu C. Study repair function of mucin-2 on the tight junction protein of uterine epithelial cells under bacterial endotoxins. Toxicon 2024; 252:108162. [PMID: 39522658 DOI: 10.1016/j.toxicon.2024.108162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
To analysis repair function of mucin-2(MUC2) and glycoprotein particles on the tight junction protein of uterus under bacterial endotoxins. In this experiment, we showed that the thicker mucus layer of the uterus is used to prevent the translocation of endotoxin at 21d postdelivery. When endotoxin acts on the uterus to thin its mucous layer, the cells in the lamina propria of the uterus secrete a large number of glycoprotein particles at 27d postdelivery. Due to a significantly decrease in the expression of glycosyltransferase, the glycoprotein particles are incompletely glycosylation MUC2, which can interact with the cell membrane and are released in large quantities in the form of exocytosis. These glycoprotein particles can significantly repair tight junction proteins in the inter-cellular space and significantly increase the expression of Claudin-1, JAM (Junction adhesion molecule-A), E-cadherin, ZO-1(Zonula occludens-1) and desmosome proteins after endotoxin treatment. The results of the present study show that endotoxins can thin the uterine mucus layer and accelerate the release of incompletely glycosylated MUC2 from lamina propria cells. In inter-cellular spaces, MUC2 can increase its expression levels and distribution area to repair the tight junction structure of cells with larger gaps. Further strengthening of the barrier prevents endotoxin translocation by repairing the tight junction structure of uterine epithelial cells.
Collapse
Affiliation(s)
- Dujian Yan
- Department of Biotechnology, Aks Vocational and Technical College, Akesu, Xinjiang 843000, China
| | - Mengru Zhou
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tian Tian
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chenchen Wu
- College of Animal Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Maurya VK, Szwarc MM, Lonard DM, Kommagani R, Wu SP, O’Malley BW, DeMayo FJ, Lydon JP. Steroid receptor coactivator-2 drives epithelial reprogramming that enables murine embryo implantation. FASEB J 2023; 37:e23313. [PMID: 37962238 PMCID: PMC10655894 DOI: 10.1096/fj.202301581r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Although we have shown that steroid receptor coactivator-2 (SRC-2), a member of the p160/SRC family of transcriptional coregulators, is essential for decidualization of both human and murine endometrial stromal cells, SRC-2's role in the earlier stages of the implantation process have not been adequately addressed. Using a conditional SRC-2 knockout mouse (SRC-2d/d ) in timed natural pregnancy studies, we show that endometrial SRC-2 is required for embryo attachment and adherence to the luminal epithelium. Implantation failure is associated with the persistent expression of Mucin 1 and E-cadherin on the apical surface and basolateral adherens junctions of the SRC-2d/d luminal epithelium, respectively. These findings indicate that the SRC-2d/d luminal epithelium fails to exhibit a plasma membrane transformation (PMT) state known to be required for the development of uterine receptivity. Transcriptomics demonstrated that the expression of genes involved in steroid hormone control of uterine receptivity were significantly disrupted in the SRC-2d/d endometrium as well as genes that control epithelial tight junctional biology and the emergence of the epithelial mesenchymal transition state, with the latter sharing similar biological properties with PMT. Collectively, these findings uncover a new role for endometrial SRC-2 in the induction of the luminal epithelial PMT state, which is a prerequisite for the development of uterine receptivity and early pregnancy establishment.
Collapse
Affiliation(s)
- Vineet K. Maurya
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Maria M. Szwarc
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - David M. Lonard
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Ramakrishna Kommagani
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - San Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Bert W. O’Malley
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| | - Francesco J. DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Center for Coregulator Research
| |
Collapse
|
3
|
Hu S, Sun Z, Li B, Zhao H, Wang Y, Yao G, Li X, Bian X, Li TC, Vankelecom H, Sun Y. iTRAQ-based Proteomic Analysis Unveils ACSL4 as a Novel Potential Regulator of Human Endometrial Receptivity. Endocrinology 2023; 164:6991315. [PMID: 36652382 DOI: 10.1210/endocr/bqad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Competent endometrial receptivity is a prerequisite for successful embryo implantation. Identification of novel key molecules involved in endometrial receptivity is essential to better interpret human implantation and improve pregnancy rates in assisted reproduction treatment. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was performed to profile the proteomes of the prereceptive (luteinizing hormone [LH] + 2, n = 4) and receptive (LH + 7, n = 4) endometrial tissues. A total of 173 differentially expressed proteins (DEPs) between LH + 2 and LH + 7 endometrial samples were identified. Integrated analysis of the proteomic data and published transcriptomic data was performed to identify the concordant DEPs with differential expression at both the messenger RNA and protein levels. Protein-protein interaction (PPI) network analysis was performed on concordant DEPs. We first identified 63 novel concordant DEPs and 5 hub proteins (ACSL4, ACSL5, COL1A1, PTGS1, and PLA2G4F) between LH + 2 and LH + 7 endometrial samples. ACSL4 was predominantly expressed in endometrial epithelial cells and its expression was significantly upregulated by progesterone in the LH + 7 endometrium and significantly downregulated in repeated implantation failure patients. Knockdown of ACSL4 in endometrial epithelial cells induced the downregulation of endometrial receptivity markers (HOXA10, COX2, and LIF) and the significant decrease of implantation rate during in vitro implantation analysis. This study provides the first gel-independent quantitative proteomes of the LH + 2 and LH + 7 human endometrium using iTRAQ technology. The identified concordant DEPs and hub proteins open a new avenue for future studies aimed at elucidating the underlying mechanisms governing endometrial receptivity. ACSL4 was identified as a novel regulatory molecule in the establishment of endometrial receptivity and might play important roles during implantation.
Collapse
Affiliation(s)
- Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Zhe Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Boyu Li
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Hanting Zhao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Yuan Wang
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Guangxin Yao
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xinyu Li
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Xuejiao Bian
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hugo Vankelecom
- Department of Development and Regeneration, Cluster Stem Cell Biology and Embryology, Research Unit of Stem Cell Research, University of Leuven (KU Leuven), B-3000 Leuven, Belgium
| | - Yun Sun
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China
| |
Collapse
|
4
|
Xia X, Zhang Y, Cao M, Yu X, Gao L, Qin L, Wu W, Cui Y, Liu J. Adverse effect of assisted reproductive technology-related hyperoestrogensim on the secretion and absorption of uterine fluid in superovulating mice during the peri-implantation period. Front Endocrinol (Lausanne) 2023; 14:859204. [PMID: 36950692 PMCID: PMC10027003 DOI: 10.3389/fendo.2023.859204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVES This study aimed to investigate the potential mechanism of hyperoestrogensim elicited by ovulation induction affects endometrial receptivity and leads to embryo implantation abnormality or failure. STUDY DESIGN Establishment of ovulation induction mouse model. Changes in mouse body weight, ovarian weight, serum E2 level and oestrous cycle were observed. During the peri-implantation period, morphological changes in the mouse uterus and implantation sites and the localization and protein levels of oestrogen receptors ERα and ERβ, the tight junction factors CLDN3 and OCLN, the aquaporins AQP3, AQP4 and AQP8, and the sodium channel proteins SCNN1α, SCNN1β and SCNN1γ were observed. The expression and cellular localization of ERα, CLDN3, AQP8 and SCNN1 β in RL95-2 cell line were also detected by western blotting and immunofluorescence. RESULTS Ovarian and body weights were significantly higher in the 5 IU and 10 IU groups than in the CON group. The E2 level was significantly higher in the 10 IU group than in the CON group. The mice in the 10 IU group had a disordered oestrous cycle and were in oestrus for a long time. At 5.5 dpc, significantly fewer implantation sites were observed in the 10 IU group than in the CON (p<0.001) and 5 IU (p<0.05) groups. The probability of abnormal implantation and abortion was higher in the 10 IU group than in the CON and 5 IU groups. CLDN3, OCLN, AQP8 and SCNN1β in the mouse endometrium were localized on the luminal epithelium and glandular epithelium and expression levels were lower in the 10 IU group than in the CON group. The protein expression level of ERα was increased by 50% in the 10 IU group compared to the CON group. The expressions of CLDN3, AQP8, SCNN1β in RL95-2 cell line were significantly depressed by the superphysiological E2, ERα agonist or ERβ agonist, which could be reversed by the oestrogen receptor antagonist. CONCLUSION ART-induced hyperoestrogenism reduces CLDN3, AQP8 and SCNN1β expression through ERα, thereby destroying tight junctions and water and sodium channels in the endometrial cavity epithelium, which may cause abnormal implantation due to abnormal uterine fluid secretion and absorption.
Collapse
Affiliation(s)
- Xinru Xia
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Meng Cao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xiang Yu
- Department of Pediatrics, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Lianju Qin
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Center for Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Jiayin Liu,
| |
Collapse
|
5
|
Claudin-10 Expression Is Increased in Endometriosis and Adenomyosis and Mislocalized in Ectopic Endometriosis. Diagnostics (Basel) 2022; 12:diagnostics12112848. [PMID: 36428908 PMCID: PMC9689821 DOI: 10.3390/diagnostics12112848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Claudins, as the major components of tight junctions, are crucial for epithelial cell-to-cell contacts. Recently, we showed that in endometriosis, the endometrial epithelial phenotype is highly conserved, with only minor alterations. For example, claudin-11 is strongly expressed; however, its localization in the endometriotic epithelial cells was impaired. In order to better understand the role of claudins in endometrial cell-to-cell contacts, we analyzed the tissue expression and localization of claudin-10 by immunohistochemistry analysis and two scoring systems. We used human tissue samples (n = 151) from the endometrium, endometriosis, and adenomyosis. We found a high abundance of claudin-10 in nearly all the endometrial (98%), endometriotic (98−99%), and adenomyotic (90−97%) glands, but no cycle-specific differences and no differences in the claudin-10 positive endometrial glands between cases with and without endometriosis. A significantly higher expression of claudin-10 was evident in the ectopic endometrium of deep-infiltrating (p < 0.01) and ovarian endometriosis (p < 0.001) and in adenomyosis in the cases with endometriosis (p ≤ 0.05). Interestingly, we observed a shift in claudin-10 from a predominant apical localization in the eutopic endometrium to a more pronounced basal/cytoplasmic localization in the ectopic endometria of all three endometriotic entities but not in adenomyosis. Significantly, despite the impaired endometriotic localization of claudin-10, the epithelial phenotype was retained. The significant differences in claudin-10 localization between the three endometriotic entities and adenomyosis, in conjunction with endometriosis, suggest that most of the aberrations occur after implantation and not before. The high similarity between the claudin-10 patterns in the eutopic endometrial and adenomyotic glands supports our recent conclusions that the endometrium is the main source of endometriosis and adenomyosis.
Collapse
|
6
|
Ganieva U, Schneiderman S, Bu P, Beaman K, Dambaeva S. IL-22 regulates endometrial regeneration by enhancing tight junctions and orchestrating extracellular matrix. Front Immunol 2022; 13:955576. [PMID: 36091010 PMCID: PMC9453595 DOI: 10.3389/fimmu.2022.955576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
The uterine endometrium uniquely regenerates after menses, postpartum, or after breaks in the uterine layer integrity throughout women’s lives. Direct cell–cell contacts ensured by tight and adherens junctions play an important role in endometrial integrity. Any changes in these junctions can alter the endometrial permeability of the uterus and have an impact on the regeneration of uterine layers. Interleukin 22 (IL-22) is a cytokine that is recognized for its role in epithelial regeneration. Moreover, it is crucial in controlling the inflammatory response in mucosal tissues. Here, we studied the role of IL-22 in endometrial recovery after inflammation-triggered abortion. Fecundity of mice was studied in consecutive matings of the same animals after lipopolysaccharide (LPS) (10 µg per mouse)-triggered abortion. The fecundity rate after the second mating was substantially different between IL-22 knockout (IL-22−/−) (9.1%) and wild-type (WT) (71.4%) mice (p < 0.05), while there was no difference between the groups in the initial mating, suggesting that IL-22 deficiency might be associated with secondary infertility. A considerable difference was observed between IL-22−/− and WT mice in the uterine clearance following LPS-triggered abortion. Gross examination of the uteri of IL-22−/− mice revealed non-viable fetuses retained inside the horns (delayed clearance). In contrast, all WT mice had completed abortion with total clearance after LPS exposure. We also discovered that IL-22 deficiency is associated with a decreased expression of tight junctions (claudin-2 and claudin-10) and cell surface pathogen protectors (mucin-1). Moreover, IL-22 has a role in the remodeling of the uterine tissue in the inflammatory environment by regulating epithelial–mesenchymal transition markers called E- and N-cadherin. Therefore, IL-22 contributes to the proper regeneration of endometrial layers after inflammation-triggered abortion. Thus, it might have a practical significance to be utilized as a treatment option postpartum (enhanced regeneration function) and in secondary infertility caused by inflammation (enhanced barrier/protector function).
Collapse
Affiliation(s)
- Umida Ganieva
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Sylvia Schneiderman
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Pengli Bu
- Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Kenneth Beaman
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Svetlana Dambaeva
- Center for Cancer Cell Biology, Immunology, and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- Clinical Immunology Laboratory, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
- *Correspondence: Svetlana Dambaeva,
| |
Collapse
|
7
|
Grund SC, Wu XX, Müller D, Wennemuth G, Grümmer R. Impact of endometrial claudin-3 deletion on murine implantation, decidualization and embryo development. Biol Reprod 2022; 107:984-997. [PMID: 35863769 DOI: 10.1093/biolre/ioac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
The composition of cell contacts in the endometrium plays an important role in the process of embryo implantation and the establishment of pregnancy. In previous studies, we showed an induction of the tight junction protein claudin-3 in the developing decidua from 6.5 dpc onwards. To evaluate the role if this specific claudin-3 distribution, we here evaluated the effect of an endometrial claudin-3 deletion in implantation and embryo development in claudin-3 knockout mice. Claudin-3 KO mice were fertile but revealed a slightly reduced amount of implantation sites as well as of litter size. Though implantation sites showed morphologically regularly developed embryos and deciduas, depth of ectoplacental cone invasion was reduced in tendency compared to controls. The weight of the implantation sites on 6.5 and 8.5 dpc as well as the weight of the embryos on 17.5 dpc, but not of the placentas, was significantly reduced in claudin-3 KO mice due to a maternal effect. This could be due to an impairment of decidualization as substantiated by a downregulation of the transcription of various decidua-associated genes in the early implantation sites of claudin-3 KO mice. The fact that claudin-3 KO mice are nevertheless fertile possibly may be compensated by the presence of other claudins like claudin-4 and claudin-10.
Collapse
Affiliation(s)
- Susanne C Grund
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xin Xin Wu
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ruth Grümmer
- Department of Anatomy, University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
8
|
Bogias KJ, Pederson SM, Leemaqz S, Smith MD, McAninch D, Jankovic-Karasoulos T, McCullough D, Wan Q, Bianco-Miotto T, Breen J, Roberts CT. Placental Transcription Profiling in 6-23 Weeks' Gestation Reveals Differential Transcript Usage in Early Development. Int J Mol Sci 2022; 23:ijms23094506. [PMID: 35562897 PMCID: PMC9105363 DOI: 10.3390/ijms23094506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
The human placenta is a rapidly developing transient organ that is key to pregnancy success. Early development of the conceptus occurs in a low oxygen environment before oxygenated maternal blood begins to flow into the placenta at ~10-12 weeks' gestation. This process is likely to substantially affect overall placental gene expression. Transcript variability underlying gene expression has yet to be profiled. In this study, accurate transcript expression profiles were identified for 84 human placental chorionic villus tissue samples collected across 6-23 weeks' gestation. Differential gene expression (DGE), differential transcript expression (DTE) and differential transcript usage (DTU) between 6-10 weeks' and 11-23 weeks' gestation groups were assessed. In total, 229 genes had significant DTE yet no significant DGE. Integration of DGE and DTE analyses found that differential expression patterns of individual transcripts were commonly masked upon aggregation to the gene-level. Of the 611 genes that exhibited DTU, 534 had no significant DGE or DTE. The four most significant DTU genes ADAM10, VMP1, GPR126, and ASAH1, were associated with hypoxia-responsive pathways. Transcript usage is a likely regulatory mechanism in early placentation. Identification of functional roles will facilitate new insight in understanding the origins of pregnancy complications.
Collapse
Affiliation(s)
- Konstantinos J. Bogias
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Stephen M. Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Shalem Leemaqz
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
| | - Tanja Jankovic-Karasoulos
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Qianhui Wan
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute (Adelaide Office), Adelaide, SA 5000, Australia;
- College of Health & Medicine, Australian National University, Canberra, ACT 2600, Australia
| | - Claire T. Roberts
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
- Correspondence:
| |
Collapse
|
9
|
Guidoni PB, Pasternak JA, Hamonic G, MacPhee DJ, Harding JC. Effect of porcine reproductive and respiratory syndrome virus 2 on tight junction gene expression at the maternal-fetal interface. Theriogenology 2022; 184:162-170. [DOI: 10.1016/j.theriogenology.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
10
|
Rasmussen M, Reddy M, Nolan R, Camunas-Soler J, Khodursky A, Scheller NM, Cantonwine DE, Engelbrechtsen L, Mi JD, Dutta A, Brundage T, Siddiqui F, Thao M, Gee EPS, La J, Baruch-Gravett C, Santillan MK, Deb S, Ame SM, Ali SM, Adkins M, DePristo MA, Lee M, Namsaraev E, Gybel-Brask DJ, Skibsted L, Litch JA, Santillan DA, Sazawal S, Tribe RM, Roberts JM, Jain M, Høgdall E, Holzman C, Quake SR, Elovitz MA, McElrath TF. RNA profiles reveal signatures of future health and disease in pregnancy. Nature 2022; 601:422-427. [PMID: 34987224 PMCID: PMC8770117 DOI: 10.1038/s41586-021-04249-w] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/16/2021] [Indexed: 11/08/2022]
Abstract
Maternal morbidity and mortality continue to rise, and pre-eclampsia is a major driver of this burden1. Yet the ability to assess underlying pathophysiology before clinical presentation to enable identification of pregnancies at risk remains elusive. Here we demonstrate the ability of plasma cell-free RNA (cfRNA) to reveal patterns of normal pregnancy progression and determine the risk of developing pre-eclampsia months before clinical presentation. Our results centre on comprehensive transcriptome data from eight independent prospectively collected cohorts comprising 1,840 racially diverse pregnancies and retrospective analysis of 2,539 banked plasma samples. The pre-eclampsia data include 524 samples (72 cases and 452 non-cases) from two diverse independent cohorts collected 14.5 weeks (s.d., 4.5 weeks) before delivery. We show that cfRNA signatures from a single blood draw can track pregnancy progression at the placental, maternal and fetal levels and can robustly predict pre-eclampsia, with a sensitivity of 75% and a positive predictive value of 32.3% (s.d., 3%), which is superior to the state-of-the-art method2. cfRNA signatures of normal pregnancy progression and pre-eclampsia are independent of clinical factors, such as maternal age, body mass index and race, which cumulatively account for less than 1% of model variance. Further, the cfRNA signature for pre-eclampsia contains gene features linked to biological processes implicated in the underlying pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
| | | | - Rory Nolan
- Mirvie, Inc., South San Francisco, CA, USA
| | | | | | - Nikolai M Scheller
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Line Engelbrechtsen
- Department of Obstetrics and Gynecology, Herlev University Hospital, Herlev, Denmark
| | - Jia Dai Mi
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital Campus, London, UK
| | - Arup Dutta
- Center for Public Health Kinetics, New Delhi, India
| | | | | | | | | | - Johnny La
- Mirvie, Inc., South San Francisco, CA, USA
| | | | - Mark K Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | - Saikat Deb
- Center for Public Health Kinetics, New Delhi, India
- Public Health Laboratory-Idc, Pemba, Zanzibar, Tanzania
| | - Shaali M Ame
- Public Health Laboratory-Idc, Pemba, Zanzibar, Tanzania
| | - Said M Ali
- Public Health Laboratory-Idc, Pemba, Zanzibar, Tanzania
| | | | | | | | | | - Dorte Jensen Gybel-Brask
- Department of Obstetrics, Zealand University Hospital, Roskilde, Denmark
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | - Lillian Skibsted
- Department of Obstetrics, Zealand University Hospital, Roskilde, Denmark
| | - James A Litch
- Global Alliance to Prevent Prematurity and Stillbirth (GAPPS), Lynnwood, WA, USA
| | - Donna A Santillan
- Department of Obstetrics & Gynecology, University of Iowa Hospitals & Clinics, Iowa City, IA, USA
| | | | - Rachel M Tribe
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, St Thomas' Hospital Campus, London, UK
| | - James M Roberts
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences, Epidemiology and Clinical and Translational Research University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Estrid Høgdall
- Department of Pathology, Herlev University Hospital, Herlev, Denmark
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Michal A Elovitz
- Mirvie, Inc., South San Francisco, CA, USA.
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
11
|
|
12
|
Rudolf Vegas A, Podico G, Canisso IF, Bollwein H, Almiñana C, Bauersachs S. Spatiotemporal endometrial transcriptome analysis revealed the luminal epithelium as key player during initial maternal recognition of pregnancy in the mare. Sci Rep 2021; 11:22293. [PMID: 34785745 PMCID: PMC8595723 DOI: 10.1038/s41598-021-01785-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022] Open
Abstract
During the period of maternal recognition of pregnancy (MRP) in the mare, the embryo needs to signal its presence to the endometrium to prevent regression of the corpus luteum and prepare for establishment of pregnancy. This is achieved by mechanical stimuli and release of various signaling molecules by the equine embryo while migrating through the uterus. We hypothesized that embryo's signals induce changes in the endometrial gene expression in a highly cell type-specific manner. A spatiotemporal transcriptomics approach was applied combining laser capture microdissection and low-input-RNA sequencing of luminal and glandular epithelium (LE, GE), and stroma of biopsy samples collected from days 10-13 of pregnancy and the estrous cycle. Two comparisons were performed, samples derived from pregnancies with conceptuses ≥ 8 mm in diameter (comparison 1) and conceptuses ≤ 8 mm (comparison 2) versus samples from cyclic controls. The majority of gene expression changes was identified in LE and much lower numbers of differentially expressed genes (DEGs) in GE and stroma. While 1253 DEGs were found for LE in comparison 1, only 248 were found in comparison 2. Data mining mainly focused on DEGs in LE and revealed regulation of genes related to prostaglandin transport, metabolism, and signaling, as well as transcription factor families that could be involved in MRP. In comparison to other mammalian species, differences in regulation of genes involved in epithelial barrier formation and conceptus attachment and implantation reflected the unique features of equine reproduction at the time of MRP at the molecular level.
Collapse
Affiliation(s)
- Alba Rudolf Vegas
- Institute of Veterinary Anatomy and Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Giorgia Podico
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Igor F Canisso
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana Champaign, Urbana, IL, USA
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty Zurich, University of Zurich, Lindau, Switzerland
| | - Carmen Almiñana
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland
| | - Stefan Bauersachs
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Lindau, Switzerland.
| |
Collapse
|
13
|
Dudley JS, Murphy CR, Thompson MB, McAllan BM. Uterine cellular changes during mammalian pregnancy and the evolution of placentation. Biol Reprod 2021; 105:1381-1400. [PMID: 34514493 DOI: 10.1093/biolre/ioab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
There are many different forms of nutrient provision in viviparous (live bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), transfer waste from the fetus to the mother and respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta. These changes are regulated in complex ways but are controlled by similar hormonal mechanisms across species. This review describes current knowledge of the morphological and molecular changes to the uterine epithelium preceding implantation among mammals. Our aim is to identify the commonalities and constraints of these cellular changes to understand the evolution of placentation in mammals and propose directions for future research. We compare and discuss the complex modifications to the ultrastructure of uterine epithelial cells and show that there are similarities in the changes to the cytoskeleton and gross morphology of the uterine epithelial cells, especially of the apical and lateral plasma membrane of the cells during the formation of a placenta in all eutherians and marsupials studied to date. We conclude that further research is needed to understand the evolution of placentation among viviparous mammals, particularly concerning the level of placental invasiveness, hormonal control and genetic underpinnings of pregnancy in marsupial taxa.
Collapse
Affiliation(s)
- Jessica S Dudley
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.,Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia
| | - Christopher R Murphy
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Bronwyn M McAllan
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Chen Z, Xiong L, Jin H, Yu J, Li X, Fu H, Wen L, Qi H, Tong C, Saffery R, Kilby MD, Baker PN. Advanced maternal age causes premature placental senescence and malformation via dysregulated α-Klotho expression in trophoblasts. Aging Cell 2021; 20:e13417. [PMID: 34105233 PMCID: PMC8282245 DOI: 10.1111/acel.13417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (AMA) pregnancy is associated with higher risks of adverse perinatal outcomes, which may result from premature senescence of the placenta. α-Klotho is a well-known antiaging protein; however, its expression and effect on the placenta in AMA pregnancies have not yet been fully elucidated. The expression patterns of α-Klotho in mouse and human placentas from AMA pregnancies were determined by Western blotting and immunohistochemistry (IHC) staining. α-Klotho expression in JAR cells was manipulated to investigate its role in trophoblastic senescence, and transwell assays were performed to assess trophoblast invasion. The downstream genes regulated by α-Klotho in JAR cells were first screened by mRNA sequencing in α-Klotho-knockdown and control JAR cells and then validated. α-Klotho-deficient mice were generated by injecting klotho-interfering adenovirus (Ad-Klotho) via the tail vein on GD8.5. Ablation of α-Klotho resulted in not only a senescent phenotype and loss of invasiveness in JAR cells but also a reduction in the transcription of cell adhesion molecule (CAM) genes. Overexpression of α-Klotho significantly improved invasion but did not alter the expression of senescence biomarkers. α-Klotho-deficient mice exhibited placental malformation and, consequently, lower placental and fetal weights. In conclusion, AMA results in reduced α-Klotho expression in placental trophoblasts, therefore leading to premature senescence and loss of invasion (possibly through the downregulation of CAMs), both of which ultimately result in placental malformation and adverse perinatal outcomes.
Collapse
Affiliation(s)
- Zhi Chen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Liling Xiong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huili Jin
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Jiaxiao Yu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Xin Li
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Huijia Fu
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Li Wen
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Hongbo Qi
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Chao Tong
- Department of ObstetricsThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing MunicipalityChongqing Medical UniversityChongqingChina
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
| | - Richard Saffery
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- Cancer, Disease and Developmental epigenetics, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVICAustralia
| | - Mark D. Kilby
- Centre for Women's and Newborn HealthInstitute of Metabolism and Systems ResearchUniversity of BirminghamBirminghamUK
| | - Philip N. Baker
- International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of EducationChongqing Medical UniversityChongqingChina
- College of Life SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
15
|
Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan LL, Ding YB, Wang YX. The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation. Reprod Sci 2020; 28:305-320. [PMID: 33146876 DOI: 10.1007/s43032-020-00364-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Placentation is a major determinant of the success of pregnancy. It is regulated by several factors such as cell adhesion molecules, tight junctions, and gap junctions. The cell adhesion molecules are integrins, cadherins, immunoglobulins, nectins, and selectins. The tight junctions are composed of claudins, occludin, and junction adhesion molecule proteins while the gap junctions are composed of connexins of varying molecular weights. During placentation, some of these molecules regulate trophoblast proliferation, trophoblast fusion, trophoblast migration, trophoblast invasion, trophoblast-endothelium adhesion, glandular remodeling, and spiral artery remodeling. There is a dysregulated placental expression of some of these molecules during obstetric complications. We have, hereby, indicated the expression patterns of the subunits of each of these molecules in the various trophoblast subtypes and in the decidua, and have highlighted their involvement in physiological and pathological placentation. The available evidence points to the relevance of these molecules as distinguishing markers of the various trophoblast lineages and as potential therapeutic targets in the management of malplacentation-mediated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Armin Czika
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Zulqarnain Panhwar
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
16
|
Whitby S, Zhou W, Dimitriadis E. Alterations in Epithelial Cell Polarity During Endometrial Receptivity: A Systematic Review. Front Endocrinol (Lausanne) 2020; 11:596324. [PMID: 33193109 PMCID: PMC7652731 DOI: 10.3389/fendo.2020.596324] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Background Abnormal endometrial receptivity is one of the major causes of embryo implantation failure and infertility. The plasma membrane transformation (PMT) describes the collective morphological and molecular alterations occurring to the endometrial luminal epithelium across the mid-secretory phase of the menstrual cycle to facilitate implantation. Dysregulation of this process directly affects endometrial receptivity and implantation. Multiple parallels between these alterations to confer endometrial receptivity in women have been drawn to those seen during the epithelial-mesenchymal transition (EMT) in tumorigenesis. Understanding these similarities and differences will improve our knowledge of implantation biology, and may provide novel therapeutic targets to manage implantation failure. Methods A systematic review was performed using the Medline (Ovid), Embase, and Web of Science databases without additional limits. The search terms used were "(plasma membrane* or cell membrane*) and transformation*" and "endometrium or endometrial." Research studies on the PMT or its regulation in women, discussing either the endometrial epithelium, decidualized stroma, or both, were eligible for inclusion. Results A total of 198 articles were identified. Data were extracted from 15 studies that matched the inclusion criteria. Collectively, these included studies confirmed the alterations occurring to the endometrial luminal epithelium during the PMT are similar to those seen during the EMT. Such similarities included alterations to the actin cytoskeleton remodeling of adherens junctions, integrin expression and epithelial-stromal communication. These were also some differences between these processes, such as the regulation of tight junctions and mucins, which need to be further researched. Conclusions This review raised the prospect of shared and distinct mechanisms existing in PMT and EMT. Further investigation into similarities between the PMT in the endometrium and the EMT in tumorigenesis may provide new mechanistic insights into PMT and new targets for the management of implantation failure and infertility.
Collapse
Affiliation(s)
- Sarah Whitby
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Gynaecology Research Centre, Royal Women’s Hospital, Parkville, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update 2020; 25:114-133. [PMID: 30407544 DOI: 10.1093/humupd/dmy035] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The human uterine endometrium undergoes significant remodeling and regeneration on a rapid and repeated basis, after parturition, menstruation, and in some cases, injury. The ability of the adult endometrium to undergo cyclic regeneration and differentiation/decidualization is essential for successful human reproduction. Multiple key physiologic functions of the endometrium require the cells of this tissue to transition between mesenchymal and epithelial phenotypes, processes known as mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT). Although MET/EMT processes have been widely characterized in embryonic development and in the context of malignancy, mounting evidence demonstrates the importance of MET/EMT in allowing the endometrium the phenotypic and functional flexibility necessary for successful decidualization, regeneration/re-epithelialization and embryo implantation. OBJECTIVE AND RATIONALE The objective of this review is to provide a comprehensive summary of the observations concerning MET and EMT and their regulation in physiologic uterine functions, specifically in the context of endometrial regeneration, decidualization and embryo implantation. SEARCH METHODS Using variations of the search terms 'mesenchymal-epithelial transition', 'mesenchymal-epithelial transformation', 'epithelial-mesenchymal transition', 'epithelial-mesenchymal transformation', 'uterus', 'endometrial regeneration', 'endometrial decidualization', 'embryo implantation', a search of the published literature between 1970 and 2018 was conducted using the PubMed database. In addition, we searched the reference lists of all publications included in this review for additional relevant original studies. OUTCOMES Multiple studies demonstrate that endometrial stromal cells contribute to the regeneration of both the stromal and epithelial cell compartments of the uterus, implicating a role for MET in mechanisms responsible for endometrial regeneration and re-epithelialization. During decidualization, endometrial stromal cells undergo morphologic and functional changes consistent with MET in order to accommodate embryo implantation. Under the influence of estradiol, progesterone and multiple other factors, endometrial stromal fibroblasts acquire epithelioid characteristics, such as expanded cytoplasm and rough endoplasmic reticulum required for greater secretory capacity, rounded nuclei, increased expression of junctional proteins which allow for increased cell-cell communication, and a reorganized actin cytoskeleton. During embryo implantation, in response to both maternal and embryonic-derived signals, the maternal luminal epithelium as well as the decidualized stromal cells acquire the mesenchymal characteristics of increased migration/motility, thus undergoing EMT in order to accommodate the invading trophoblast. WIDER IMPLICATIONS Overall, the findings support important roles for MET/EMT in multiple endometrial functions required for successful reproduction. The endometrium may be considered a unique wound healing model, given its ability to repeatedly undergo repair without scarring or loss of function. Future studies to elucidate how MET/EMT mechanisms may contribute to scar-free endometrial repair will have considerable potential to advance studies of wound healing mechanisms in other tissues.
Collapse
Affiliation(s)
- Amma Owusu-Akyaw
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Kavitha Krishnamoorthy
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Laura T Goldsmith
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sara S Morelli
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
18
|
Hoerscher A, Horné F, Dietze R, Berkes E, Oehmke F, Tinneberg HR, Meinhold-Heerlein I, Konrad L. Localization of claudin-2 and claudin-3 in eutopic and ectopic endometrium is highly similar. Arch Gynecol Obstet 2020; 301:1003-1011. [PMID: 32140805 PMCID: PMC8222039 DOI: 10.1007/s00404-020-05472-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/22/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Claudins as the major components of tight junctions are important in maintaining cell-cell integrity and thus function as a barrier. Dysregulation of the claudins is often associated with loss of the epithelial phenotype, a process called epithelial-mesenchymal transition (EMT), which most often results in gain of migrative and invasive properties. However, the role of claudins in the endometrium or endometriosis has only rarely been examined. METHODS In this study, we investigated localization of claudin-2 and claudin-3 in the eutopic and ectopic endometrium with immunohistochemistry. A detailed quantification with HSCORE was performed for claudin-2 and claudin-3 in endometrium without endometriosis and in cases with endometriosis compared to the three endometriotic entities: peritoneal, ovarian, and deep-infiltrating endometriosis. RESULTS We found a preferential localization of both claudins in the glandular and the luminal epithelial cells in the endometrium with and without endometriosis. Quantification of localization of both claudins showed no differences in eutopic endometrium of control cases compared to cases with endometriosis. Furthermore, both claudins are localized highly similar in the ectopic compared to the eutopic endometrium, which is in clear contrast to previously published data for claudin-3. CONCLUSION From our results, we conclude that localization of claudin-2 and claudin-3 is highly stable in eutopic and ectopic endometrium without any loss of the epithelial phenotype and thus do not contribute to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Alena Hoerscher
- Department of Gynecology and Obstetrics, Justus Liebig University, University of Giessen, Feulgenstr. 10-12, 35392, Giessen, Germany
| | - Fabian Horné
- Department of Gynecology and Obstetrics, Justus Liebig University, University of Giessen, Feulgenstr. 10-12, 35392, Giessen, Germany
| | - Raimund Dietze
- Department of Gynecology and Obstetrics, Justus Liebig University, University of Giessen, Feulgenstr. 10-12, 35392, Giessen, Germany
| | - Eniko Berkes
- Department of Gynecology, UKE Hamburg, Hamburg, Germany
| | - Frank Oehmke
- Department of Gynecology and Obstetrics, Justus Liebig University, University of Giessen, Feulgenstr. 10-12, 35392, Giessen, Germany
| | | | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Justus Liebig University, University of Giessen, Feulgenstr. 10-12, 35392, Giessen, Germany
| | - Lutz Konrad
- Department of Gynecology and Obstetrics, Justus Liebig University, University of Giessen, Feulgenstr. 10-12, 35392, Giessen, Germany.
| |
Collapse
|
19
|
Shridhar V, Chu T, Simhan H, Shaw PA, Peters DG. High‐resolution analysis of the human placental DNA methylome in early gestation. Prenat Diagn 2020; 40:481-491. [DOI: 10.1002/pd.5618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 09/27/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Varsha Shridhar
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| | - Tianjiao Chu
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| | - Hyagriv Simhan
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| | | | - David G. Peters
- Department of Obstetrics, Gynecology and Reproductive SciencesUniversity of Pittsburgh Pittsburgh Pennsylvania
- Magee‐Womens Research Institute Pittsburgh Pennsylvania
| |
Collapse
|
20
|
Seker M, Fernández-Rodríguez C, Martínez-Cruz LA, Müller D. Mouse Models of Human Claudin-Associated Disorders: Benefits and Limitations. Int J Mol Sci 2019; 20:ijms20215504. [PMID: 31694170 PMCID: PMC6862546 DOI: 10.3390/ijms20215504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022] Open
Abstract
In higher organisms, epithelia separate compartments in order to guarantee their proper function. Such structures are able to seal but also to allow substances to pass. Within the paracellular pathway, a supramolecular structure, the tight junction transport is largely controlled by the temporospatial regulation of its major protein family called claudins. Besides the fact that the expression of claudins has been identified in different forms of human diseases like cancer, clearly defined mutations in the corresponding claudin genes have been shown to cause distinct human disorders. Such disorders comprise the skin and its adjacent structures, liver, kidney, the inner ear, and the eye. From the phenotype analysis, it has also become clear that different claudins can cause a complex phenotype when expressed in different organs. To gain deeper insights into the physiology and pathophysiology of claudin-associated disorders, several mouse models have been generated. In order to model human disorders in detail, they have been designed either as full knockouts, knock-downs or knock-ins by a variety of techniques. Here, we review human disorders caused by CLDN mutations and their corresponding mouse models that have been generated thus far and assess their usefulness as a model for the corresponding human disorder.
Collapse
Affiliation(s)
- Murat Seker
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
| | | | | | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
- Correspondence:
| |
Collapse
|
21
|
Wetendorf M, Randall LT, Lemma MT, Hurr SH, Pawlak JB, Tarran R, Doerschuk CM, Caron KM. E-Cigarette Exposure Delays Implantation and Causes Reduced Weight Gain in Female Offspring Exposed In Utero. J Endocr Soc 2019; 3:1907-1916. [PMID: 31598571 PMCID: PMC6777403 DOI: 10.1210/js.2019-00216] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Electronic nicotine delivery system (e-cigarette) use is prevalent among pregnant women as a seemingly safe alternative to traditional tobacco use, known to result in fetal developmental abnormalities and impaired fertility of male offspring. However, little is known about the effects of e-cigarette use on fertility or pregnancy outcomes. A successful pregnancy is initiated by a multitude of dynamic molecular alterations in the uterus resulting in embryo implantation at day 4.5 in the mouse. We examined whether e-cigarette exposure impairs implantation and offspring health. Pregnant C57BL/6J mice were exposed five times a week to e-cigarette vapor or sham. After 4 months, e-cigarette exposed dams exhibited a significant delay in the onset of the first litter. Furthermore, exposure of new dams in early pregnancy significantly impaired embryo implantation, as evidenced by nearly complete absence of implantation sites in e-cigarette-exposed animals at day 5.5, despite exhibiting high levels of progesterone, an indicator of pregnancy. RNA microarray from day 4.5 pseudopregnant mice revealed significant changes in the integrin, chemokine, and JAK signaling pathways. Moreover, female offspring exposed to e-cigarettes in utero exhibited a significant weight reduction at 8.5 months, whereas males exhibited a slight but nonsignificant deficiency in fertility. Thus, e-cigarette exposure in mice impairs pregnancy initiation and fetal health, suggesting that e-cigarette use by reproductive-aged women or during pregnancy should be considered with caution.
Collapse
Affiliation(s)
- Margeaux Wetendorf
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lewis T Randall
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Mahlet T Lemma
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Sophia H Hurr
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - John B Pawlak
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Robert Tarran
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Claire M Doerschuk
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Miranda J, Martín-Tapia D, Valdespino-Vázquez Y, Alarcón L, Espejel-Nuñez A, Guzmán-Huerta M, Muñoz-Medina JE, Shibayama M, Chávez-Munguía B, Estrada-Gutiérrez G, Lievano S, Ludert JE, González-Mariscal L. Syncytiotrophoblast of Placentae from Women with Zika Virus Infection Has Altered Tight Junction Protein Expression and Increased Paracellular Permeability. Cells 2019; 8:cells8101174. [PMID: 31569528 PMCID: PMC6829373 DOI: 10.3390/cells8101174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 12/27/2022] Open
Abstract
The cytotrophoblast of human placenta transitions into an outer multinucleated syncytiotrophoblast (STB) layer that covers chorionic villi which are in contact with maternal blood in the intervillous space. During pregnancy, the Zika virus (ZIKV) poses a serious prenatal threat. STB cells are resistant to ZIKV infections, yet placental cells within the mesenchyme of chorionic villi are targets of ZIKV infection. We seek to determine whether ZIKV can open the paracellular pathway of STB cells. This route is regulated by tight junctions (TJs) which are present in the uppermost portion of the lateral membranes of STB cells. We analyzed the paracellular permeability and expression of E-cadherin, occludin, JAMs -B and -C, claudins -1, -3, -4, -5 and -7, and ZO-1, and ZO-2 in the STB of placentae from ZIKV-infected and non-infected women. In ZIKV-infected placentae, the pattern of expression of TJ proteins was preserved, but the amount of claudin-4 diminished. Placentae from ZIKV-infected women were permeable to ruthenium red, and had chorionic villi with a higher mean diameter and Hofbauer hyperplasia. Finally, ZIKV added to the basolateral surface of a trophoblast cell line reduced the transepithelial electrical resistance. These results suggest that ZIKV can open the paracellular pathway of STB cells.
Collapse
Affiliation(s)
- Jael Miranda
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Dolores Martín-Tapia
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Yolotzin Valdespino-Vázquez
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Aurora Espejel-Nuñez
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - Mario Guzmán-Huerta
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - José Esteban Muñoz-Medina
- Laboratorio Central de Epidemiología, Instituto Mexicano del Seguro Social, Ciudad de México 02990, Mexico.
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Guadalupe Estrada-Gutiérrez
- Research Division, Instituto Nacional de Perinatología (INPer) Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| | - Samuel Lievano
- Quality division, Obstetrics and Gynecology Hospital No. 4, Mexican Institute of Social Security (IMSS), Mexico City 01090, Mexico.
| | - Juan Ernesto Ludert
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City 07360, Mexico.
| |
Collapse
|
23
|
Buddle AL, Thompson MB, Lindsay LA, Murphy CR, Whittington CM, McAllan BM. Dynamic changes to claudins in the uterine epithelial cells of the marsupial
Sminthopsis crassicaudata
(Dasyuridae) during pregnancy. Mol Reprod Dev 2019; 86:639-649. [DOI: 10.1002/mrd.23140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/06/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Alice L. Buddle
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Michael B. Thompson
- School of Life and Environmental Sciences University of Sydney Sydney Australia
| | - Laura A. Lindsay
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| | - Christopher R. Murphy
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| | - Camilla M. Whittington
- School of Life and Environmental Sciences University of Sydney Sydney Australia
- Sydney School of Veterinary Science University of Sydney Sydney Australia
| | - Bronwyn M. McAllan
- School of Medical Sciences and Bosch Institute University of Sydney Sydney Australia
| |
Collapse
|
24
|
Oxyquinoline-Dependent Changes in Claudin-Encoding Genes Contribute to Impairment of the Barrier Function of the Trophoblast Monolayer. Bull Exp Biol Med 2019; 166:369-372. [DOI: 10.1007/s10517-019-04352-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 12/12/2022]
|
25
|
Horné F, Dietze R, Berkes E, Oehmke F, Tinneberg HR, Meinhold-Heerlein I, Konrad L. Impaired Localization of Claudin-11 in Endometriotic Epithelial Cells Compared to Endometrial Cells. Reprod Sci 2018; 26:1181-1192. [PMID: 30514158 DOI: 10.1177/1933719118811643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Claudins are the major components of tight junctions and are often deregulated in human cancer, permitting escape of cancer cells along with the acquisition of invasive properties. Similarly, endometrial cells also show invasive capabilities; however, the role of tight junctions in endometriosis has only rarely been examined. In this study, we analyzed the protein expression and localization of claudin-7 and claudin-11 in human eutopic and ectopic endometrium and endometrial cell lines. We identified claudin-7 primarily at the basolateral junctions of the glandular epithelial cells in eutopic endometrium as well as in the ectopic lesions in nearly all glands and cysts. Quantification of claudin-7 localization by HSCORE showed a slight increase in peritoneal and deep infiltrating endometriosis (DIE) compared to eutopic endometrium. In contrast, claudin-11 was localized mainly in the apicolateral junctions in nearly all glandular epithelial cells of the eutopic endometrium. Interestingly, we observed a deregulation of claudin-11 localization to a basal or basolateral localization in ovarian (P < .001), peritoneal (P < .01), and DIE (P < .05) and a moderately decreased abundance in ovarian endometriosis. In endometrial cell lines, claudin-7 was only present in epithelial Ishikawa cells, and silencing by small-interfering RNA increased cell invasiveness. In contrast, claudin-11 could be demonstrated in Ishikawa and endometriotic 12Z and 49Z cells. Silencing of claudin-11 decreased invasiveness of 12Z slightly but significantly in 49Z. We suggest that although claudin-7 and claudin-11 can be found in nearly all eutopic and ectopic epithelial cells, the impaired localization of claudin-11 in ectopic endometrium might contribute to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Fabian Horné
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Raimund Dietze
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Eniko Berkes
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | - Frank Oehmke
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| | | | | | - Lutz Konrad
- 1 Department of Gynecology and Obstetrics, University of Giessen, Giessen, Germany
| |
Collapse
|
26
|
Garcia-Pradas L, Gleiser C, Wizenmann A, Wolburg H, Mack AF. Glial Cells in the Fish Retinal Nerve Fiber Layer Form Tight Junctions, Separating and Surrounding Axons. Front Mol Neurosci 2018; 11:367. [PMID: 30364233 PMCID: PMC6192225 DOI: 10.3389/fnmol.2018.00367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/18/2018] [Indexed: 02/01/2023] Open
Abstract
In the retina of teleost fish, cell addition continues throughout life involving proliferation and axonal growth. To study how this is achieved in a fully functioning retina, we investigated the nerve fiber layer (NFL) of the cichlid fish Astatotilapia burtoni for components that might regulate the extracellular environment. We hypothesized that growing axons are surrounded by different cell structures than signal conducting axons. Using immunohistochemistry and freeze fracture electron microscopy we found that the endfeet of Müller cells (MCs) expressed aquaporin-4 but not in high densities as in mammals. The presence of this water channel indicates the involvement of MCs in water homeostasis. Remarkably, we discovered conspicuous tight junctions in the retinal NFL. These tight junctions formed branching strands between myelin-like wrappings of ganglion cell axons that differed morphologically from any known myelin, and also an elaborate meshwork on large membrane faces between axons. We speculated that these tight junctions have additional functions than solely facilitating nerve conductance. Immunostainings against the adaptor protein ZO-1 labeled the NFL as did antibodies against the mammalian claudin-1, 3, and 19. Performing PCR analysis, we showed expression of claudin-1, 3, 5a, 5b, 9, 11, and 19 in the fish retina, claudins that typically occur at brain barriers or myelin. We could show by immunostains for doublecortin, a marker for differentiating neurons, that new axons are not surrounded by the myelin-like wrappings but only by the endfeet of MCs. We hypothesize that the tight junctions in the NFL of fish might contribute to the separation of an extracellular space around axons facilitating conductance, from a growth-promoting environment. For a functional test we applied Evans Blue dye to eye cup preparations which showed a retention of the dye in the NFL. This indicates that these remarkable tight junctions can indeed act as a diffusion barrier.
Collapse
Affiliation(s)
- Lidia Garcia-Pradas
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Corinna Gleiser
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Andrea Wizenmann
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| | - Hartwig Wolburg
- Institut für Pathologie und Neuropathologie, Universität Tübingen, Tübingen, Germany
| | - Andreas F Mack
- Institut für klinische Anatomie und Zellanalytik, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Direct Cell⁻Cell Interactions in the Endometrium and in Endometrial Pathophysiology. Int J Mol Sci 2018; 19:ijms19082227. [PMID: 30061539 PMCID: PMC6121364 DOI: 10.3390/ijms19082227] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cell contacts exhibit a considerable influence on tissue physiology and homeostasis by controlling paracellular and intercellular transport processes, as well as by affecting signaling pathways. Since they maintain cell polarity, they play an important role in cell plasticity. The knowledge about the junctional protein families and their interactions has increased considerably during recent years. In contrast to most other tissues, the endometrium undergoes extensive physiological changes and reveals an extraordinary plasticity due to its crucial role in the establishment and maintenance of pregnancy. These complex changes are accompanied by changes in direct cell–cell contacts to meet the various requirements in the respective developmental stage. Impairment of this sophisticated differentiation process may lead to failure of implantation and embryo development and may be involved in the pathogenesis of endometrial diseases. In this article, we focus on the knowledge about the distribution and regulation of the different junctional proteins in the endometrium during cycling and pregnancy, as well as in pathologic conditions such as endometriosis and cancer. Decoding these sophisticated interactions should improve our understanding of endometrial physiology as well as of the mechanisms involved in pathological conditions.
Collapse
|
28
|
Patterson AL, Pirochta J, Tufano SY, Teixeira JM. Gain-of-function β-catenin in the uterine mesenchyme leads to impaired implantation and decidualization. J Endocrinol 2017; 233:119-130. [PMID: 28183999 PMCID: PMC5436143 DOI: 10.1530/joe-16-0502] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
Embryo implantation and endometrial decidualization are critical events that occur during early pregnancy in humans and mice, and perturbation in either can result in infertility. WNT signaling through the canonical β-catenin pathway plays a pivotal role in embryonic Müllerian duct development, postnatal uterine maturation and establishment of pregnancy. Loss of β-catenin in the Müllerian duct mesenchyme (MDM)-derived stroma and myometrium results in impaired decidualization and infertility, whereas gain-of-function (GOF) results in the formation of mesenchymal tumors and sub-fertility attributed to malformed oviducts. We hypothesized that GOF β-catenin further contributes to sub-fertility through improper stromal and epithelial cell signaling during embryo implantation and decidualization. We show that mice with GOF β-catenin in MDM-derived stroma and myometrium have reduced implantation sites after embryo transfer and decreased decidualization. On day 4.5 of pseudopregnancy or in mice treated with progesterone and estrogen to mimic early pregnancy, the estrogen-LIF-ERK and progesterone-IHH pathways remain predominantly intact in GOF β-catenin mice; however, JAK/STAT signaling is altered. pSTAT3 is significantly reduced in GOF β-catenin mice and expression of downstream epithelial junctional complex factors, Ctnna1 and Cldn1, is increased. We also show that purified stromal cells from GOF β-catenin uteri, when removed from epithelial cell influence and provided with the appropriate hormonal stimuli, are able to decidualize in vitro indicating that the cells are intrinsically capable of decidualization. Taken together, these results suggest that dysregulated β-catenin activity in the stroma affects epithelial cell STAT3 signaling and ultimately embryo implantation and stromal decidualization.
Collapse
Affiliation(s)
- Amanda L Patterson
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Jamieson Pirochta
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Stephanie Y Tufano
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Jose M Teixeira
- Department of ObstetricsGynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| |
Collapse
|
29
|
Himmerkus N, Plain A, Marques RD, Sonntag SR, Paliege A, Leipziger J, Bleich M. AVP dynamically increases paracellular Na+ permeability and transcellular NaCl transport in the medullary thick ascending limb of Henle’s loop. Pflugers Arch 2016; 469:149-158. [DOI: 10.1007/s00424-016-1915-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023]
|
30
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [PMID: 26878854 DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|