1
|
Wu C, Xiong Y, Fu F, Zhang F, Qin F, Yuan J. The Role of Autophagy in Erectile Dysfunction. World J Mens Health 2025; 43:28-40. [PMID: 38606869 DOI: 10.5534/wjmh.230145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 04/13/2024] Open
Abstract
Autophagy is a conservative lysosome-dependent material catabolic pathway, and exists in all eukaryotic cells. Autophagy controls cell quality and survival by eliminating intracellular dysfunction substances, and plays an important role in various pathophysiology processes. Erectile dysfunction (ED) is a common male disease. It is resulted from a variety of causes and pathologies, such as diabetes, hypertension, hyperlipidemia, aging, spinal cord injury, or cavernous nerve injury caused by radical prostatectomy, and others. In the past decade, autophagy has begun to be investigated in ED. Subsequently, an increasing number of studies have revealed the regulation of autophagy contributes to the recovery of ED, and which is mainly involved in improving endothelial function, smooth muscle cell apoptosis, penile fibrosis, and corpus cavernosum nerve injury. Therefore, in this review, we aim to summarize the possible role of autophagy in ED from a cellular perspective, and we look forward to providing a new idea for the pathogenesis investigation and clinical treatment of ED in the future.
Collapse
Affiliation(s)
- Changjing Wu
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fudong Fu
- Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China
| | - Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Maringanti R, van Dijk CGM, Meijer EM, Brandt MM, Li M, Tiggeloven VPC, Krebber MM, Chrifi I, Duncker DJ, Verhaar MC, Cheng C. Atherosclerosis on a Chip: A 3-Dimensional Microfluidic Model of Early Arterial Events in Human Plaques. Arterioscler Thromb Vasc Biol 2024; 44:2453-2472. [PMID: 39297206 DOI: 10.1161/atvbaha.124.321332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Realistic reconstruction of the in vivo human atherosclerotic environment requires the coculture of different cell types arranged in atherosclerotic vessel-like structures with exposure to flow and circulating cells, presenting challenges for disease modeling. This study aimed to develop a 3-dimensional tubular microfluidic model with quadruple coculture of human aortic smooth muscle cells, human umbilical cord vein endothelial cells, and foam cells to recreate a complex human atherosclerotic vessel in vitro to study the effects of flow and circulating immune cells. METHODS We developed a coculture protocol utilizing BFP (blue fluorescent protein)-labeled human aortic smooth muscle cells, GFP (green fluorescent protein)-labeled human umbilical cord vein endothelial cells, and THP-1 macrophage-derived, Dil-labeled oxidized LDL (low-density lipoprotein) foam cells within a fibrinogen/collagen I-based 3-dimensional ECM (extracellular matrix). Perfusion experiments were conducted for 24 hours on both atherosclerotic vessels and healthy vessels (BFP-labeled human aortic smooth muscle cells and GFP-labeled human umbilical cord vein endothelial cells without foam cells). Additionally, perfusion with circulating THP-1 monocytes was performed to observe cell extravasation and recruitment. RESULTS The resulting vessels displayed early lesion morphology, with a layered composition including an endothelium and media, and foam cells accumulating in the subendothelial space. The layered wall composition of both atherosclerotic and healthy vessels remained stable under perfusion. Circulating THP-1 monocytes demonstrated cell extravasation into the atherosclerotic vessel wall and recruitment to the foam cell core. The qPCR (quantitative polymerase chain reaction) analysis indicated increased expression of atherosclerosis markers in the atherosclerotic vessels and adaptation of vascular smooth muscle cell migration in response to flow and the plaque microenvironment, compared with control vessels. CONCLUSIONS The human 3-dimensional atherosclerosis model demonstrated stability under perfusion and allowed for the observation of immune cell behavior, providing a valuable tool for the atherosclerosis research field.
Collapse
MESH Headings
- Humans
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Coculture Techniques
- Lab-On-A-Chip Devices
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Plaque, Atherosclerotic
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- THP-1 Cells
- Foam Cells/pathology
- Foam Cells/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Aorta/pathology
- Aorta/metabolism
- Lipoproteins, LDL/metabolism
- Microfluidic Analytical Techniques/instrumentation
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Aortic Diseases/genetics
- Cell Movement
- Cell Culture Techniques, Three Dimensional/methods
- Cells, Cultured
Collapse
Affiliation(s)
- Ranganath Maringanti
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Elana M Meijer
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Maarten M Brandt
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Mingzi Li
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Vera P C Tiggeloven
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Merle M Krebber
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Ihsan Chrifi
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Dirk J Duncker
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
| | - Caroline Cheng
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, the Netherlands (R.M., C.G.M.v.D., E.M.M., M.M.K., I.C., M.C.V., C.C.)
- Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands (R.M., M.M.B., M.L., V.P.C.T., I.C., D.J.D., C.C.)
| |
Collapse
|
3
|
Ghanem L, Essayli D, Kotaich J, Zein MA, Sahebkar A, Eid AH. Phenotypic switch of vascular smooth muscle cells in COVID-19: Role of cholesterol, calcium, and phosphate. J Cell Physiol 2024; 239:e31424. [PMID: 39188012 DOI: 10.1002/jcp.31424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Although the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as severe respiratory distress, its impact on the cardiovascular system is also notable. Studies reveal that COVID-19 patients often suffer from certain vascular diseases, partly attributed to increased proliferation or altered phenotype of vascular smooth muscle cells (VSMCs). Although the association between COVID-19 and VSMCs is recognized, the precise mechanism underlying SARS-CoV-2's influence on VSMC phenotype remains largely under-reviewed. In this context, while there is a consistent body of literature dissecting the effect of COVID-19 on the cardiovascular system, few reports delve into the potential role of VSMC switching in the pathophysiology associated with COVID-19 and the molecular mechanisms involved therein. This review dissects and critiques the link between COVID-19 and VSMCs, with particular attention to pathways involving cholesterol, calcium, and phosphate. These pathways underpin the interaction between the virus and VSMCs. Such interaction promotes VSMC proliferation, and eventually potentiates vascular calcification as well as worsens prognosis in patients with COVID-19.
Collapse
MESH Headings
- Animals
- Humans
- Calcium/metabolism
- Cell Proliferation
- Cholesterol/metabolism
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/virology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/virology
- Phenotype
- Phosphates/metabolism
- SARS-CoV-2/pathogenicity
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/virology
Collapse
Affiliation(s)
- Laura Ghanem
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Dina Essayli
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Jana Kotaich
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
- MEDICA Research Investigation, Beirut, Lebanon
| | - Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Lebanon
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Chen N, Wu S, Zhi K, Zhang X, Guo X. ZFP36L1 controls KLF16 mRNA stability in vascular smooth muscle cells during restenosis after vascular injury. J Mol Cell Cardiol 2024; 192:13-25. [PMID: 38653384 DOI: 10.1016/j.yjmcc.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
The RNA-binding zinc finger protein 36 (ZFP36) family participates in numerous physiological processes including transition and differentiation through post-transcriptional regulation. ZFP36L1 is a member of the ZFP36 family. This study aimed to evaluate the role of ZFP36L1 in restenosis. We found that the expression of ZFP36L1 was inhibited in VSMC-phenotypic transformation induced by TGF-β, PDGF-BB, and FBS and also in the rat carotid injury model. In addition, we found that the overexpression of ZFP36L1 inhibited the proliferation and migration of VSMCs and promoted the expression of VSMC contractile genes; whereas ZFP36L1 interference promoted the proliferation and migration of VSMCs and suppressed the expression of contractile genes. Furthermore, the RNA binding protein immunoprecipitation and double luciferase reporter gene experiments shows that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16. Finally, our research results in the rat carotid balloon injury animal model further confirmed that ZFP36L1 regulates the phenotypic transformation of VSMCs through the posttranscriptional regulation of KLF16 and further plays a role in vascular injury and restenosis in vivo.
Collapse
Affiliation(s)
- Ningheng Chen
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyong Wu
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Zhi
- Department of Vascular surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, China.
| | - Xiaoping Zhang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| | - Xueli Guo
- Department of Vascular surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Liu Q, Jiang HJ, Wu YD, Li JD, Sun XH, Xiao C, Xu JY, Lin ZY. Carrageenan maintains the contractile phenotype of vascular smooth muscle cells by increasing macromolecular crowding in vitro. Eur J Med Res 2024; 29:249. [PMID: 38650027 PMCID: PMC11036678 DOI: 10.1186/s40001-024-01843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/14/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The contractile phenotype of vascular smooth muscle cells (VSMCs) results in good diastolic and contractile capacities, and its altered function is the main pathophysiological basis for diseases such as hypertension. VSMCs exist as a synthetic phenotype in vitro, making it challenging to maintain a contractile phenotype for research. It is widely recognized that the common medium in vitro is significantly less crowded than in the in vivo environment. Additionally, VSMCs have a heightened sense for detecting changes in medium crowding. However, it is unclear whether macromolecular crowding (MMC) helps maintain the VSMCs contractile phenotype. PURPOSE This study aimed to explore the phenotypic, behavioral and gene expression changes of VSMCs after increasing the crowding degree by adding carrageenan (CR). METHODS The degree of medium crowding was examined by a dynamic light scattering assay; VSMCs survival and activity were examined by calcein/PI cell activity and toxicity and CCK-8 assays; VSMCs phenotypes and migration were examined by WB and wound healing assays; and gene expression was examined by transcriptomic analysis and RT-qPCR. RESULTS Notably, 225 μg/mL CR significantly increased the crowding degree of the medium and did not affect cell survival. Simultaneously, CR significantly promoted the contraction phenotypic marker expression in VSMCs, shortened cell length, decreased cell proliferation, and inhibited cell migration. CR significantly altered gene expression in VSMCs. Specifically, 856 genes were upregulated and 1207 genes were downregulated. These alterations primarily affect the cellular ion channel transport, microtubule movement, respiratory metabolism, amino acid transport, and extracellular matrix synthesis. The upregulated genes were primarily involved in the cytoskeleton and contraction processes of VSMCs, whereas the downregulated genes were mainly involved in extracellular matrix synthesis. CONCLUSIONS The in vitro study showed that VSMCs can maintain the contractile phenotype by sensing changes in the crowding of the culture environment, which can be maintained by adding CR.
Collapse
Affiliation(s)
- Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yin-Di Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Dong Li
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhan-Yi Lin
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Elmarasi M, Elmakaty I, Elsayed B, Elsayed A, Zein JA, Boudaka A, Eid AH. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J Cell Physiol 2024; 239:e31200. [PMID: 38291732 DOI: 10.1002/jcp.31200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in regulating vasotone, and their phenotypic plasticity is a key contributor to the pathogenesis of various vascular diseases. Two main VSMC phenotypes have been well described: contractile and synthetic. Contractile VSMCs are typically found in the tunica media of the vessel wall, and are responsible for regulating vascular tone and diameter. Synthetic VSMCs, on the other hand, are typically found in the tunica intima and adventitia, and are involved in vascular repair and remodeling. Switching between contractile and synthetic phenotypes occurs in response to various insults and stimuli, such as injury or inflammation, and this allows VSMCs to adapt to changing environmental cues and regulate vascular tone, growth, and repair. Furthermore, VSMCs can also switch to osteoblast-like and chondrocyte-like cell phenotypes, which may contribute to vascular calcification and other pathological processes like the formation of atherosclerotic plaques. This provides discusses the mechanisms that regulate VSMC phenotypic switching and its role in the development of vascular diseases. A better understanding of these processes is essential for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Basel Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Luo J, Zhang X, Li W, Wang T, Cui S, Li T, Wang Y, Xu W, Ma Y, Yang B, Luo Y, Yang G, Xu R, Jiao L. eIF2α-mediated integrated stress response links multiple intracellular signaling pathways to reprogram vascular smooth muscle cell fate in carotid artery plaque. Heliyon 2024; 10:e26904. [PMID: 38434290 PMCID: PMC10907769 DOI: 10.1016/j.heliyon.2024.e26904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Carotid arterial atherosclerotic stenosis is a well-recognized pathological basis of ischemic stroke; however, its underlying molecular mechanisms remain unknown. Vascular smooth muscle cells (VSMCs) play fundamental roles in the initiation and progression of atherosclerosis. Organelle dynamics have been reported to affect atherosclerosis development. However, the association between organelle dynamics and various cellular stresses in atherosclerotic progression remain ambiguous. Methods In this study, we conducted transcriptomics and bioinformatics analyses of stable and vulnerable carotid plaques. Primary VSMCs were isolated from carotid plaques and subjected to histopathological staining to determine their expression profiles. Endoplasmic reticulum (ER), mitochondria, and lysosome dynamics were observed in primary VSMCs and VSMC cell lines using live-cell imaging. Moreover, the mechanisms underlying disordered organelle dynamics were investigated using comprehensive biological approaches. Results ER whorls, a representative structural change under ER stress, are prominent dynamic reconstructions of VSMCs between vulnerable and stable plaques, followed by fragmented mitochondria and enlarged lysosomes, suggesting mitochondrial stress and lysosomal defects, respectively. Induction of mitochondrial stress alleviated ER stress and autophagy in an eukaryotic translation initiation factor (eIF)-2α-dependent manner. Furthermore, the effects of eIF2α on ER stress, mitochondrial stress, and lysosomal defects were validated using clinical samples. Conclusion Our results indicate that morphological and functional changes in VSMC organelles, especially in ER whorls, can be used as reliable biomarkers for atherosclerotic progression. Moreover, eIF2α plays an important role in integrating multiple stress-signaling pathways to determine the behavior and fate of VSMCs.
Collapse
Affiliation(s)
- Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Shengyan Cui
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tianhua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yilin Wang
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ge Yang
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
He J, Gao Y, Yang C, Guo Y, Liu L, Lu S, He H. Navigating the landscape: Prospects and hurdles in targeting vascular smooth muscle cells for atherosclerosis diagnosis and therapy. J Control Release 2024; 366:261-281. [PMID: 38161032 DOI: 10.1016/j.jconrel.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Vascular smooth muscle cells (VSMCs) have emerged as pivotal contributors throughout all phases of atherosclerotic plaque development, effectively dispelling prior underestimations of their prevalence and significance. Recent lineage tracing studies have unveiled the clonal nature and remarkable adaptability inherent to VSMCs, thereby illuminating their intricate and multifaceted roles in the context of atherosclerosis. This comprehensive review provides an in-depth exploration of the intricate mechanisms and distinctive characteristics that define VSMCs across various physiological processes, firmly underscoring their paramount importance in shaping the course of atherosclerosis. Furthermore, this review offers a thorough examination of the significant strides made over the past two decades in advancing imaging techniques and therapeutic strategies with a precise focus on targeting VSMCs within atherosclerotic plaques, notably spotlighting meticulously engineered nanoparticles as a promising avenue. We envision the potential of VSMC-targeted nanoparticles, thoughtfully loaded with medications or combination therapies, to effectively mitigate pro-atherogenic VSMC processes. These advancements are poised to contribute significantly to the pivotal objective of modulating VSMC phenotypes and enhancing plaque stability. Moreover, our paper also delves into recent breakthroughs in VSMC-targeted imaging technologies, showcasing their remarkable precision in locating microcalcifications, dynamically monitoring plaque fibrous cap integrity, and assessing the therapeutic efficacy of medical interventions. Lastly, we conscientiously explore the opportunities and challenges inherent in this innovative approach, providing a holistic perspective on the potential of VSMC-targeted strategies in the evolving landscape of atherosclerosis research and treatment.
Collapse
Affiliation(s)
- Jianhua He
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Yu Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Can Yang
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Yujie Guo
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China
| | - Lisha Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Shan Lu
- School of Pharmacy, Research Center for Pharmaceutical Preparations, Hubei University of Chinese Medicine, Wuhan 430065, People's Republic of China.
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
9
|
Xiong Y, Wang Y, Yang T, Luo Y, Xu S, Li L. Receptor Tyrosine Kinase: Still an Interesting Target to Inhibit the Proliferation of Vascular Smooth Muscle Cells. Am J Cardiovasc Drugs 2023; 23:497-518. [PMID: 37524956 DOI: 10.1007/s40256-023-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/05/2023] [Indexed: 08/02/2023]
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is a critical event that contributes to the pathogenesis of vascular remodeling such as hypertension, restenosis, and pulmonary hypertension. Increasing evidences have revealed that VSMCs proliferation is associated with the activation of receptor tyrosine kinases (RTKs) by their ligands, including the insulin-like growth factor receptor (IGFR), fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). Moreover, some receptor tyrosinase inhibitors (TKIs) have been found and can prevent VSMCs proliferation to attenuate vascular remodeling. Therefore, this review will describe recent research progress on the role of RTKs and their inhibitors in controlling VSMCs proliferation, which helps to better understand the function of VSMCs proliferation in cardiovascular events and is beneficial for the prevention and treatment of vascular disease.
Collapse
Affiliation(s)
- Yilin Xiong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Tao Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Yunmei Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China
| | - Lisheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
- Department of Pharmacology, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
10
|
Guo S, Zhao D, Zang Z, Shao D, Zhang K, Fu Q. Effects of endoplasmic reticulum stress on erectile function in rats with cavernous nerve injury. Sex Med 2023; 11:qfad050. [PMID: 37674767 PMCID: PMC10478027 DOI: 10.1093/sexmed/qfad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
Background Erectile dysfunction (ED) occurs in an increasing number of patients after radical prostatectomy and cystectomy, and the phenotypic modulation of corpus cavernosum smooth muscle cells is closely related to ED. Aim To determine whether endoplasmic reticulum stress (ERS) is implicated in the phenotypic modulation of ED induced by bilateral cavernous nerve injury (BCNI). Methods In total, 36 Sprague-Dawley rats were randomly divided into 3 groups: sham, in which rats received sham surgery with bilateral cavernous nerve exposure plus phosphate-buffered saline; control, in which rats received BCNI plus phosphate-buffered saline; and experimental, in which rats received BCNI plus 4-phenylbutyric acid. Analysis of variance and a Bonferroni multiple-comparison test were utilized to evaluate differences among groups. Outcomes Erectile function, smooth muscle/collagen ratios, and the expression levels of phenotypic modulation and ERS were measured. Results Two ratios-maximum intracavernosal pressure/mean arterial pressure and smooth muscle/collagen-were decreased in the control group as compared with the sham group. In penile tissue, there was increased expression of GRP78 (78-kDa glucose-regulated protein), p-PERK/PERK (phosphorylated protein kinase R-like endoplasmic reticulum kinase/protein kinase R-like endoplasmic reticulum kinase), caspase 3, CHOP (C/EBP homologous protein), and OPN (osteopontin) but decreased expression of nNOS (neuronal nitric oxide synthase) and α-SMA (α-smooth muscle actin). As compared with the control group, erectile function was improved and pathologic changes were partially recovered in the experimental group. Clinical Translation The present study demonstrated that ERS is involved in ED caused by cavernous nerve injury, thereby providing a new target and theoretical basis for clinical treatment. Strengths and Limitations The present study demonstrated for the first time that ERS is related to ED caused by cavernous nerve injury. Inhibition of ERS reverses phenotypic modulation and improves erectile function in rats with BCNI. Additional in vitro studies should be performed to verify these conclusions and explore the specific mechanism of phenotypic modulation. Conclusion The present study demonstrated that inhibiting ERS reverses phenotypic modulation and enhances erectile function in rats with BCNI.
Collapse
Affiliation(s)
- Shanjie Guo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Danfeng Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhenjie Zang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Dingchang Shao
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Key Laboratory of Urinary Diseases in Universities of Shandong, Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
11
|
Grewal N, Dolmaci O, Jansen E, Klautz R, Driessen A, Poelmann RE. Thoracic aortopathy in Marfan syndrome overlaps with mechanisms seen in bicuspid aortic valve disease. Front Cardiovasc Med 2023; 10:1018167. [PMID: 36844720 PMCID: PMC9949376 DOI: 10.3389/fcvm.2023.1018167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
Background Thoracic aortopathy is a serious complication which is more often seen in patients with Marfan syndrome (MFS) and patients with a bicuspid aortic valve (BAV) than in individuals with a tricuspid aortic valve (TAV). The identification of common pathological mechanisms leading to aortic complications in non-syndromic and syndromic diseases would significantly improve the field of personalized medicine. Objective This study sought to compare thoracic aortopathy between MFS, BAV, and TAV individuals. Materials and methods Bicuspid aortic valve (BAV; n = 36), TAV (n = 23), and MFS (n = 8) patients were included. Ascending aortic wall specimen were studied for general histologic features, apoptosis, markers of cardiovascular ageing, expression of synthetic and contractile vascular smooth muscle cells (VSMC), and fibrillin-1 expression. Results The MFS group showed many similarities with the dilated BAV. Both patient groups showed a thinner intima (p < 0.0005), a lower expression of contractile VSMCs (p < 0.05), more elastic fiber thinning (p < 0.001), lack of inflammation (p < 0.001), and a decreased progerin expression (p < 0.05) as compared to the TAV. Other features of cardiovascular ageing differed between the BAV and MFS. Dilated BAV patients demonstrated less medial degeneration (p < 0.0001), VSMC nuclei loss (p < 0.0001), apoptosis of the vessel wall (p < 0.03), and elastic fiber fragmentation and disorganization (p < 0.001), as compared to the MFS and dilated TAV. Conclusion This study showed important similarities in the pathogenesis of thoracic aortic aneurysms in BAV and MFS. These common mechanisms can be further investigated to personalize treatment strategies in non-syndromic and syndromic conditions.
Collapse
Affiliation(s)
- Nimrat Grewal
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands,Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands,Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Nimrat Grewal,
| | - Onur Dolmaci
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Evert Jansen
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert Klautz
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands,Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Antoine Driessen
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Robert E. Poelmann
- Institute of Biology, Animal Sciences and Health, Leiden University, Leiden, Netherlands,Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
12
|
Wu G, Chen M, Fan Q, Li H, Zhao Z, Zhang C, Luo M. Transcriptome analysis of mesenteric arterioles changes and its mechanisms in cirrhotic rats with portal hypertension. BMC Genomics 2023; 24:20. [PMID: 36641445 PMCID: PMC9840839 DOI: 10.1186/s12864-023-09125-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Portal hypertension (PHT) is a major cause of liver cirrhosis. The formation of portosystemic collateral vessels and splanchnic vasodilation contribute to the development of hyperdynamic circulation, which in turn aggravates PHT and increases the risk of complications. To investigate the changes in mesenteric arterioles in PHT, cirrhotic rat models were established by ligating the common bile ducts. After 4 weeks, the cirrhotic rats suffered from severe PHT and splanchnic hyperdynamic circulation, characterized by increased portal pressure (PP), cardiac output (CO), cardiac index (CI), and superior mesenteric artery (SMA) flow. Mesenteric arterioles in cirrhotic rats displayed remarkable vasodilation, vascular remodeling, and hypocontractility. RNA sequencing was performed based on these findings. A total of 1,637 differentially expressed genes (DEGs) were detected, with 889 up-regulated and 748 down-regulated genes. Signaling pathways related to vascular changes were enriched, including the vascular endothelial growth factor (VEGF), phosphatidylinositol-3-kinase-AKT (PI3K-AKT), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) signaling pathway, among others. Moreover, the top ten hub genes were screened according to the degree nodes in the protein-protein interaction (PPI) network. Functional enrichment analyses indicated that the hub genes were involved in cell cycle regulation, mitosis, and cellular response to oxidative stress and nitric oxide (NO). In addition, promising candidate drugs for ameliorating PHT, such as resveratrol, were predicted based on hub genes. Taken together, our study highlighted remarkable changes in the mesenteric arterioles of cirrhotic rats with PHT. Transcriptome analyses revealed the potential molecular mechanisms of vascular changes in splanchnic hyperdynamic circulation.
Collapse
Affiliation(s)
- Guangbo Wu
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Min Chen
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Qiang Fan
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Hongjie Li
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Zhifeng Zhao
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Chihao Zhang
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Meng Luo
- grid.412523.30000 0004 0386 9086Department of General Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| |
Collapse
|
13
|
Deciphering the Mechanism of Wogonin, a Natural Flavonoid, on the Proliferation of Pulmonary Arterial Smooth Muscle Cells by Integrating Network Pharmacology and In Vitro Validation. Curr Issues Mol Biol 2023; 45:555-570. [PMID: 36661523 PMCID: PMC9858126 DOI: 10.3390/cimb45010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Wogonin is one of the main active components of Scutellaria baicalensis, which has anti-inflammatory, anti-angiogenesis, and anti-fibrosis effects. Nevertheless, the effect of wogonin on pulmonary hypertension (PH) still lacks systematic research. This study aims to elucidate the potential mechanism of wogonin against PH through network pharmacology and further verify it through biological experiments in pulmonary arterial smooth muscle cells (PASMCs). The potential targets and pathways of wogonin against PH were predicted and analyzed by network pharmacology methods and molecular docking technology. Subsequently, the proliferation of PASMCs was induced by platelet-derived growth factor-BB (PDGF-BB). Cell viability and migration ability were examined. The method of Western blot was adopted to analyze the changes in related signaling pathways. Forty potential targets related to the effect of wogonin against PH were obtained. Based on the protein-protein interaction (PPI) network, gene-ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment, and molecular docking, it was shown that the effect of wogonin against PH is closely related to the proliferation of PASMCs and the hypoxia-inducible factor-1α (HIF-1α) pathway. A variety of results from biological experiments verified that wogonin can effectively inhibit the proliferation, migration, and phenotypic transformation of PDGF-BB-mediated PASMCs. In addition, the anti-proliferation effect of wogonin may be achieved by regulating HIF-1/ NADPH oxidase 4 (NOX4) pathway.
Collapse
|
14
|
Bale BF, Doneen AL, Leimgruber PP, Vigerust DJ. The critical issue linking lipids and inflammation: Clinical utility of stopping oxidative stress. Front Cardiovasc Med 2022; 9:1042729. [PMID: 36439997 PMCID: PMC9682196 DOI: 10.3389/fcvm.2022.1042729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
The formation of an atheroma begins when lipoproteins become trapped in the intima. Entrapped lipoproteins become oxidized and activate the innate immune system. This immunity represents the primary association between lipids and inflammation. When the trapping continues, the link between lipids and inflammation becomes chronic and detrimental, resulting in atherosclerosis. When entrapment ceases, the association between lipids and inflammation is temporary and healthy, and the atherogenic process halts. Therefore, the link between lipids and inflammation depends upon lipoprotein retention in the intima. The entrapment is due to electrostatic forces uniting apolipoprotein B to polysaccharide chains on intimal proteoglycans. The genetic transformation of contractile smooth muscle cells in the media into migratory secretory smooth muscle cells produces the intimal proteoglycans. The protein, platelet-derived growth factor produced by activated platelets, is the primary stimulus for this genetic change. Oxidative stress is the main stimulus to activate platelets. Therefore, minimizing oxidative stress would significantly reduce the retention of lipoproteins. Less entrapment decreases the association between lipids and inflammation. More importantly, it would halt atherogenesis. This review will analyze oxidative stress as the critical link between lipids, inflammation, and the pathogenesis of atherosclerosis. Through this perspective, we will discuss stopping oxidative stress to disrupt a harmful association between lipids and inflammation. Numerous therapeutic options will be discussed to mitigate oxidative stress. This paper will add a new meaning to the Morse code distress signal SOS-stopping oxidative stress.
Collapse
Affiliation(s)
- Bradley Field Bale
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Amy Lynn Doneen
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
| | - Pierre P. Leimgruber
- Department of Medical Education and Clinical Sciences, Washington State University College of Medicine, Spokane, WA, United States
- Department of Medical Education and Clinical Sciences, University of Washington School of Medicine, Seattle, WA, United States
| | - David John Vigerust
- Department of Neurological Surgery, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
15
|
Vascular smooth muscle RhoA counteracts abdominal aortic aneurysm formation by modulating MAP4K4 activity. Commun Biol 2022; 5:1071. [PMID: 36207400 PMCID: PMC9546906 DOI: 10.1038/s42003-022-04042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Whether a small GTPase RhoA plays a role in the pathology of abdominal aortic aneurysm (AAA) has not been determined. We show here that RhoA expression is reduced in human AAA lesions, compared with normal areas. Furthermore, incidence of AAA formation is increased in vascular smooth muscle cell (VSMC)-specific RhoA conditional knockout (cKO) mice. The contractility of the aortic rings and VSMCs from RhoA cKO mice is reduced, and expression of genes related to the VSMC contractility is attenuated by loss of RhoA. RhoA depletion activates the mitogen-activated protein (MAP) kinase signaling, including MAP4K4, in the aorta and VSMCs. Inhibition of MAP4K4 activity by DMX-5804 decreases AAA formation. Set, a binding protein to active RhoA, functions as an activator of MAP4K4 by sequestering PP2A, an inhibitor of MAP4K4, in the absence of RhoA. In conclusion, RhoA counteracts AAA formation through inhibition of MAP4K4 in cooperation with Set.
Collapse
|
16
|
Zhang J, Starkuviene V, Erfle H, Wang Z, Gunkel M, Zeng Z, Sticht C, Kan K, Rahbari N, Keese M. High-content analysis of microRNAs involved in the phenotype regulation of vascular smooth muscle cells. Sci Rep 2022; 12:3498. [PMID: 35241704 PMCID: PMC8894385 DOI: 10.1038/s41598-022-07280-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022] Open
Abstract
In response to vascular injury vascular smooth muscle cells (VSMCs) alternate between a differentiated (contractile) and a dedifferentiated (synthetic) state or phenotype. Although parts of the signaling cascade regulating the phenotypic switch have been described, the role of miRNAs is still incompletely understood. To systematically address this issue, we have established a microscopy-based quantitative assay and identified 23 miRNAs that induced contractile phenotypes when over-expressed. These were then correlated to miRNAs identified from RNA-sequencing when comparing cells in the contractile and synthetic states. Using both approaches, six miRNAs (miR-132-3p, miR-138-5p, miR-141-3p, miR-145-5p, miR-150-5p, and miR-22-3p) were filtered as candidates that induce the phenotypic switch from synthetic to contractile. To identify potentially common regulatory mechanisms of these six miRNAs, their predicted targets were compared with five miRNAs sharing ZBTB20, ZNF704, and EIF4EBP2 as common potential targets and four miRNAs sharing 16 common potential targets. The interaction network consisting of these 19 targets and additional 18 hub targets were created to facilitate validation of miRNA-mRNA interactions by suggesting the most plausible pairs. Furthermore, the information on drug candidates was integrated into the network to predict novel combinatorial therapies that encompass the complexity of miRNAs-mediated regulation. This is the first study that combines a phenotypic screening approach with RNA sequencing and bioinformatics to systematically identify miRNA-mediated pathways and to detect potential drug candidates to positively influence the phenotypic switch of VSMCs.
Collapse
Affiliation(s)
- Jian Zhang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, Heidelberg, Germany. .,Institute of Biosciences, Vilnius University Life Sciences Center, Vilnius, Lithuania.
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Zhaohui Wang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manuel Gunkel
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ziwei Zeng
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kejia Kan
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Keese
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
17
|
Jansen J, Escriva X, Godeferd F, Feugier P. Multiscale bio-chemo-mechanical model of intimal hyperplasia. Biomech Model Mechanobiol 2022; 21:709-734. [DOI: 10.1007/s10237-022-01558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/06/2022] [Indexed: 11/24/2022]
|
18
|
Wang X, Wu YL, Zhang YY, Ke J, Wang ZW, Zhang BY, Ma Y, Yang LY, Zhao D. AK098656: a new biomarker of coronary stenosis severity in hypertensive and coronary heart disease patients. Diabetol Metab Syndr 2022; 14:10. [PMID: 35033179 PMCID: PMC8761339 DOI: 10.1186/s13098-022-00783-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/04/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AK098656 may be an adverse factor for coronary heart disease (CHD), especially in patients with hypertension. This study aimed to analyze the effect of AK098656 on CHD and CHD with various complications. METHODS A total of 117 CHD patients and 27 healthy control subjects were enrolled in the study. Plasma AK098656 expression was determined using the quantitative real-time polymerase chain reaction. Student's t-test was used to compare AK098656 expression levels in different groups. Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to quantify the discrimination ability between CHD patients and health controls and between CHD and CHD + complications patients. The relationship between AK098656 and coronary stenosis was analyzed using Spearman's correlation. RESULTS AK098656 expression was remarkably higher in CHD patients than in healthy controls (P = 0.03). The ROC curve revealed an effective predictive AK098656 expression value for CHD risk, with an AUC of 0.656 (95% CI 0.501-0.809). Moreover, AK098656 expression was increased in CHD + complications patients compared to CHD patients alone (P = 0.005), especially in patients with hypertension (CHD + hHTN, P = 0.030). The ROC curve revealed a predictive AK098656 prognostic value for discriminating between CHD and CHD + hHTN patients, with an AUC of 0.666 (95% CI 0.528-0.805). There was no significant difference in AK098656 expression in CHD patients with diabetes mellitus compared to CHD patients alone. In addition, AK098656 expression in CHD patients was positively correlated with stenosis severity (R = 0.261, P = 0.006). CONCLUSION AK098656 expression was significantly increased in patients with CHD, especially those with hypertension, and its expression level was positively correlated with the degree of coronary stenosis. This implied that AK098656 may be a risk factor for CHD and can potentially be applied in clinical diagnosis or provide a novel target for treatment.
Collapse
Affiliation(s)
- Xin Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Ya-Li Wu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Yuan-Yuan Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Zong-Wei Wang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Bao-Yu Zhang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Yan Ma
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
| | - Long-Yan Yang
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China.
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Diabetes Research and Care, Beijing, China.
| |
Collapse
|
19
|
Reyes-Goya C, Santana-Garrido Á, Aguilar-Espejo G, Pérez-Camino MC, Mate A, Vázquez CM. Daily consumption of wild olive (acebuche) oil reduces blood pressure and ameliorates endothelial dysfunction and vascular remodelling in rats with NG-nitro-L-arginine methyl ester-induced hypertension. Br J Nutr 2022; 128:1-14. [PMID: 35000635 PMCID: PMC9530918 DOI: 10.1017/s0007114522000034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 11/12/2022]
Abstract
Despite numerous reports on the beneficial effects of olive oil in the cardiovascular context, very little is known about the olive tree's wild counterpart (Olea europaea, L. var. sylvestris), commonly known as acebuche (ACE) in Spain. The aim of this study was to analyse the possible beneficial effects of an extra virgin ACE oil on vascular function in a rodent model of arterial hypertension (AH) induced by NG-nitro-l-arginine methyl ester (L-NAME). Four experimental groups of male Wistar rats were studied: (1) normotensive rats (Control group); (2) normotensive rats fed a commercial diet supplemented with 15 % (w/w) ACE oil (Acebuche group); (3) rats made hypertensive following administration of L-NAME (L-NAME group); and (4) rats treated with L-NAME and simultaneously supplemented with 15 % ACE oil (LN + ACE group). All treatments were maintained for 12 weeks. Besides a significant blood pressure (BP)-lowering effect, the ACE oil-enriched diet counteracted the alterations found in aortas from hypertensive rats in terms of morphology and responsiveness to vasoactive mediators. In addition, a decrease in hypertension-related fibrotic and oxidative stress processes was observed in L-NAME-treated rats subjected to ACE oil supplement. Therefore, using a model of AH via nitric oxide depletion, here we demonstrate the beneficial effects of a wild olive oil based upon its vasodilator, antihypertensive, antioxidant, antihypertrophic and antifibrotic properties. We postulate that regular inclusion of ACE oil in the diet can alleviate the vascular remodelling and endothelial dysfunction processes typically found in AH, thus resulting in a significant reduction of BP.
Collapse
Affiliation(s)
- Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41013Sevilla, Spain
| | - Gema Aguilar-Espejo
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
| | - M. Carmen Pérez-Camino
- Departamento de Caracterización y Calidad de lípidos, Instituto de la Grasa-CSIC, E-41013Sevilla, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41013Sevilla, Spain
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41013Sevilla, Spain
| |
Collapse
|
20
|
Yue L, Chen S, Ren Q, Niu S, Pan X, Chen X, Li Z, Chen X. Effects of semaglutide on vascular structure and proteomics in high-fat diet-induced obese mice. Front Endocrinol (Lausanne) 2022; 13:995007. [PMID: 36419767 PMCID: PMC9676360 DOI: 10.3389/fendo.2022.995007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Obesity is a chronic metabolic disease caused by a combination of genetic and environmental factors. To determine whether semaglutide could improve aortic injury in obese C57BL/6J mice, and further explore its molecular mechanism of action using proteomics. METHODS 24 C57BL/6J male mice were randomly divided into normal diet group (NCD group), high-fat diet group (HFD group) and high-fat diet + semaglutide group (Sema group, semaglutide (30 nmol/kg/d) for 12 weeks). The serum samples were collected from mice to detect blood glucose, insulin and blood lipid concentrations. Aortic stiffness was detected by Doppler pulse wave velocity (PWV). Changes in vascular structure were detected by HE, masson, EVG staining and electron microscopy. The aorta-related protein expression profiles were detected by proteomic techniques, and proteins with potential molecular mechanisms were identified. RESULTS Semaglutide could reduce body weight, the concentrations of blood glucose, total cholesterol (TC), triglycerides (TG), lipoprotein cholesterol (LDL-C), and reduce the aortic PWV and ameliorate vascular damage in obese mice. The results of proteomic analysis showed there were 537 up-regulated differentially expressed proteins (DEPs) and 322 down-regulated DEPs in NCD/HFD group, 251 up-regulated DEPs and 237 down-regulated proteins in HFD/Sema group. There were a total of 25 meaningful overlapping DEPs in the NCD/HFD and HFD/Sema groups. GO enrichment analysis of overlapping DEPs found that these differential proteins were mainly located in the signaling pathways of the extracellular matrix. The most obvious changes of extracellular matrix associated proteins in the three experimental groups were Coll5a1, Lama4, Sparc. CONCLUSION Semaglutide may protect vascular structure and improve endothelial permeability by reducing the levels of Coll5a1, Lama4, Sparc in extracellular matrix, so as to improve vascular function and achieve vascular protection.
Collapse
Affiliation(s)
- Lin Yue
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Shuchun Chen
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Shuchun Chen,
| | - Qingjuan Ren
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Xiaoyu Pan
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, China
| | - Xing Chen
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
| | - Zelin Li
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoyi Chen
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
21
|
Chen L, Hassani Nia F, Stauber T. Ion Channels and Transporters in Muscle Cell Differentiation. Int J Mol Sci 2021; 22:13615. [PMID: 34948411 PMCID: PMC8703453 DOI: 10.3390/ijms222413615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.
Collapse
Affiliation(s)
- Lingye Chen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| |
Collapse
|
22
|
Xu M, Mao C, Chen H, Liu L, Wang Y, Hussain A, Li S, Zhang X, Tuguntaev RG, Liang XJ, Guo W, Cao F. Osteopontin targeted theranostic nanoprobes for laser-induced synergistic regression of vulnerable atherosclerotic plaques. Acta Pharm Sin B 2021; 12:2014-2028. [PMID: 35847489 PMCID: PMC9279717 DOI: 10.1016/j.apsb.2021.12.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 01/14/2023] Open
Abstract
Vulnerable atherosclerotic plaque (VASPs) is the major pathological cause of acute cardiovascular event. Early detection and precise intervention of VASP hold great clinical significance, yet remain a major challenge. Photodynamic therapy (PDT) realizes potent ablation efficacy under precise manipulation of laser irradiation. In this study, we constructed theranostic nanoprobes (NPs), which could precisely regress VASPs through a cascade of synergistic events triggered by local irradiation of lasers under the guidance of fluorescence/MR imaging. The NPs were formulated from human serum albumin (HSA) conjugated with a high affinity-peptide targeting osteopontin (OPN) and encapsulated with photosensitizer IR780 and hypoxia-activatable tirapazamine (TPZ). After intravenous injection into atherosclerotic mice, the OPN-targeted NPs demonstrated high specific accumulation in VASPs due to the overexpression of OPN in activated foamy macrophages in the carotid artery. Under the visible guidance of fluorescence and MR dual-model imaging, the precise near-infrared (NIR) laser irradiation generated massive reactive oxygen species (ROS), which resulted in efficient plaque ablation and amplified hypoxia within VASPs. In response to the elevated hypoxia, the initially inactive TPZ was successively boosted to present potent biological suppression of foamy macrophages. After therapeutic administration of the NPs for 2 weeks, the plaque area and the degree of carotid artery stenosis were markedly reduced. Furthermore, the formulated NPs displayed excellent biocompatibility. In conclusion, the developed HSA-based NPs demonstrated appreciable specific identification ability of VASPs and realized precise synergistic regression of atherosclerosis.
Collapse
Affiliation(s)
- Mengqi Xu
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Cong Mao
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Haoting Chen
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Lu Liu
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Abid Hussain
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Sulei Li
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, Beijing 100853, China
| | - Ruslan G. Tuguntaev
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Corresponding authors.
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional Radiology, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
- Corresponding authors.
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases & Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Corresponding authors.
| |
Collapse
|
23
|
MENG Y, NING Q, LIU Y, PANG Y, REN H, YANG T, LI H, LI S. Ganoderic Acid A suppresses the phenotypic modulation of pulmonary artery smooth muscle cells through the inactivation of PI3K/Akt pathway in pulmonary arterial hypertension. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.83221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Ya LIU
- Jiaotong University, China
| | | | | | | | | | | |
Collapse
|
24
|
An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5765029. [PMID: 34660794 PMCID: PMC8516547 DOI: 10.1155/2021/5765029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Pulmonary hypertension (PH) is occult, with no distinctive clinical manifestations and a poor prognosis. Pulmonary vascular remodelling is an important pathological feature in which pulmonary artery smooth muscle cells (PASMCs) phenotypic switching plays a crucial role. MicroRNAs (miRNAs) are a class of evolutionarily highly conserved single-stranded small noncoding RNAs. An increasing number of studies have shown that miRNAs play an important role in the occurrence and development of PH by regulating PASMCs phenotypic switching, which is expected to be a potential target for the prevention and treatment of PH. miRNAs such as miR-221, miR-15b, miR-96, miR-24, miR-23a, miR-9, miR-214, and miR-20a can promote PASMCs phenotypic switching, while such as miR-21, miR-132, miR-449, miR-206, miR-124, miR-30c, miR-140, and the miR-17~92 cluster can inhibit it. The article reviews the research progress on growth factor-related miRNAs and hypoxia-related miRNAs that mediate PASMCs phenotypic switching in PH.
Collapse
|
25
|
Jensen LF, Bentzon JF, Albarrán-Juárez J. The Phenotypic Responses of Vascular Smooth Muscle Cells Exposed to Mechanical Cues. Cells 2021; 10:2209. [PMID: 34571858 PMCID: PMC8469800 DOI: 10.3390/cells10092209] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
During the development of atherosclerosis and other vascular diseases, vascular smooth muscle cells (SMCs) located in the intima and media of blood vessels shift from a contractile state towards other phenotypes that differ substantially from differentiated SMCs. In addition, these cells acquire new functions, such as the production of alternative extracellular matrix (ECM) proteins and signal molecules. A similar shift in cell phenotype is observed when SMCs are removed from their native environment and placed in a culture, presumably due to the absence of the physiological signals that maintain and regulate the SMC phenotype in the vasculature. The far majority of studies describing SMC functions have been performed under standard culture conditions in which cells adhere to a rigid and static plastic plate. While these studies have contributed to discovering key molecular pathways regulating SMCs, they have a significant limitation: the ECM microenvironment and the mechanical forces transmitted through the matrix to SMCs are generally not considered. Here, we review and discuss the recent literature on how the mechanical forces and derived biochemical signals have been shown to modulate the vascular SMC phenotype and provide new perspectives about their importance.
Collapse
Affiliation(s)
- Lise Filt Jensen
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (L.F.J.); (J.F.B.)
| | - Jacob Fog Bentzon
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (L.F.J.); (J.F.B.)
- Experimental Pathology of Atherosclerosis Laboratory, Spanish National Center for Cardiovascular Research (CNIC), 28029 Madrid, Spain
- Steno Diabetes Center Aarhus, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Julian Albarrán-Juárez
- Atherosclerosis Research Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark; (L.F.J.); (J.F.B.)
| |
Collapse
|
26
|
Mfge8 attenuates human gastric antrum smooth muscle contractions. J Muscle Res Cell Motil 2021; 42:219-231. [PMID: 34085177 PMCID: PMC8332633 DOI: 10.1007/s10974-021-09604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/21/2021] [Indexed: 12/02/2022]
Abstract
Coordinated gastric smooth muscle contraction is critical for proper digestion and is adversely affected by a number of gastric motility disorders. In this study we report that the secreted protein Mfge8 (milk fat globule-EGF factor 8) inhibits the contractile responses of human gastric antrum muscles to cholinergic stimuli by reducing the inhibitory phosphorylation of the MYPT1 (myosin phosphatase-targeting subunit (1) subunit of MLCP (myosin light chain phosphatase), resulting in reduced LC20 (smooth muscle myosin regulatory light chain (2) phosphorylation. Mfge8 reduced the agonist-induced increase in the F-actin/G-actin ratios of β-actin and γ-actin1. We show that endogenous Mfge8 is bound to its receptor, α8β1 integrin, in human gastric antrum muscles, suggesting that human gastric antrum muscle mechanical responses are regulated by Mfge8. The regulation of gastric antrum smooth muscles by Mfge8 and α8 integrin functions as a brake on gastric antrum mechanical activities. Further studies of the role of Mfge8 and α8 integrin in regulating gastric antrum function will likely reveal additional novel aspects of gastric smooth muscle motility mechanisms.
Collapse
|
27
|
Wang Y, Zhang Y, Gao X, Qian J, Yang J, Sun W, Wang H, Yang Y. Resistin-like molecule beta augments phenotypic modulation of human aortic smooth muscle cell triggered by high glucose. Endocr J 2021; 68:461-468. [PMID: 33441498 DOI: 10.1507/endocrj.ej20-0343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Vascular muscle cells (VSMCs) participate in the pathophysiology of atherosclerosis. Resistin-like molecule beta (Relmβ) contributes to atherosclerosis development by activating macrophage. This study aims to investigate whether Relmβ regulates VSMC phenotypic modulation under high glucose environment. Human aortic vascular smooth muscle cells were cultured and treated with Relmβ in the presence or absence of high glucose. VSMC phenotypic modulation was assessed by expression of related markers. The migration of VSMCs was detected by wound healing assay and transwell assay. The proliferation of VSMCs was measured using CCK-8 assay. In this study, we observed that Relmβ modulated VSMC phenotypic modulation by down-regulating expression of smooth muscle α-actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC), and calponin while up-regulating expression of osteopontin (OPN). Relmβ increased the expression of inflammatory genes in VSMCs. Relmβ also augmented VSMCs migration as well as proliferation. It is worth noting that all the effects of VSMCs were enhanced upon high glucose stimulation. The phosphorylation levels of p38MAPK and ERK1/2 were increased by co-treatment with Relmβ and high glucose. The p38 MAPK pathway inhibitor RWJ64809 and pERK1/2 inhibitor PD98059 significantly inhibited the proliferation of VSMCs induced by Relmβ and high glucose. Our results provide evidence that Relmβ augments phenotypic modulation and migration of human aortic smooth muscle cell induced by high glucose. Relmβ might be a potential target for treatment of atherosclerosis induced by hyperglycemia.
Collapse
Affiliation(s)
- Yi Wang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yawen Zhang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xiangyu Gao
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jia Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wanwan Sun
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hao Wang
- Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yehong Yang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai 200040, China
| |
Collapse
|
28
|
Wei X, Su Y, Li Q, Zheng Z, Hou P. Analysis of crucial genes, pathways and construction of the molecular regulatory networks in vascular smooth muscle cell calcification. Exp Ther Med 2021; 21:589. [PMID: 33850561 PMCID: PMC8027762 DOI: 10.3892/etm.2021.10021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular calcification (VC) accompanies the trans-differentiation of vascular smooth muscle cells (VSMCs) into osteo/chondrocyte-like cells and resembles physiological bone mineralization. However, the molecular mechanisms underlying VC initiation and progression have remained largely elusive. The aim of the present study was to identify the genes and pathways common to VSMC and osteoblast calcification and construct a regulatory network of non-coding RNAs and transcription factors (TFs). To this end, the Gene Expression Omnibus dataset GSE37558 including mRNA microarray data of calcifying VSMCs (CVSMCs) and calcifying osteoblasts (COs) was analyzed. The differentially expressed genes (DEGs) were screened and functionally annotated and the microRNA (miRNA/mRNA)-mRNA, TF-miRNA and long non-coding RNA (lncRNA)-TF regulatory networks were constructed. A total of 318 DEGs were identified in the CVSMCs relative to the non-calcified VSMCs, of which 43 were shared with the COs. The CVSMC-related DEGs were mainly enriched in the functional terms cell cycle, extracellular matrix (ECM), inflammation and chemotaxis-mediated signaling pathways, of which ECM was enriched by the DEGs for the COs as well. The protein-protein interaction network of CVSMCs consisted of 281 genes and 3,650 edges. There were 30 hub genes in this network, including maternal embryonic leucine zipper kinase (MELK), which potentially regulates the differentially expressed TF (DETF) forkhead box (FOX)M1 and is a potential target gene of Homo sapiens miR-485-3p and miR-181d. The TF-miRNA network included 251 TFs and 60 miRNAs, including 10 DETFs such as FOXO1 and snail family transcriptional repressor 2 (SNAI2). Furthermore, the lncRNAs H19 imprinted maternally expressed transcript (H19) and differentiation antagonizing non-protein coding RNA (DANCR) were predicted as the upstream regulators of FOXO1 and SNAI2 in the lncRNA-TF regulatory network. DANCR, MELK and FOXM1 were downregulated, and H19, FOXO1 and SNAI2 were upregulated in the CVSMCs. Taken together, the CVSMCs and COs exhibited similar molecular changes in the ECM. In addition, the MELK-FOXM1, H19/DANCR-FOXO1 and SNAI2 regulatory pathways likely mediate VSMC calcification.
Collapse
Affiliation(s)
- Xiaomin Wei
- Department of Vascular Surgery, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Yiming Su
- Department of Vascular Surgery, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Qiyi Li
- Department of Vascular Surgery, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Zhiyong Zheng
- Department of Vascular Surgery, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| | - Peiyong Hou
- Department of Vascular Surgery, Liuzhou Worker's Hospital, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi 545005, P.R. China
| |
Collapse
|
29
|
Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants (Basel) 2021; 10:antiox10030406. [PMID: 33800427 PMCID: PMC7999611 DOI: 10.3390/antiox10030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.
Collapse
|
30
|
Ma H, Dong A. Dysregulation of lncRNA SNHG1/miR-145 axis affects the biological function of human carotid artery smooth muscle cells as a mechanism of carotid artery restenosis. Exp Ther Med 2021; 21:423. [PMID: 33777187 PMCID: PMC7967805 DOI: 10.3892/etm.2021.9867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Carotid angioplasty and stenting have developed into reliable options for patients with carotid stenosis. However, postoperative restenosis remains a serious and unresolved problem. Restenosis is partly caused by the proliferation of vascular smooth muscle cells. As certain long non-coding RNAs (lncRNAs) affect cell proliferation and migration, the present study aimed to investigate them as novel biomarkers for restenosis development and to further reveal the potential underlying mechanisms. The expression of lncRNA small nucleolar RNA host gene 1 (SNHG1) and microRNA145 (miR-145) in human carotid artery smooth muscle cells (hHCtASMCs) was analyzed using reverse transcription-quantitative PCR. In addition, a luciferase reporter assay was performed to investigate the interaction between SNHG1 and miR-145. The effects of the SNHG1/miR-145 axis on the proliferation and migration of hHCtASMCs were evaluated by Cell Counting Kit-8 and Transwell assays. Serum SNHG1 and miR-145 expression levels were increased and decreased, respectively, in patients with restenosis (all P<0.001). High SNHG1 and low miR-145 were identified as risk factors for restenosis onset (all P<0.01). Furthermore, decreasing SNHG1 expression levels in hHCtASMCs inhibited cell proliferation and migration. The luciferase reporter assay and expression results demonstrated that miR-145 may be a target of SNHG1 and mediated the effects of SNHG1 on hHCtASMC proliferation and migration. The results obtained suggested that abnormal expression of SNHG1 and miR-145 may be risk factors for restenosis. The present study revealed that the SNHG1/miR-145 axis regulates hHCtASMC proliferation and migration, indicating its potential for restenosis prevention and treatment.
Collapse
Affiliation(s)
- Huanhuan Ma
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Aiqin Dong
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
31
|
Jung Y, Lee HS, Ha JM, Jin SY, Kum HJ, Vafaeinik F, Ha HK, Song SH, Kim CD, Bae SS. Modulation of Vascular Smooth Muscle Cell Phenotype by High Mobility Group AT-Hook 1. J Lipid Atheroscler 2021; 10:99-110. [PMID: 33537257 PMCID: PMC7838509 DOI: 10.12997/jla.2021.10.1.99] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The purpose of this study is to examine the effect of high mobility group AT-hook 1 (HMGA1) on the phenotyptic change of vascular smooth muscle cells (VSMCs). Methods Gene silencing and overexpression of HMGA1 were introduced to evaluate the effect of HMGA1 expression on the phenotypic change of VSMCs. Marker gene expression of VSMCs was measured by promoter assay, quantitative polymerase chain reaction, and western blot analysis. Common left carotid artery ligation model was used to establish in vivo neointima formation. Results HMGA1 was expressed strongly in the synthetic type of VSMCs and significantly downregulated during the differentiation of VSMCs. Silencing of HMGA1 in the synthetic type of VSMCs enhanced the expression of contractile marker genes thereby enhanced angiotensin II (Ang II)-dependent contraction, however, significantly suppressed proliferation and migration. Stimulation of contractile VSMCs with platelet-derived growth factor (PDGF) enhanced HMGA1 expression concomitant with the downregulation of marker gene expression which was blocked significantly by the silencing of HMGA1. Silencing of HMGA1 retained the Ang II-dependent contractile function, which was curtailed by PDGF stimulation, however, overexpression of HMGA1 in the contractile type of VSMCs suppressed marker gene expression. Proliferation and migration were enhanced significantly by the overexpression of HMGA1. Furthermore, the Ang II-dependent contraction was reduced significantly by the overexpression of HMGA1. Finally, the expression of HMGA1 was enhanced significantly in the ligated artery, especially in the neointima area. Conclusion HMGA1 plays an essential role in the phenotypic modulation of VSMCs. Therefore, paracrine factors such as PDGF may affect vascular remodeling through the regulation of HMGA1.
Collapse
Affiliation(s)
- Yoojin Jung
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hae Sun Lee
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Jung Min Ha
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Seo Yeon Jin
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hye Jin Kum
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Farzaneh Vafaeinik
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hong Koo Ha
- Department of Urology, Pusan National University Hospital, Busan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Chi Dae Kim
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Sun Sik Bae
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
32
|
Li Z, Luo W, Fang S, Chen X, Lin T, Zhou S, Zhang L, Yang W, Li Z, Ye J, Wang J, Liu P, Li Z. Prostacyclin facilitates vascular smooth muscle cell phenotypic transformation via activating TP receptors when IP receptors are deficient. Acta Physiol (Oxf) 2021; 231:e13555. [PMID: 32886850 DOI: 10.1111/apha.13555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/01/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
AIM By activating prostacyclin receptors (IP receptors), prostacyclin (PGI2 ) exerts cardiovascular protective effects such as vasodilation and inhibition of vascular smooth muscle cell (VSMC) proliferation. However, IP receptors are dysfunctional under pathological conditions, and PGI2 produces detrimental effects that are opposite to its physiological protective effects via thromboxane-prostanoid (TP) receptors. This attempted to investigate whether or not IP receptor dysfunction facilitates the shift of PGI2 action. METHODS The effects of PGI2 and its stable analog iloprost on VSMC phenotypic transformation and proliferation were examined in A10 cells silencing IP receptors, in human aortic VSMCs (HAVSMCs) knocked down IP receptor by CRISPR-Cas9, or in HAVSMCs transfected with a dysfunctional mutation of IP receptor IPR212C . RESULTS PGI2 /iloprost treatment stimulated cell proliferation, upregulated synthetic proteins and downregulated contractile proteins, suggesting that PGI2 /iloprost promotes VSMC phenotypic transformation in IP-deficient cells. The effect of PGI2 /iloprost was prevented by TP antagonist S18886 or TP knockdown, indicating that the VSMC detrimental effect of PGI2 is dependent on TP receptor. RNA sequencing and Western blotting results showed that RhoA/ROCKs, MEK1/2 and JNK signalling cascades were involved. Moreover, IP deficiency increased the distribution of TP receptors at the cell membrane. CONCLUSION PGI2 induces VSMC phenotypic transformation when IP receptors are impaired. This is attributed to the activation of TP receptor and its downstream signaling cascades, and to the increased membrane distribution of TP receptors. The VSMC detrimental effect of PGI2 medicated by IP dysfunction and TP activation might probably exacerbate vascular remodelling, accelerating cardiovascular diseases.
Collapse
Affiliation(s)
- Ziqing Li
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Wenwei Luo
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Shi Fang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Xinyi Chen
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Tong Lin
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Sihang Zhou
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Lili Zhang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Wanqi Yang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Zhenzhen Li
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Junjian Wang
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Peiqing Liu
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology School of Pharmaceutical Sciences National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Engineering Laboratory of Druggability and New Drug Evaluation Guangdong Provincial Key Laboratory of New Drug Design and Evaluation Sun Yat‐sen University Guangdong PR China
| |
Collapse
|
33
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Li S, Zhao X, Cheng S, Li J, Bai X, Meng X. Downregulating long non-coding RNA PVT1 expression inhibited the viability, migration and phenotypic switch of PDGF-BB-treated human aortic smooth muscle cells via targeting miR-27b-3p. Hum Cell 2020; 34:335-348. [PMID: 33106979 DOI: 10.1007/s13577-020-00452-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Long non-coding RNA Plasmacytoma Variant Translocation 1 (LncRNA PVT1) was involved in various human diseases, but its role in aortic dissection (AD) remained to be fully examined. In this study, the viability and migration of human aortic smooth muscle cells (HASMCs) were respectively measured by MTT assay and wound-healing assay. Relative phenotypic switch-related protein expressions were measured with quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. An AD model was established in animals and hematoxylin-eosin (H&E) staining was used for pathological examination. We found that, in HASMCs, microRNA (miR)-27b-3p could competitively bind with PVT1. In AD, PVT1 expression was upregulated, yet that of miR-27b-3p was downregulated. Downregulating PVT1 reversed the effects of growth factor-BB (PDGF-BB) treatment on PVT1, miR-27b-3p and expressions of phenotypic switch-related markers, and cell viability and migration, while downregulating miR-27b-3p reversed the effects of downregulating PVT1. Moreover, downregulating PVT1 suppressed the effects of upregulated PVT1 and downregulated miR-27b-3p induced by AD as well as media degeneration in vivo. In conclusion, downregulating PVT1 expression suppressed the proliferation, migration and phenotypic switch of HASMCs treated by PDGF-BB via targeting miR-27b-3p.
Collapse
Affiliation(s)
- Shouming Li
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xin Zhao
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China.
| | - Shaopeng Cheng
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Jialiang Li
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| | - Xiangbin Meng
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, No.107, West Wenhua Road, Jinan, 250012, Shandong, China
| |
Collapse
|
35
|
Elyasi A, Voloshyna I, Ahmed S, Kasselman LJ, Behbodikhah J, De Leon J, Reiss AB. The role of interferon-γ in cardiovascular disease: an update. Inflamm Res 2020; 69:975-988. [PMID: 32699989 DOI: 10.1007/s00011-020-01382-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of death, globally, and its prevalence is only expected to rise due to the increasing incidence of co-morbidities such as obesity and diabetes. Medical treatment of CVD is directed primarily at slowing or reversing the underlying atherosclerotic process by managing circulating lipids with an emphasis on control of low-density lipoprotein (LDL) cholesterol. However, over the past several decades, there has been increasing recognition that chronic inflammation and immune system activation are important contributors to atherosclerosis. This shift in focus has led to the elucidation of the complex interplay between cholesterol and cellular secretion of cytokines involved in CVD pathogenesis. Of the vast array of cytokine promoting atherosclerosis, interferon (IFN)-γ is highly implicated and, therefore, of great interest. METHODS Literature review was performed to further understand the effect of IFN-γ on the development of atherosclerotic CVD. RESULTS IFN-γ, the sole member of the type II IFN family, is produced by T cells and macrophages, and has been found to induce production of other cytokines and to have multiple effects on all stages of atherogenesis. IFN-γ activates a variety of signaling pathways, most commonly the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, to induce oxidative stress, promote foam cell accumulation, stimulate smooth muscle cell proliferation and migration into the arterial intima, enhance platelet-derived growth factor expression, and destabilize plaque. These are just a few of the contributions of IFN-γ to the initiation and progression of atherosclerotic CVD. CONCLUSION Given the pivotal role of IFN-γ in the advancement of CVD, activation of its signaling pathways is being explored as a driver of atherosclerosis. Manipulation of this key cytokine may lead to novel therapeutic avenues for CVD prevention and treatment. A number of therapies are being explored with IFN-γ as the potential target.
Collapse
Affiliation(s)
- Ailin Elyasi
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Iryna Voloshyna
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Saba Ahmed
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Lora J Kasselman
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Jennifer Behbodikhah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA
| | - Allison B Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, NYU Winthrop Hospital, 101 Mineola Boulevard, Suite 4-004, Mineola, NY, 11501, USA.
| |
Collapse
|
36
|
Mechanism of Vascular Toxicity in Rats Subjected to Treatment with a Tyrosine Kinase Inhibitor. TOXICS 2020; 8:toxics8030049. [PMID: 32698382 PMCID: PMC7560282 DOI: 10.3390/toxics8030049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/17/2020] [Indexed: 12/01/2022]
Abstract
Sunitinib (Su) is a tyrosine kinase inhibitor with antiangiogenic and antineoplastic effects that is recommended therapy for renal cell carcinoma, gastrointestinal stromal tumors, and pancreatic neuroendocrine tumors. Arterial hypertension is one of the adverse effects observed in the treatment with Su. The aim of this work was to deepen our understanding of the underlying mechanisms involved in the development of this side effect. Studies on endothelial function, vascular remodeling and nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) system were carried out in thoracic aortas from rats treated with Su for three weeks. Animals subjected to Su treatment presented with increased blood pressure and reduced endothelium-dependent vasodilation, the latter being reverted by NADPH oxidase blockade. Furthermore, vascular remodeling and stronger Masson trichrome staining, together with enhanced immunofluorescence signal for collagen 1 alpha 1 (Col1α1), were observed in aortas from treated animals. These results were accompanied by a significant elevation in superoxide anion production and the activity/protein/gene expression of NADPH oxidase isoforms (NOX1, NOX2, and NOX4), which was also prevented by NOX inhibition. Furthermore, a decrease in nitric oxide (NO) levels and endothelial nitric oxide synthase (eNOS) activation was observed in aortas from Su-treated animals. All these results indicate that endothelial dysfunction secondary to changes in vascular remodeling and oxidative stress might be responsible for the typical arterial hypertension that develops following treatment with Su.
Collapse
|
37
|
Wang G, Zou J, Yu X, Yin S, Tang C. The antiatherogenic function of kallistatin and its potential mechanism. Acta Biochim Biophys Sin (Shanghai) 2020; 52:583-589. [PMID: 32393963 DOI: 10.1093/abbs/gmaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is the pathological basis of most cardiovascular diseases, the leading cause of morbidity and mortality worldwide. Kallistatin, originally discovered in human serum, is a tissue-kallikrein-binding protein and a unique serine proteinase inhibitor. Upon binding to its receptor integrin β3, lipoprotein receptor-related protein 6, nucleolin, or Krüppel-like factor 4, kallistatin can modulate various signaling pathways and affect multiple biological processes, including angiogenesis, inflammatory response, oxidative stress, and tumor growth. Circulating kallistatin levels are significantly decreased in patients with coronary artery disease and show an inverse correlation with its severity. Importantly, both in vitro and in vivo experiments have demonstrated that kallistatin reduces atherosclerosis by inhibiting vascular inflammation, antagonizing endothelial dysfunction, and improving lipid metabolism. Thus, kallistatin may be a novel biomarker and a promising therapeutic target for atherosclerosis-related diseases. In this review, we focus on the antiatherogenic function of kallistatin and its potential mechanism.
Collapse
Affiliation(s)
- Gang Wang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Jin Zou
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Xiaohua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou 570100, China
| | - Shanhui Yin
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| | - Chaoke Tang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang
| |
Collapse
|
38
|
Abstract
Vascular smooth muscle cells (VSMCs) shift from a physiological contractile phenotype to an adverse proliferative or synthetic state, which is a major event leading to aortic disease. VSMCs are exposed to multiple mechanical signals from their microenvironment including vascular extracellular matrix (ECM) stiffness and stretch which regulate VSMC contraction. How ECM stiffness regulates the function and phenotype of VSMCs is not well understood. In this study, we introduce in vitro and in vivo models to evaluate the impact of ECM stiffnesses on VSMC function. Through unbiased transcriptome sequencing analysis, we detected upregulation of synthetic phenotype-related genes including osteopontin, matrix metalloproteinases, and inflammatory cytokines in VSMCs cultured using soft matrix hydrogels in vitro, suggesting VSMC dedifferentiation toward a synthetic phenotype upon ECM softening. For the in vivo model, the lysyl oxidase inhibitor β-aminopropionitrile monofumarate (BAPN) was administrated to disrupt the cross-linking of collagen to induce ECM softening. Consistently, decreased ECM stiffnesses promoted VSMC phenotypic switching to a synthetic phenotype as evidenced by upregulation of synthetic phenotype-related genes in the aortas of mice following BAPN treatment. Finally, BAPN-treated mice showed severe expansion and developed aortic dissection. Our study reveals the pivotal role of ECM softening in regulating the VSMC phenotype switch and provides a potential target for treating VSMC dysfunction and aortic dissection disease.
Collapse
|
39
|
Activation of Inward Rectifier K + Channel 2.1 by PDGF-BB in Rat Vascular Smooth Muscle Cells through Protein Kinase A. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4370832. [PMID: 32461988 PMCID: PMC7212311 DOI: 10.1155/2020/4370832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) can induce the proliferation, migration, and phenotypic modulation of vascular smooth muscle cells (VSMCs). We used patch clamp methods to study the effects of PDGF-BB on inward rectifier K+ channel 2.1 (Kir2.1) channels in rat thoracic aorta VSMCs (RASMCs). PDGF-BB (25 ng/mL) increased Kir2.x currents (−11.81 ± 2.47 pA/pF, P < 0.05 vs. CON, n = 10). Ba2+(50 μM) decreased Kir2.x currents (−2.13 ± 0.23 pA/pF, P < 0.05 vs. CON, n = 10), which were promoted by PDGF-BB (−6.98 ± 1.03 pA/pF). PDGF-BB specifically activates Kir2.1 but not Kir2.2 and Kir2.3 channels in HEK-293 cells. The PDGF-BB-induced stimulation of Kir2.1 currents was blocked by the PDGF-BB receptor β (PDGF-BBRβ) inhibitor AG1295 and was not affected by the PDGF-BBRα inhibitor AG1296. The PDGF-BB-induced stimulation of Kir2.1 currents was blocked by the protein kinase A inhibitor Rp-8-CPT-cAMPs; however, the antagonist of protein kinase B (GSK690693) had marginal effects on current activity. The PDGF-BB-induced stimulation of Kir2.1 currents was enhanced by forskolin, an adenylyl cyclase (AC) activator, and was blocked by the AC inhibitor SQ22536. We conclude that PDGF-BB increases Kir2.1 currents via PDGF-BBRβ through activation of cAMP-PKA signaling in RASMCs.
Collapse
|
40
|
Dai S, Zhang J, Xu Z. Silencing CCL8 inhibited the proliferation and migration of PDGF-BB-stimulated human aortic smooth muscle cells. Biosci Biotechnol Biochem 2020; 84:1585-1593. [PMID: 32432500 DOI: 10.1080/09168451.2020.1762160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
C-C motif Chemokine ligand 8 (CCL8) has been found in diseases' pathogenesis. But its molecular mechanism in atherosclerosis (AS) remains to be elucidated. Human aortic smooth muscle cells (HASMCs) were stimulated by PDGF-BB to establish cell model. α-SMA in PDGF-BB-stimulated HASMCs was measured by immunofluorescence staining. Relative gene expressions in PDGF-BB-stimulated HASMCs were detected by quantitative real-time polymerase chain reaction and western blot. HASMCs proliferation, migration, and cell cycle were assessed by cell counting kit-8, wound-healing assay, and flow cytometry. HASMCs viability was increased after PDGF-BB stimulation, with α-SMA downregulation yet CCL8 upregulation. Silencing CCL8 inhibited PDGF-BB-stimulated HASMCs proliferation and migration, and increased cells percentage in G1 phases but decreased those in S phase. Also, silencing CCL8 decreased OPN and cyclinD1 expressions and AKT and ERK1/2 phosphorylation while increased those of α-SMA and Sm22α. However, upregulating CCL8 led to opposite effects, suggesting CCL8 could be an atherosclerosis therapeutic target.
Collapse
Affiliation(s)
- Shipeng Dai
- Department of Cardiology II, Cangzhou Teaching Hospital of Tianjin Medical University , Tianjin, China
| | - Jiangang Zhang
- Department of Cardiology II, Cangzhou Teaching Hospital of Tianjin Medical University , Tianjin, China
| | - Zesheng Xu
- Department of Cardiology II, Cangzhou Teaching Hospital of Tianjin Medical University , Tianjin, China
| |
Collapse
|
41
|
Zhang B, Chen L, Bai YG, Song JB, Cheng JH, Ma HZ, Ma J, Xie MJ. miR-137 and its target T-type Ca V 3.1 channel modulate dedifferentiation and proliferation of cerebrovascular smooth muscle cells in simulated microgravity rats by regulating calcineurin/NFAT pathway. Cell Prolif 2020; 53:e12774. [PMID: 32034930 PMCID: PMC7106958 DOI: 10.1111/cpr.12774] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/08/2019] [Accepted: 01/17/2020] [Indexed: 01/01/2023] Open
Abstract
Objectives Postflight orthostatic intolerance has been regarded as a major adverse effect after microgravity exposure, in which cerebrovascular adaptation plays a critical role. Our previous finding suggested that dedifferentiation of vascular smooth muscle cells (VSMCs) might be one of the key contributors to cerebrovascular adaptation under simulated microgravity. This study was aimed to confirm this concept and elucidate the underlying mechanisms. Materials and Methods Sprague Dawley rats were subjected to 28‐day hindlimb‐unloading to simulate microgravity exposure. VSMC dedifferentiation was evaluated by ultrastructural analysis and contractile/synthetic maker detection. The role of T‐type CaV3.1 channel was revealed by assessing its blocking effects. MiR‐137 was identified as the upstream of CaV3.1 channel by luciferase assay and investigated by gain/loss‐of‐function approaches. Calcineurin/nuclear factor of activated T lymphocytes (NFAT) pathway, the downstream of CaV3.1 channel, was investigated by detecting calcineurin activity and NFAT nuclear translocation. Results Simulated microgravity induced the dedifferentiation and proliferation in rat cerebral VSMCs. T‐type CaV3.1 channel promoted the dedifferentiation and proliferation of VSMC. MiR‐137 and calcineurin/NFATc3 pathway were the upstream and downstream signalling of T‐type CaV3.1 channel in modulating the dedifferentiation and proliferation of VSMCs, respectively. Conclusions The present work demonstrated that miR‐137 and its target T‐type CaV3.1 channel modulate the dedifferentiation and proliferation of rat cerebral VSMCs under simulated microgravity by regulating calcineurin/NFATc3 pathway.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Li Chen
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Yun-Gang Bai
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Ji-Bo Song
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Jiu-Hua Cheng
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Hong-Zhe Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Jin Ma
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| | - Man-Jiang Xie
- Department of Aerospace Physiology, Key Laboratory of Aerospace Medicine of Ministry of Education, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
42
|
Fang L, Wang K, Zhang P, Li T, Xiao Z, Yang M, Yu Z. Nucleolin promotes Ang II-induced phenotypic transformation of vascular smooth muscle cells by regulating EGF and PDGF-BB. J Cell Mol Med 2020; 24:1917-1933. [PMID: 31893573 PMCID: PMC6991698 DOI: 10.1111/jcmm.14888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/17/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
RNA-binding properties of nucleolin play a fundamental role in regulating cell growth and proliferation. We have previously shown that nucleolin plays an important regulatory role in the phenotypic transformation of vascular smooth muscle cells (VSMCs) induced by angiotensin II (Ang II). In the present study, we aimed to investigate the molecular mechanism of nucleolin-mediated phenotypic transformation of VSMCs induced by Ang II. Epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) inhibitors were used to observe the effect of Ang II on phenotypic transformation of VSMCs. The regulatory role of nucleolin in the phenotypic transformation of VSMCs was identified by nucleolin gene mutation, gene overexpression and RNA interference technology. Moreover, we elucidated the molecular mechanism underlying the regulatory effect of nucleolin on phenotypic transformation of VSMCs. EGF and PDGF-BB played an important role in the phenotypic transformation of VSMCs induced by Ang II. Nucleolin exerted a positive regulatory effect on the expression and secretion of EGF and PDGF-BB. In addition, nucleolin could bind to the 5' untranslated region (UTR) of EGF and PDGF-BB mRNA, and such binding up-regulated the stability and expression of EGF and PDGF-BB mRNA, promoting Ang II-induced phenotypic transformation of VSMCs.
Collapse
Affiliation(s)
- Li Fang
- Department of CardiologyXiangya HospitalCentral South UniversityChangshaChina
- Department of CardiologyThe First Hospital of ChangshaChangshaChina
| | - Kang‐Kai Wang
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Peng‐Fei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of HealthXiangya HospitalCentral South UniversityChangshaChina
| | - Tao Li
- Department of PathophysiologyXiangya School of MedicineCentral South UniversityChangshaChina
| | - Zhi‐Lin Xiao
- Department of Geriatric CardiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Mei Yang
- Department of Geriatric CardiologyXiangya HospitalCentral South UniversityChangshaChina
| | - Zai‐Xin Yu
- Department of CardiologyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
43
|
Li T, Tan X, Zhu S, Zhong W, Huang B, Sun J, Li F, Wang Y. SPARC induces phenotypic modulation of human brain vascular smooth muscle cells via AMPK/mTOR-mediated autophagy. Neurosci Lett 2019; 712:134485. [DOI: 10.1016/j.neulet.2019.134485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022]
|
44
|
Liu H, Chen H, Deng X, Peng Y, Zeng Q, Song Z, He W, Zhang L, Xiao T, Gao G, Li B. Knockdown of TRIM28 inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration. Chem Biol Interact 2019; 311:108772. [PMID: 31351049 DOI: 10.1016/j.cbi.2019.108772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 11/18/2022]
Abstract
Atherosclerosis is a common type of cardiovascular disease (CVD), remaining one of the leading causes of global death. Tripartite motif-containing 28 (TRIM28) is a member of TRIM family that has been found to be involved in atherosclerosis. However, the role of TRIM28 in atherosclerosis remains unknown. This study aimed to investigate the effects of TRIM28 on the phenotypic switching of human aortic smooth muscle cells (HASMCs), which is considered as a fundamental event during the development of atherosclerosis. The results showed that TRIM28 was highly expressed in human atherosclerotic tissues, as well in cultured HASMCs stimulated by platelet-derived growth factor subunit B homodimer (PDGF-BB). Knockdown of TRIM28 by transfection with siRNA targeting TRIM28 (si-TRIM28) significantly suppressed the PDGF-BB-induced cell proliferation and migration of HASMCs. Besides, knockdown of TRIM28 inhibited the expressions of matrix metalloproteinase (MMP)-2 and MMP-9. The VSMC markers including α-smooth muscle actin (α-SMA), calponin and SM22α were upregulated in TRIM28 knocked down HASMCs. Furthermore, knockdown of TRIM28 blocked PDGF-BB-induced NF-κB activation in HASMCs. Collectively, knockdown of TRIM28 prevented PDGF-BB-induced phenotypic switching of HASMCs, which might be mediated by the regulation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Hongtao Liu
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China.
| | - Hongwei Chen
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Xia Deng
- Pharmacy Department, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Yudong Peng
- Department of Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Qiutang Zeng
- Department of Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Zongren Song
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Wenping He
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Le Zhang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Ting Xiao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Gan Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| | - Bailin Li
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Longhua Central Hospital Affiliated Guangdong Medical University, Shenzhen, 518110, Guangdong Province, China
| |
Collapse
|
45
|
Chen Z, Wu Q, Yan C, Du J. COL6A1 knockdown suppresses cell proliferation and migration in human aortic vascular smooth muscle cells. Exp Ther Med 2019; 18:1977-1984. [PMID: 31410158 PMCID: PMC6676143 DOI: 10.3892/etm.2019.7798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) migration is an important pathophysiological signature of neointimal hyperplasia. The aim of the present study was to investigate the effects of collagen type VI α1 chain (COL6A1) on VSMC migration. COL6A1 expression was silenced in platelet-derived growth factor (PDGF-BB)-stimulated VSMCs. Cell counting kit-8, wound healing and Transwell assays were used to measure cell viability, migration and invasion, respectively. Reverse transcription-quantitative PCR and western blot analysis were performed to analyze the expression of factors associated with metastasis. COL6A1 silencing attenuated PDGF-BB-induced increases in cell viability and invasive abilities of VSMCs, in addition to partially reversing the increased expression of fibronectin (FN), matrix metalloproteinase (MMP)-2 and MMP-9 induced by PDGF-BB stimulation. The silencing of COL6A also overturned PDGF-BB-induced reduction in tissue inhibitor of metalloproteinase 2 expression in VSMCs. PDGF-BB activated the AKT/mTOR pathway, which was also inhibited by COL6A1 knockdown. Taken together, these findings suggest that COL6A1 silencing inhibited VSMC viability and migration by inhibiting AKT/mTOR activation.
Collapse
Affiliation(s)
- Zongxiang Chen
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Qingjian Wu
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Chengjun Yan
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Juan Du
- Emergency Department, Jining 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
46
|
Ma Y, Ren Y, Guan J. Knockdown of GC binding factor 2 by RNA interference inhibits invasion and migration of vascular smooth muscle cells. Mol Med Rep 2019; 20:1781-1789. [PMID: 31257544 PMCID: PMC6625445 DOI: 10.3892/mmr.2019.10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/17/2019] [Indexed: 11/05/2022] Open
Abstract
GC binding factor 2 (GCF2) is a transcriptional repressor that inhibits the transcription of GC‑rich promoters, thereby regulating biological processes, including proliferation. However, the role of GCF2 in vascular smooth muscle cells (VSMCs) remains unclear. The level of α‑smooth muscle (α‑SM) actin was determined by immunofluorescence. Cell viability, migration and invasion were analyzed using Cell Counting Kit‑8, wound healing and Transwell assays, respectively. Apoptosis and cell cycle progression were determined using flow cytometry. The expressions of Bcl‑2, Bax, cleaved caspase‑3, cyclin E, CDK2 and the CDK inhibitor p21 were determined by reverse transcription‑quantitative (RT‑q)PCR and western blot analysis. RT‑qPCR was performed to analyze the levels of GCF2 and western blot analysis was conducted to determine the phosphorylation levels of PI3K and AKT. α‑SM actin was found to be expressed in VSMCs. Cell viability, migration and invasion were inhibited by small interfering (si)RNA targeting GCF2. Changes in the expression levels of Bcl‑2, Bax and cleaved caspase‑3 showed that the pro‑apoptotic capacity of the cells was increased by siGCF2. Cell cycle arrest in the G0/G1 phase was induced by siGCF2, which was accompanied by changes in the levels of cyclin E, CDK2 and p21. Furthermore, phosphorylation of PI3K and AKT was suppressed by siGCF2. However, the inhibitory effects of siGCF2 on cell viability, migration and invasion were increased by insulin‑like growth factor 1, which is a specific agonist of AKT. The anti‑proliferative activity of siGCF2 may be associated with the PI3K/AKT pathway in VSMCs.
Collapse
Affiliation(s)
- Ying Ma
- Qingdao University, Qingdao, Shandong 266073, P.R. China
| | - Yongqiang Ren
- Department of Cardiology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266034, P.R. China
| | - Jun Guan
- Department of Cardiology, Qingdao Municipal Hospital (Group), Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
47
|
Dysregulation of Epigenetic Mechanisms of Gene Expression in the Pathologies of Hyperhomocysteinemia. Int J Mol Sci 2019; 20:ijms20133140. [PMID: 31252610 PMCID: PMC6651274 DOI: 10.3390/ijms20133140] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperhomocysteinemia (HHcy) exerts a wide range of biological effects and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Although mechanisms of HHcy toxicity are not fully uncovered, there has been a significant progress in their understanding. The picture emerging from the studies of homocysteine (Hcy) metabolism and pathophysiology is a complex one, as Hcy and its metabolites affect biomolecules and processes in a tissue- and sex-specific manner. Because of their connection to one carbon metabolism and editing mechanisms in protein biosynthesis, Hcy and its metabolites impair epigenetic control of gene expression mediated by DNA methylation, histone modifications, and non-coding RNA, which underlies the pathology of human disease. In this review we summarize the recent evidence showing that epigenetic dysregulation of gene expression, mediated by changes in DNA methylation and histone N-homocysteinylation, is a pathogenic consequence of HHcy in many human diseases. These findings provide new insights into the mechanisms of human disease induced by Hcy and its metabolites, and suggest therapeutic targets for the prevention and/or treatment.
Collapse
|
48
|
Guo S, Zhang R, Liu Q, Wan Q, Wang Y, Yu Y, Liu G, Shen Y, Yu Y, Zhang J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes injury-induced vascular neointima formation in mice. FASEB J 2019; 33:10207-10217. [PMID: 31216422 DOI: 10.1096/fj.201900546r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental pollutant that causes cardiovascular toxicity. The phenotypic transformation of vascular smooth muscle cells (VSMCs) from the contractile to the synthetic phenotype is a hallmark of vascular response to injury. However, the precise role and molecular mechanism of TCDD in vascular remodeling remains unknown. In the present study, we found that TCDD treatment promoted VSMC phenotypic transition from contractile to synthetic phenotype and exaggerated vascular neointimal hyperplasia after wire injury in mice. TCDD treatment enhanced VSMC entry into cell cycle from G0/G1 phase to S and G2/M phase. The expression of cyclin D1, cyclin-dependent kinase 4 (CDK4), and its phosphorylation were coordinately increased in response to TCDD treatment. Knocking down of aryl hydrocarbon receptor (AHR) inhibited VSMC phenotypic transition induced by TCDD and promoted S/G2 phase cell cycle arrest. TCDD treatment markedly increased oncogenic c-Jun gene expression in VSMCs. ChIP assay revealed the direct binding of AHR on the promoter of c-Jun to up-regulate the mRNA expression of c-Jun. Silencing of c-Jun gene enhanced the expression of p53 and p21, whereas attenuated the expression of CDK4 and cyclin D1 leading to the decrease in the TCDD-stimulated VSMC proliferation and synthetic phenotype transition in vitro. In vivo study showed that genetic ablation of c-Jun in VSMCs restricted injury-induced neointimal hyperplasia in TCDD-treated mice. Thus, TCDD exposure exaggerated injury-induced vascular remodeling by the activation of AHR and up-regulation of the expression of its target gene c-Jun, indicating that inhibition of AHR may be a promising prevention strategy for TCDD-associated cardiovascular diseases.-Guo, S., Zhang, R., Liu, Q., Wan, Q., Wang, Y., Yu, Y., Liu, G., Shen, Y., Yu, Y., Zhang, J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin promotes injury-induced vascular neointima formation in mice.
Collapse
Affiliation(s)
- Shumin Guo
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rui Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiangyou Wan
- CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guizhu Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yujun Shen
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,CAS Key Laboratory of Nutrition, Metabolism, and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
49
|
Lu X, Ma ST, Zhou B, Lı T. MiR-9 promotes the phenotypic switch of vascular smooth muscle cells by targeting KLF5. Turk J Med Sci 2019; 49:928-938. [PMID: 31122000 PMCID: PMC7018344 DOI: 10.3906/sag-1710-173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background/aim Diabetic vascular smooth muscle cells (VSMCs) are characterized by increased proliferation and migration. Small noncoding microRNAs (miRNAs) have been considered critical modulators of the VSMC phenotypic switch after an environmental stimulus. However, microRNA in high glucose-induced proinflammation and its atherogenic effect is still ambiguous. Materials and methods The technique of qRT-PCR was used to examine the expression of miR-9 in VSMCs. The downstream signaling protein relative to miR-9 regulation, Krüppel-like factor 5, and some marker genes of contractile VSMCs were analyzed by western blotting and qRT-PCR. Luciferase reporter assay was used to detect the expression of KLF5, which is regulated by miR-9. To examine the function of a miR-9 inhibitor in VSMC proliferation and migration, VSMC proliferation and migration assays were performed. Results Reduced transcriptional levels of miR-9 and expression of specific genes of contractile VSMCs were observed in the SMC cell line C-12511 treated with high glucose and SMCs, which were isolated from db/db mice. Moreover, the activity of KLF5 3′-UTR was dramatically reduced by a miR-9 mimic and increased by a miR-9 inhibitor. The proliferation and migration of SMCs were reduced by the miR-9 mimic. Conclusion miR-9 inhibits the proliferation and migration of SMC by targeting KLF5 in db/db mice.
Collapse
Affiliation(s)
- Xiaochun Lu
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shi-Tang Ma
- Food and Drug College, Anhui Science and Technology University, Fengyang, China
| | - Bo Zhou
- Department of Geriatric, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Tieling Lı
- Department of Cadre Clinic, Chinese People’s Liberation Army General Hospital, Beijing, China
| |
Collapse
|
50
|
Fang L, Zhang PF, Wang KK, Xiao ZL, Yang M, Yu ZX. Nucleolin promotes Ang II‑induced phenotypic transformation of vascular smooth muscle cells via interaction with tropoelastin mRNA. Int J Mol Med 2019; 43:1597-1610. [PMID: 30720050 PMCID: PMC6414172 DOI: 10.3892/ijmm.2019.4090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
The current study aimed to clarify the role of nucleolin in the phenotypic transformation of vascular smooth muscle cells (VSMCs) and to preliminarily explore its underlying mechanism. The spatial and temporal expression patterns of nucleolin, and the effects of angiotensin II (Ang II) on the expression of VSMC phenotypic transformation markers, α‑smooth muscle‑actin, calponin, smooth muscle protein 22α and osteopontin were investigated. The effects of nucleolin on VSMC phenotypic transformation and the expression of phenotypic transformation‑associated genes, tropoelastin, epiregulin and fibroblast growth factor 2 (b‑FGF), were determined. Protein‑RNA co‑immunoprecipitation was used to investigate the potential target genes regulated by the nucleolin in phenotypic transformation of VSMCs. Finally, the stability of tropoelastin mRNA and the effects of nucleolin on the expression of tropoelastin were assayed. The results revealed that Ang II significantly promoted the phenotypic transformation of VSMCs. The expression of nucleolin was gradually upregulated in VSMCs treated with Ang II at different concentrations for various durations. Ang II induced nucleolin translocation from the nucleus to cytoplasm. Additionally, Ang II significantly promoted the phenotypic transformation of VSMCs. Overexpression and silencing of nucleolin regulated the expressions of tropoelastin, epiregulin and b‑FGF. There was an interaction between tropoelastin mRNA and nucleolin protein, promoting the stability of tropoelastin mRNA and enhancing the expression of tropoelastin at the protein level. Upregulation of nucleolin had an important role in Ang II‑induced VSMC phenotypic transformation, and its underlying mechanism may be through interacting with tropoelastin mRNA, leading to its increased stability and protein expression. The findings provide a new perspective into the regulatory mechanism of VSMC phenotypic transformation.
Collapse
Affiliation(s)
| | - Peng-Fei Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University
| | - Kang-Kai Wang
- Department of Pathophysiology, Xiangya School of Medicine
| | - Zhi-Lin Xiao
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Mei Yang
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | |
Collapse
|