1
|
Šoštar M, Marinović M, Filić V, Pavin N, Weber I. Oscillatory dynamics of Rac1 activity in Dictyostelium discoideum amoebae. PLoS Comput Biol 2024; 20:e1012025. [PMID: 39652619 DOI: 10.1371/journal.pcbi.1012025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/19/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Small GTPases of the Rho family play a central role in the regulation of cell motility by controlling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium discoideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the leading edge and actin filament bundling proteins at the posterior cortex of polarized cells. We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative amoebae using specific fluorescent probes. We observed that plasma membrane domains enriched in active Rac1 not only exhibited stable polarization, but also showed rotations and oscillations, whereas DGAP1 was depleted from these regions. To simulate the observed dynamics of the two proteins, we developed a mass-conserving reaction-diffusion model based on the circulation of Rac1 between the membrane and the cytoplasm coupled with its activation by GEFs, deactivation by GAPs and interaction with DGAP1. Our theoretical model accurately reproduced the experimentally observed dynamic patterns, including the predominant anti-correlation between active Rac1 and DGAP1. Significantly, the model predicted a new colocalization regime of these two proteins in polarized cells, which we confirmed experimentally. In summary, our results improve the understanding of Rac1 dynamics and reveal how the occurrence and transitions between different regimes depend on biochemical reaction rates, protein levels and cell size. This study not only expands our knowledge of the behavior of Rac1 GTPases in D. discoideum amoebae but also demonstrates how specific modes of interaction between Rac1 and its effector DGAP1 lead to their counterintuitively anti-correlated dynamics.
Collapse
Affiliation(s)
- Marko Šoštar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Maja Marinović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
2
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
3
|
Luscher A, Fröhlich F, Barisch C, Littlewood C, Metcalfe J, Leuba F, Palma A, Pirruccello M, Cesareni G, Stagi M, Walther TC, Soldati T, De Camilli P, Swan LE. Lowe syndrome-linked endocytic adaptors direct membrane cycling kinetics with OCRL in Dictyostelium discoideum. Mol Biol Cell 2019; 30:2268-2282. [PMID: 31216233 PMCID: PMC6743453 DOI: 10.1091/mbc.e18-08-0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/17/2019] [Accepted: 06/10/2019] [Indexed: 11/23/2022] Open
Abstract
Mutations of the inositol 5-phosphatase OCRL cause Lowe syndrome (LS), characterized by congenital cataract, low IQ, and defective kidney proximal tubule resorption. A key subset of LS mutants abolishes OCRL's interactions with endocytic adaptors containing F&H peptide motifs. Converging unbiased methods examining human peptides and the unicellular phagocytic organism Dictyostelium discoideum reveal that, like OCRL, the Dictyostelium OCRL orthologue Dd5P4 binds two proteins closely related to the F&H proteins APPL1 and Ses1/2 (also referred to as IPIP27A/B). In addition, a novel conserved F&H interactor was identified, GxcU (in Dictyostelium) and the Cdc42-GEF FGD1-related F-actin binding protein (Frabin) (in human cells). Examining these proteins in D. discoideum, we find that, like OCRL, Dd5P4 acts at well-conserved and physically distinct endocytic stations. Dd5P4 functions in coordination with F&H proteins to control membrane deformation at multiple stages of endocytosis and suppresses GxcU-mediated activity during fluid-phase micropinocytosis. We also reveal that OCRL/Dd5P4 acts at the contractile vacuole, an exocytic osmoregulatory organelle. We propose F&H peptide-containing proteins may be key modifiers of LS phenotypes.
Collapse
Affiliation(s)
- Alexandre Luscher
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Florian Fröhlich
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Department of Genetics and Complex Diseases, Harvard School of Public Health, and Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Clare Littlewood
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Joe Metcalfe
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Florence Leuba
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Anita Palma
- Department of Biology, University of Rome, 00133 Rome, Italy
| | - Michelle Pirruccello
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Gianni Cesareni
- Department of Biology, University of Rome, 00133 Rome, Italy
| | - Massimiliano Stagi
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| | - Tobias C. Walther
- Department of Genetics and Complex Diseases, Harvard School of Public Health, and Department of Cell Biology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 1211 Geneva-4, Switzerland
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Laura E. Swan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510
- Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06510
- Department of Cellular and Molecular Physiology, University of Liverpool, L69 3BX Liverpool, United Kingdom
| |
Collapse
|
4
|
Marinović M, Xiong H, Rivero F, Weber I. Assaying Rho GTPase-Dependent Processes in Dictyostelium discoideum. Methods Mol Biol 2019; 1821:371-392. [PMID: 30062425 DOI: 10.1007/978-1-4939-8612-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The model organism D. discoideum is well suited to investigate basic questions of molecular and cell biology, particularly those related to the structure, regulation, and dynamics of the cytoskeleton, signal transduction, cell-cell adhesion, and development. D. discoideum cells make use of Rho-regulated signaling pathways to reorganize the actin cytoskeleton during chemotaxis, endocytosis, and cytokinesis. In this organism the Rho family encompasses 20 members, several belonging to the Rac subfamily, but there are no representatives of the Cdc42 and Rho subfamilies. Here we present protocols suitable for monitoring the actin polymerization response and the activation of Rac upon stimulation of aggregation-competent cells with the chemoattractant cAMP, and for monitoring the localization and dynamics of Rac activity in live cells.
Collapse
Affiliation(s)
- Maja Marinović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Huajiang Xiong
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK.
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
5
|
Williams TD, Paschke PI, Kay RR. Function of small GTPases in Dictyostelium macropinocytosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180150. [PMID: 30967009 PMCID: PMC6304742 DOI: 10.1098/rstb.2018.0150] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 12/17/2022] Open
Abstract
Macropinocytosis-the large-scale, non-specific uptake of fluid by cells-is used by Dictyostelium discoideum amoebae to obtain nutrients. These cells form circular ruffles around regions of membrane defined by a patch of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and the activated forms of the small G-proteins Ras and Rac. When this ruffle closes, a vesicle of the medium is delivered to the cell interior for further processing. It is accepted that PIP3 is required for efficient macropinocytosis. Here, we assess the roles of Ras and Rac in Dictyostelium macropinocytosis. Gain-of-function experiments show that macropinocytosis is stimulated by persistent Ras activation and genetic analysis suggests that RasG and RasS are the key Ras proteins involved. Among the activating guanine exchange factors (GEFs), GefF is implicated in macropinocytosis by an insertional mutant. The individual roles of Rho family proteins are little understood but activation of at least some may be independent of PIP3. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
| | | | - Robert R. Kay
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
6
|
Taatjes DJ, Roth J. In Focus in HCB. Histochem Cell Biol 2016; 146:237-8. [PMID: 27510416 DOI: 10.1007/s00418-016-1468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, The University of Vermont College of Medicine, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|