1
|
Wang Y, Xu M, Yao Y, Li Y, Zhang S, Fu Y, Wang X. Extracellular cancer‑associated fibroblasts: A novel subgroup in the cervical cancer microenvironment that exhibits tumor‑promoting roles and prognosis biomarker functions. Oncol Lett 2024; 27:167. [PMID: 38449793 PMCID: PMC10915806 DOI: 10.3892/ol.2024.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 03/08/2024] Open
Abstract
Tumor invasion and metastasis are the processes that primarily cause adverse outcomes in patients with cervical cancer. Cancer-associated fibroblasts (CAFs), which participate in cancer progression and metastasis, are novel targets for the treatment of tumors. The present study aimed to assess the heterogeneity of CAFs in the cervical cancer microenvironment through single-cell RNA sequencing. After collecting five cervical cancer samples and obtaining the CAF-associated gene sets, the CAFs in the cervical cancer microenvironment were divided into myofibroblastic CAFs and extracellular (ec)CAFs. The ecCAFs appeared with more robust pro-tumorigenic effects than myCAFs according to enrichment analysis. Subsequently, through combining the ecCAF hub genes and bulk gene expression data for cervical cancer obtained from The Cancer Genome Atlas and Gene Ontology databases, univariate Cox regression and least absolute shrinkage and selection operator analyses were performed to establish a CAF-associated risk signature for patients with cancer. The established risk signature demonstrated a stable and strong prognostic capability in both the training and validation cohorts. Subsequently, the association between the risk signature and clinical data was evaluated, and a nomogram to facilitate clinical application was established. The risk score was demonstrated to be associated with both the tumor immune microenvironment and the therapeutic responses. Moreover, the signature also has predictive value for the prognosis of head and neck squamous cell carcinoma, and bladder urothelial carcinoma, which were also associated with human papillomavirus infection. In conclusion, the present study assessed the heterogeneity of CAFs in the cervical cancer microenvironment, and a subgroup of CAFs that may be closely associated with tumor progression was defined. Moreover, a signature based on the hub genes of ecCAFs was shown to have biomarker functionality in terms of predicting survival rates, and therefore this CAF subgroup may become a therapeutic target for cervical cancer in the future.
Collapse
Affiliation(s)
- Yuehan Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Mingxia Xu
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yeli Yao
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Ying Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Songfa Zhang
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Yunfeng Fu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xinyu Wang
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
2
|
Song YX, Li X, Nie SD, Hu ZX, Zhou D, Sun DY, Zhou GY, Wang Y, Liu JJ, Song T, Wang S. Extracellular vesicles released by glioma cells are decorated by Annexin A2 allowing for cellular uptake via heparan sulfate. Cancer Gene Ther 2023; 30:1156-1166. [PMID: 37231059 DOI: 10.1038/s41417-023-00627-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Extracellular vesicles (EVs) play a crucial role in regulating cell behavior by delivering their cargo to target cells. However, the mechanisms underlying EV-cell interactions are not well understood. Previous studies have shown that heparan sulfate (HS) on target cell surfaces can act as receptors for exosomes uptake, but the ligand for HS on EVs has not been identified. In this study, we isolated EVs from glioma cell lines and glioma patients and identified Annexin A2 (AnxA2) on EVs as a key HS-binding ligand and mediator of EV-cell interactions. Our findings suggest that HS plays a dual role in EV-cell interactions, where HS on EVs captures AnxA2, and on target cells, it acts as a receptor for AnxA2. Removal of HS from the EV surface inhibits EV-target cell interaction by releasing AnxA2. Furthermore, we found that AnxA2-mediated binding of EVs to vascular endothelial cells promotes angiogenesis, and that antibody against AnxA2 inhibited the ability of glioma-derived EVs to stimulate angiogenesis by reducing the uptake of EVs. Our study also suggests that the AnxA2-HS interaction may accelerate the glioma-derived EVs-mediated angiogenesis and that combining AnxA2 on glioma cells with HS on endothelial cells may effectively improve the prognosis evaluation of glioma patients.
Collapse
Affiliation(s)
- Yu-Xi Song
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China.
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China.
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| | - Sheng-Dan Nie
- Institute of Clinical Medicine, Hunan provincial people's hospital, the first affiliated hospital of Hunan Normal University, Changsha, China
| | - Zhong-Xu Hu
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Di Zhou
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Ding-Ya Sun
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Gao-Ya Zhou
- Department of Neurology, Brain hospital of Hunan Province, Changsha, China
| | - Ying Wang
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, China
| | - Jia-Jia Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Tao Song
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China.
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
3
|
Sokolov DK, Shevelev OB, Khotskina AS, Tsidulko AY, Strokotova AV, Kazanskaya GM, Volkov AM, Kliver EE, Aidagulova SV, Zavjalov EL, Grigorieva EV. Dexamethasone Inhibits Heparan Sulfate Biosynthetic System and Decreases Heparan Sulfate Content in Orthotopic Glioblastoma Tumors in Mice. Int J Mol Sci 2023; 24:10243. [PMID: 37373391 DOI: 10.3390/ijms241210243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with a high probability of recurrence, despite active chemoradiotherapy with temozolomide (TMZ) and dexamethasone (DXM). These systemic drugs affect the glycosylated components of brain tissue involved in GB development; however, their effects on heparan sulfate (HS) remain unknown. Here, we used an animal model of GB relapse in which SCID mice first received TMZ and/or DXM (simulating postoperative treatment) with a subsequent inoculation of U87 human GB cells. Control, peritumor and U87 xenograft tissues were investigated for HS content, HS biosynthetic system and glucocorticoid receptor (GR, Nr3c1). In normal and peritumor brain tissues, TMZ/DXM administration decreased HS content (5-6-fold) but did not affect HS biosynthetic system or GR expression. However, the xenograft GB tumors grown in the pre-treated animals demonstrated a number of molecular changes, despite the fact that they were not directly exposed to TMZ/DXM. The tumors from DXM pre-treated animals possessed decreased HS content (1.5-2-fold), the inhibition of HS biosynthetic system mainly due to the -3-3.5-fold down-regulation of N-deacetylase/N-sulfotransferases (Ndst1 and Ndst2) and sulfatase 2 (Sulf2) expression and a tendency toward a decreased expression of the GRalpha but not the GRbeta isoform. The GRalpha expression levels in tumors from DXM or TMZ pre-treated mice were positively correlated with the expression of a number of HS biosynthesis-involved genes (Ext1/2, Ndst1/2, Glce, Hs2st1, Hs6st1/2), unlike tumors that have grown in intact SCID mice. The obtained data show that DXM affects HS content in mouse brain tissues, and GB xenografts grown in DXM pre-treated animals demonstrate attenuated HS biosynthesis and decreased HS content.
Collapse
Affiliation(s)
- Dmitry K Sokolov
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Oleg B Shevelev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | | | - Alexandra Y Tsidulko
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Anastasia V Strokotova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander M Volkov
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
| | - Evgenii E Kliver
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
| | - Svetlana V Aidagulova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Laboratory of Cell Biology, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| |
Collapse
|
4
|
Aladev SD, Sokolov DK, Strokotova AV, Kazanskaya GM, Volkov AM, Politko MO, Shahmuradova AI, Kliver EE, Tsidulko AY, Aidagulova SV, Grigorieva EV. Dexamethasone effects on the expression and content of glycosylated components of mouse brain tissue. ADVANCES IN MOLECULAR ONCOLOGY 2023. [DOI: 10.17650/2313-805x-2023-10-1-25-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Introduction. Glucocorticoids are actively used in the treatment of various diseases, however their long-term use leads to numerous negative side-effects, the molecular mechanisms of which remain poorly understood.Aim. Study of the short-term (1–10 days) effects of various doses of dexamethasone (Dex) (0,1–10 mg/kg) on the expression of the glucocorticoid receptor (GR, Nr3c1), core proteins of main proteoglycans and heparan sulfate metabolism-involved genes, as well as the content of carbohydrate macromolecules of glycosaminoglycans in the brain tissue of experimental animals.Materials and methods. In the study, C57Bl/6 mice were used. The expression of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes was determined by real-time polymerase chain reaction with reverse transcription. The content and localization of GR protein molecule were studied by Western blot and immunohistochemical analysis, and the glycosaminoglycan content was determined by dot-blot analysis and Alcian Blue staining.Results. It was shown that a single Dex administration leads to fast (1–3 days) short-term activation of GR expression (+1.5 times, p <0.05), proteoglycan’s genes (syndecan-3, Sdc3; perlecan, Hspg2; phosphacan, Ptprz1; neurocan, Ncan; +2–3-fold; p <0.05) and heparan sulfate-metabolism-involved genes (Ndst1, Glce, Hs2st1, Hs6st1, Sulf1 / 2; +1.5–2-fold; p <0.05) in the mouse brain, with a return to control values by 7–10 days after Dex administration. At the same time, the effect of Dex on carbohydrate macromolecules of glycosaminoglycans was more delayed and stable, increasing the content of low-sulfated glycosaminoglycans in the brain tissue in a dose-dependent manner starting from day 1 after Dex administration. Highly-sulfated glycosaminoglycans showed more delayed response to Dex administration, and an increase in their content was observed only at higher doses (2.5 and 10 mg/kg) and only on 7–10 days after its administration, apparently, mainly due to an increase in heparan sulfate content.Conclusion. In general, the effect of a single injection of Dex on the transcriptional activity of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes were short-termed, and the genes expression quickly returned to the normal levels. However, even a single use of Dex significantly increased the content of total as well as highly sulfated glycosaminoglycans in the mouse brain tissue, which can lead to the changes in the composition and structure of the brain tissue, as well as its functional characteristics.
Collapse
Affiliation(s)
- S. D. Aladev
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - D. K. Sokolov
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - A. V. Strokotova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - G. M. Kazanskaya
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | | | - M. O. Politko
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - A. I. Shahmuradova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | | | - A. Y. Tsidulko
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - S. V. Aidagulova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation; Novosibirsk State Medical University
| | - E. V. Grigorieva
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| |
Collapse
|
5
|
Verma R, Chen X, Xin D, Luo Z, Ogurek S, Xin M, Rao R, Berry K, Lu QR. Olig1/2-Expressing Intermediate Lineage Progenitors Are Predisposed to PTEN/p53-Loss-Induced Gliomagenesis and Harbor Specific Therapeutic Vulnerabilities. Cancer Res 2023; 83:890-905. [PMID: 36634201 DOI: 10.1158/0008-5472.can-22-1577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
Malignant gliomas such as glioblastoma are highly heterogeneous with distinct cells of origin and varied genetic alterations. It remains elusive whether the specific states of neural cell lineages are differentially susceptible to distinct genetic alterations during malignant transformation. Here, an analysis of The Cancer Genome Atlas databases revealed that comutations of PTEN and TP53 are most significantly enriched in human high-grade gliomas. Therefore, we selectively ablated Pten and Trp53 in different progenitors to determine which cell lineage states are susceptible to malignant transformation. Mice with PTEN/p53 ablation mediated by multilineage-expressing human GFAP (hGFAP) promoter-driven Cre developed glioma but with incomplete penetrance and long latency. Unexpectedly, ablation of Pten and Trp53 in Nestin+ neural stem cells (NSC) or Pdgfra+/NG2+ committed oligodendrocyte precursor cells (OPC), two major cells of origin in glioma, did not induce glioma formation in mice. Strikingly, mice lacking Pten and Trp53 in Olig1+/Olig2+ intermediate precursors (pri-OPC) prior to the committed OPCs developed high-grade gliomas with 100% penetrance and short latency. The resulting tumors exhibited distinct tumor phenotypes and drug sensitivities from NSC- or OPC-derived glioma subtypes. Integrated transcriptomic and epigenomic analyses revealed that PTEN/p53-loss induced activation of oncogenic pathways, including HIPPO-YAP and PI3K signaling, to promote malignant transformation. Targeting the core regulatory circuitries YAP and PI3K signaling effectively inhibited tumor cell growth. Thus, our multicell state in vivo mutagenesis analyses suggests that transit-amplifying states of Olig1/2 intermediate lineage precursors are predisposed to PTEN/p53-loss-induced transformation and gliomagenesis, pointing to subtype-specific treatment strategies for gliomas with distinct genetic alterations. SIGNIFICANCE Multiple progenitor-state mutagenesis reveal that Olig1/2-expressing intermediate precursors are highly susceptible to PTEN/p53-loss-mediated transformation and impart differential drug sensitivity, indicating tumor-initiating cell states and genetic drivers dictate glioma phenotypes and drug responses. See related commentary by Zamler and Hu, p. 807.
Collapse
Affiliation(s)
- Ravinder Verma
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xiameng Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Texas
| | - Dazhuan Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Zaili Luo
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sean Ogurek
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mei Xin
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rohit Rao
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kalen Berry
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Q Richard Lu
- Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
6
|
Song I, Kuznetsova T, Baidoe-Ansah D, Mirzapourdelavar H, Senkov O, Hayani H, Mironov A, Kaushik R, Druzin M, Johansson S, Dityatev A. Heparan Sulfates Regulate Axonal Excitability and Context Generalization through Ca 2+/Calmodulin-Dependent Protein Kinase II. Cells 2023; 12:cells12050744. [PMID: 36899880 PMCID: PMC10000602 DOI: 10.3390/cells12050744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Our previous studies demonstrated that enzymatic removal of highly sulfated heparan sulfates with heparinase 1 impaired axonal excitability and reduced expression of ankyrin G at the axon initial segments in the CA1 region of the hippocampus ex vivo, impaired context discrimination in vivo, and increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity in vitro. Here, we show that in vivo delivery of heparinase 1 in the CA1 region of the hippocampus elevated autophosphorylation of CaMKII 24 h after injection in mice. Patch clamp recording in CA1 neurons revealed no significant heparinase effects on the amplitude or frequency of miniature excitatory and inhibitory postsynaptic currents, while the threshold for action potential generation was increased and fewer spikes were generated in response to current injection. Delivery of heparinase on the next day after contextual fear conditioning induced context overgeneralization 24 h after injection. Co-administration of heparinase with the CaMKII inhibitor (autocamtide-2-related inhibitory peptide) rescued neuronal excitability and expression of ankyrin G at the axon initial segment. It also restored context discrimination, suggesting the key role of CaMKII in neuronal signaling downstream of heparan sulfate proteoglycans and highlighting a link between impaired CA1 pyramidal cell excitability and context generalization during recall of contextual memories.
Collapse
Affiliation(s)
- Inseon Song
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Tatiana Kuznetsova
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - David Baidoe-Ansah
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Hadi Mirzapourdelavar
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Oleg Senkov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Hussam Hayani
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Andrey Mironov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Rahul Kaushik
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Michael Druzin
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Staffan Johansson
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Medizinische Fakultät, Otto-von-Güricke-Universität Magdeburg, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-67-24526; Fax: +49-391-6724530
| |
Collapse
|
7
|
HSPG2 Mutation Association with Immune Checkpoint Inhibitor Outcome in Melanoma and Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14143495. [PMID: 35884556 PMCID: PMC9315784 DOI: 10.3390/cancers14143495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) markedly promote the survival outcome of advanced melanoma and non-small cell lung cancer (NSCLC). Clinically, favorable ICI treatment efficacy is noticed only in a smaller proportion of patients. Heparan sulfate proteoglycan 2 (HSPG2) frequently mutates in both tumors. Herein, we aim to investigate the immunotherapeutic and immunological roles of HSPG2 mutations in melanoma and NSCLC. A total of 631 melanoma samples and 109 NSCLC samples with both somatic mutational profiles and clinical immunotherapy data were curated. In addition, by using The Cancer Genome Atlas data, genomic and immunological traits behind HSPG2 mutations were elucidated. Melanoma patients with HSPG2 mutations had a markedly extended ICI outcome than other patients. An association between HSPG2 mutations and the improved outcome was further confirmed in NSCLC. In addition, an elevated ICI response rate was presented in HSPG2-mutated NSCLC patients (81.8% vs. 29.7%, p = 0.002). Subsequent analyses revealed that HSPG2-mutated patients had a favorable abundance of response immunocytes, an inferior abundance of suppression immunocytes, enhanced mutational burden, and interferon response-relevant signaling pathways. We uncovered that HSPG2 mutations were predictive of a better ICI response and associated with preferable immunogenicity, which may be considered as a genomic determinant to customize biotherapy strategies.
Collapse
|
8
|
Francisco AB, Li J, Farghli AR, Kanke M, Shui B, Munn PR, Grenier JK, Soloway PD, Wang Z, Reid LM, Liu J, Sethupathy P. Chemical, Molecular, and Single-nucleus Analysis Reveal Chondroitin Sulfate Proteoglycan Aberrancy in Fibrolamellar Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:663-678. [PMID: 36923282 PMCID: PMC10010304 DOI: 10.1158/2767-9764.crc-21-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Fibrolamellar carcinoma (FLC) is an aggressive liver cancer with no effective therapeutic options. The extracellular environment of FLC tumors is poorly characterized and may contribute to cancer growth and/or metastasis. To bridge this knowledge gap, we assessed pathways relevant to proteoglycans, a major component of the extracellular matrix. We first analyzed gene expression data from FLC and nonmalignant liver tissue (n = 27) to identify changes in glycosaminoglycan (GAG) biosynthesis pathways and found that genes associated with production of chondroitin sulfate, but not other GAGs, are significantly increased by 8-fold. We then implemented a novel LC/MS-MS based method to quantify the abundance of different types of GAGs in patient tumors (n = 16) and found that chondroitin sulfate is significantly more abundant in FLC tumors by 6-fold. Upon further analysis of GAG-associated proteins, we found that versican (VCAN) expression is significantly upregulated at the mRNA and protein levels, the latter of which was validated by IHC. Finally, we performed single-cell assay for transposase-accessible chromatin sequencing on FLC tumors (n = 3), which revealed for the first time the different cell types in FLC tumors and also showed that VCAN is likely produced not only from FLC tumor epithelial cells but also activated stellate cells. Our results reveal a pathologic aberrancy in chondroitin (but not heparan) sulfate proteoglycans in FLC and highlight a potential role for activated stellate cells. Significance This study leverages a multi-disciplinary approach, including state-of-the-art chemical analyses and cutting-edge single-cell genomic technologies, to identify for the first time a marked chondroitin sulfate aberrancy in FLC that could open novel therapeutic avenues in the future.
Collapse
Affiliation(s)
- Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Alaa R Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Paul R Munn
- Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.,Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Paul D Soloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Zhangjie Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
9
|
Lin D, Li W, Zhang N, Cai M. Identification of TNFAIP6 as a hub gene associated with the progression of glioblastoma by weighted gene co-expression network analysis. IET Syst Biol 2022; 16:145-156. [PMID: 35766985 PMCID: PMC9469790 DOI: 10.1049/syb2.12046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022] Open
Abstract
This study aims to discover the genetic modules that distinguish glioblastoma multiforme (GBM) from low‐grade glioma (LGG) and identify hub genes. A co‐expression network is constructed using the expression profiles of 28 GBM and LGG patients from the Gene Expression Omnibus database. The authors performed gene ontology (GO) and Kyoto encyclopaedia of genes and genomes (KEGG) analysis on these genes. The maximal clique centrality method was used to identify hub genes. Online tools were employed to confirm the link between hub gene expression and overall patient survival rate. The top 5000 genes with major variance were classified into 18 co‐expression gene modules. GO analysis indicated that abnormal changes in ‘cell migration’ and ‘collagen metabolic process’ were involved in the development of GBM. KEGG analysis suggested that ‘focal adhesion’ and ‘p53 signalling pathway’ regulate the tumour progression. TNFAIP6 was identified as a hub gene, and the expression of TNFAIP6 was increased with the elevation of pathological grade. Survival analysis indicated that the higher the expression of TNFAIP6, the shorter the survival time of patients. The authors identified TNFAIP6 as the hub gene in the progression of GBM, and its high expression indicates the poor prognosis of the patients.
Collapse
Affiliation(s)
- Dongdong Lin
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei Li
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Cai
- Department of Neurosurgery, The Second Affiliated Hospital-Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Multiple Irradiation Affects Cellular and Extracellular Components of the Mouse Brain Tissue and Adhesion and Proliferation of Glioblastoma Cells in Experimental System In Vivo. Int J Mol Sci 2021; 22:ijms222413350. [PMID: 34948147 PMCID: PMC8703639 DOI: 10.3390/ijms222413350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24–72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells’ adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.
Collapse
|
11
|
Kinoshita T, Tomita H, Okada H, Niwa A, Hyodo F, Kanayama T, Matsuo M, Imaizumi Y, Kuroda T, Hatano Y, Miyai M, Egashira Y, Enomoto Y, Nakayama N, Sugie S, Matsumoto K, Yamaguchi Y, Matsuo M, Hara H, Iwama T, Hara A. Endothelial cell-specific reduction of heparan sulfate suppresses glioma growth in mice. Discov Oncol 2021; 12:50. [PMID: 34790962 PMCID: PMC8585801 DOI: 10.1007/s12672-021-00444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Heparan sulfate (HS) is one of the factors that has been suggested to be associated with angiogenesis and invasion of glioblastoma (GBM), an aggressive and fast-growing brain tumor. However, it remains unclear how HS of endothelial cells is involved in angiogenesis in glioblastoma and its prognosis. Thus, we investigated the effect of endothelial cell HS on GBM development. METHODS We generated endothelial cell-specific knockout of Ext1, a gene encoding a glycosyltransferase and essential for HS synthesis, and murine GL261 glioblastoma cells were orthotopically transplanted. Two weeks after transplantation, we examined the tumor progression and underlying mechanisms. RESULTS The endothelial cell-specific Ext1 knockout (Ext1 CKO ) mice exhibited reduced HS expression specifically in the vascular endothelium of the brain capillaries compared with the control wild-type (WT) mice. GBM growth was significantly suppressed in Ext1 CKO mice compared with that in WT mice. After GBM transplantation, the survival rate was significantly higher in Ext1 CKO mice than in WT mice. We investigated how the effect of fibroblast growth factor 2 (FGF2), which is known as an angiogenesis-promoting factor, differs between Ext1 CKO and WT mice by using an in vivo Matrigel assay and demonstrated that endothelial cell-specific HS reduction attenuated the effect of FGF2 on angiogenesis. CONCLUSIONS HS reduction in the vascular endothelium of the brain suppressed GBM growth and neovascularization in mice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12672-021-00444-3.
Collapse
Affiliation(s)
- Takamasa Kinoshita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hideshi Okada
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Tomohiro Kanayama
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Mikiko Matsuo
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yuko Imaizumi
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Takahiro Kuroda
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yuichiro Hatano
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Masafumi Miyai
- Department of Neurosurgery, Ogaki Tokusyukai Hospital, Ogaki, Gifu 503-0015 Japan
| | - Yusuke Egashira
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yukiko Enomoto
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Shigeyuki Sugie
- Department of Pathology, Asahi University Hospital, Gifu, 500-8523 Japan
| | - Kazu Matsumoto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, San Diego, CA USA
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, 501-1196 Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, 501-1194 Japan
| |
Collapse
|
12
|
Li X, Nie S, Lv Z, Ma L, Song Y, Hu Z, Hu X, Liu Z, Zhou G, Dai Z, Song T, Liu J, Wang S. Overexpression of Annexin A2 promotes proliferation by forming a Glypican 1/c-Myc positive feedback loop: prognostic significance in human glioma. Cell Death Dis 2021; 12:261. [PMID: 33712571 PMCID: PMC7954792 DOI: 10.1038/s41419-021-03547-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
In order to set up a reliable prediction system for the tumor grade and prognosis in glioma patients, we clarify the complicated crosstalk of Annexin A2 (ANXA2) with Glypican 1 (GPC1) and demonstrate whether combined indexes of ANXA2 and GPC1 could improve the prognostic evaluation for glioma patients. We found that ANXA2-induced glioma cell proliferation in a c-Myc-dependent manner. ANXA2 increased the expression of GPC1 via c-Myc and the upregulated GPC1 further promoted the c-Myc level, forming a positive feedback loop, which eventually led to enhanced proliferation of glioma cells. Both mRNA and protein levels of ANXA2 were upregulated in glioma tissues and coincided with the overexpression of GPC1. Besides, we utilized tissue microarrays (TMAs) and immunohistochemistry to demonstrate that glioma patients with both high expression of ANXA2 and GPC1 tended to have higher rate of tumor recurrence and shorter overall survival (OS). In conclusion, the overexpression of ANXA2 promotes proliferation of glioma cells by forming a GPC1/c-Myc positive feedback loop, and ANXA2 together with its downstream target GPC1 could be a potential "combination biomarker" for predicting prognosis of glioma patients.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China.,Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Shengdan Nie
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ziyang Lv
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Lingran Ma
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Yuxi Song
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Zhongxu Hu
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Xin Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Zhiqiang Liu
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China
| | - Gaoya Zhou
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Zhijie Dai
- Department of Institute of Metabolism and Endocrinology, Second Xiang-Ya Hospital, Central South University, Changsha, China
| | - Tao Song
- Department of Neurosurgery, Xiang-Ya Hospital, Central South University, Changsha, China.
| | - Jiajia Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| | - Shan Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, China.
| |
Collapse
|
13
|
Dzikowski L, Mirzaei R, Sarkar S, Kumar M, Bose P, Bellail A, Hao C, Yong VW. Fibrinogen in the glioblastoma microenvironment contributes to the invasiveness of brain tumor-initiating cells. Brain Pathol 2021; 31:e12947. [PMID: 33694259 PMCID: PMC8412081 DOI: 10.1111/bpa.12947] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, recurrent, and lethal brain tumors that are maintained via brain tumor‐initiating cells (BTICs). The aggressiveness of BTICs may be dependent on the extracellular matrix (ECM) molecules that are highly enriched within the GBM microenvironment. Here, we investigated the expression of ECM molecules in GBM patients by mining the transcriptomic databases and also staining human GBM specimens. RNA levels for fibronectin, brevican, versican, heparan sulfate proteoglycan 2 (HSPG2), and several laminins were high in GBMs compared to normal brain, and this was corroborated by immunohistochemistry. While fibrinogen transcript was at normal level in GBM, its protein immunoreactivity was prominent within GBM tissues. These ECM molecules in tumor specimens were in proximity to, and surrounding BTICs. In culture, fibronectin and pan‐laminin induced the adhesion of BTICs onto the plastic substratum. However, fibrinogen increased the size of the BTIC spheres by facilitating the adhesive property, motility, and invasiveness of BTICs. These features of elevated invasiveness were corroborated in resected GBM specimens by the close proximity of fibrinogen with matrix metalloproteinase (MMP)‐2 and‐9, which are proteases implicated in metastasis. Moreover, the effect of fibrinogen‐induced invasiveness was attenuated in BTICs where MMP‐2 and ‐9 have been inhibited with siRNAs or pharmacological inhibitors. Our results implicate fibrinogen in GBM as a mediator of the invasive properties of BTICs, and as a target for therapy to reduce BTIC tumorigenecity.
Collapse
Affiliation(s)
- Lauren Dzikowski
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Reza Mirzaei
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Susobhan Sarkar
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mehul Kumar
- Department of Biochemistry, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Pinaki Bose
- Department of Biochemistry, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Molecular Biology, University of Calgary, Calgary, AB, Canada.,Department of Surgery, University of Calgary, Calgary, AB, Canada.,the Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Anita Bellail
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chunhai Hao
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - V Wee Yong
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Kori M, Aydin B, Gulfidan G, Beklen H, Kelesoglu N, Caliskan Iscan A, Turanli B, Erzik C, Karademir B, Arga KY. The Repertoire of Glycan Alterations and Glycoproteins in Human Cancers. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:139-168. [PMID: 33404348 DOI: 10.1089/omi.2020.0210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer as the leading cause of death worldwide has many issues that still need to be addressed. Since the alterations on the glycan compositions or/and structures (i.e., glycosylation, sialylation, and fucosylation) are common features of tumorigenesis, glycomics becomes an emerging field examining the structure and function of glycans. In the past, cancer studies heavily relied on genomics and transcriptomics with relatively little exploration of the glycan alterations and glycoprotein biomarkers among individuals and populations. Since glycosylation of proteins increases their structural complexity by several orders of magnitude, glycome studies resulted in highly dynamic biomarkers that can be evaluated for cancer diagnosis, prognosis, and therapy. Glycome not only integrates our genetic background with past and present environmental factors but also offers a promise of more efficient patient stratification compared with genetic variations. Therefore, studying glycans holds great potential for better diagnostic markers as well as developing more efficient treatment strategies in human cancers. While recent developments in glycomics and associated technologies now offer new possibilities to achieve a high-throughput profiling of glycan diversity, we aim to give an overview of the current status of glycan research and the potential applications of the glycans in the scope of the personalized medicine strategies for cancer.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Gizem Gulfidan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Hande Beklen
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Nurdan Kelesoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayşegul Caliskan Iscan
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey.,Department of Pharmacy, Istinye University, Istanbul, Turkey
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Can Erzik
- Department of Medical Biology and School of Medicine, Marmara University, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul, Turkey.,Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
15
|
Melrose J. Perlecan, a modular instructive proteoglycan with diverse functional properties. Int J Biochem Cell Biol 2020; 128:105849. [PMID: 32947020 DOI: 10.1016/j.biocel.2020.105849] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/30/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
This study reviewed some new aspects of the modular proteoglycan perlecan, a colossal proteoglycan with a 467 kDa core protein and five distinct functional domains. Perlecan is a heparan sulphate proteoglycan that transiently displays native CS sulphation motifs 4-C-3 and 7-D-4 during tissue morphogenesis these are expressed by progenitor cell populations during tissue development. Perlecan is susceptible to fragmentation by proteases during tissue development and in pathological tissues particularly in domains IV and V. The fragmentation pattern of domain IV has been suggested as a means of grading prostate cancer. Domain V of perlecan is of interest due to its interactive properties with integrin α5β1 that promotes pericyte migration enhancing PDGF-BB-induced phosphorylation of PDGFRβ, Src homology region 2 domain-containing phosphatase-2, and focal adhesion kinase supporting the repair of the blood brain barrier following ischaemic stroke. Fragments of domain V can also interact with α2β1 integrin disrupting tube formation by endothelial cells. LG1-LG2, LG3 fragments can antagonise VEGFR2, and α2β1 integrin interactions preventing angiogenesis by endothelial cells. These domain V fragments are of interest as potential anti-tumour agents. Perlecan attached to the luminal surfaces of endothelial cells in blood vessels acts as a flow sensor that signals back to endothelial and smooth muscle cells to regulate vascular tone and blood pressure. Perlecan also acts as a flow sensor in the lacuno-canalicular space regulating osteocytes and bone homeostasis. Along with its biomechanical regulatory properties in cartilaginous tissues this further extends the functional repertoire of this amazingly diverse functional proteoglycan.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW 2065, Australia; Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Sydney Medical School, Northern, The University of Sydney, Australia; Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia.
| |
Collapse
|
16
|
HSPG2 overexpression independently predicts poor survival in patients with acute myeloid leukemia. Cell Death Dis 2020; 11:492. [PMID: 32606327 PMCID: PMC7327006 DOI: 10.1038/s41419-020-2694-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Heparan sulfate proteoglycan 2 (HSPG2), also known as perlecan, is a large multi-domain extracellular matrix proteoglycan, which contributes to the invasion, metastasis and angiogenesis of solid tumor. However, very little is known about the effect of HSPG2 on acute myeloid leukemia (AML). This study aims to investigate the prognostic value of the HSPG2 gene in terms of overall survival and leukemia-free survival in patients with AML. Bone marrow mononuclear cells (BMMCs) from 4 AML patients and 3 healthy controls were processed for RNA-Sequencing (RNA-seq). The mRNA expression level of HSPG2 in BMMCs and CD34+ hematopoietic stem/progenitor cells (HSPC) obtained from enrolled participants and human leukemic cell lines was detected by RT-qPCR. Then the correlations between the expression of HSPG2 and a variety of important clinical parameters, such as median white blood cell (WBC) count and bone marrow (BM) blasts, were further analyzed. The expression level of HSPG2 was significantly upregulated in AML patients at the time of diagnosis, downregulated after complete remission and then elevated again at relapse. Moreover, HSPG2 expression was associated with median WBC count (P < 0.001), median hemoglobin (P = 0.02), median platelet count (P = 0.001), and BM blasts (P < 0.001) in AML patients. Patients with high HSPG2 expression had both worse overall survival (OS) (P = 0.001) and poorer leukemia-free survival (LFS) (P = 0.047). In the multivariate analysis model, HSPG2 was identified as an independent prognostic biomarker of AML. Taken together, these results indicate that HSPG2 overexpression was associated with poor prognosis in AML patients, and may be a prognostic biomarker and therapeutic target of AML.
Collapse
|
17
|
Suhovskih AV, Kazanskaya GM, Volkov AM, Tsidulko AY, Aidagulova SV, Grigorieva EV. Chemoradiotherapy Increases Intratumor Heterogeneity of HPSE Expression in the Relapsed Glioblastoma Tumors. Int J Mol Sci 2020; 21:ijms21041301. [PMID: 32075104 PMCID: PMC7073003 DOI: 10.3390/ijms21041301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/22/2023] Open
Abstract
Adjuvant chemoradiotherapy is a standard treatment option for glioblastoma multiforme (GBM). Despite intensive care, recurrent tumors developed during the first year are fatal for the patients. Possibly contributing to this effect, among other causes, is that therapy induces changes of polysaccharide heparan sulfate (HS) chains in the cancer cells and/or tumor microenvironment. The aim of this study was to perform a comparative analysis of heparanase (HPSE) expression and HS content in different normal and GBM brain tissues. Immunohistochemical analysis revealed a significant decrease of HPSE protein content in the tumor (12-15-fold) and paratumorous (2.5-3-fold) GBM tissues compared with normal brain tissue, both in cellular and extracellular compartments. The relapsed GBM tumors demonstrated significantly higher intertumor and/or intratumor heterogeneity of HPSE and HS content and distribution compared with the matched primary ones (from the same patient) (n = 8), although overall expression levels did not show significant differences, suggesting local deterioration of HPSE expression with reference to the control system or by the treatment. Double immunofluorescence staining of various glioblastoma cell lines (U87, U343, LN18, LN71, T406) demonstrated a complex pattern of HPSE expression and HS content with a tendency towards a negative association of these parameters. Taken together, the results demonstrate the increase of intratumor heterogeneity of HPSE protein in relapsed GBM tumors and suggest misbalance of HPSE expression regulation by the adjuvant anti-GBM chemoradiotherapy.
Collapse
Affiliation(s)
- Anastasia V. Suhovskih
- Institute of Molecular Biology and Biophysics FRC FTM, 2/12, Timakova str., 630117 Novosibirsk, Russia; (A.Y.T.); (E.V.G.)
- Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
- Meshalkin National Medical Research Centre, 15, Rechkunovskaya str., 630055 Novosibirsk, Russia; (G.M.K.); (A.M.V.)
- Correspondence: ; Tel.: +7-383-333-5011
| | - Galina M. Kazanskaya
- Meshalkin National Medical Research Centre, 15, Rechkunovskaya str., 630055 Novosibirsk, Russia; (G.M.K.); (A.M.V.)
| | - Alexander M. Volkov
- Meshalkin National Medical Research Centre, 15, Rechkunovskaya str., 630055 Novosibirsk, Russia; (G.M.K.); (A.M.V.)
| | - Alexandra Y. Tsidulko
- Institute of Molecular Biology and Biophysics FRC FTM, 2/12, Timakova str., 630117 Novosibirsk, Russia; (A.Y.T.); (E.V.G.)
| | | | - Elvira V. Grigorieva
- Institute of Molecular Biology and Biophysics FRC FTM, 2/12, Timakova str., 630117 Novosibirsk, Russia; (A.Y.T.); (E.V.G.)
- Novosibirsk State University, 1, Pirogova str., 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Chondroitin sulfate synthase 1 enhances proliferation of glioblastoma by modulating PDGFRA stability. Oncogenesis 2020; 9:9. [PMID: 32019907 PMCID: PMC7000683 DOI: 10.1038/s41389-020-0197-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/13/2019] [Accepted: 01/16/2020] [Indexed: 11/13/2022] Open
Abstract
Chondroitin sulfate synthases, a family of enzyme involved in chondroitin sulfate (CS) polymerization, are dysregulated in various human malignancies, but their roles in glioma remain unclear. We performed database analysis and immunohistochemistry on human glioma tissue, to demonstrate that the expression of CHSY1 was frequently upregulated in glioma, and that it was associated with adverse clinicopathologic features, including high tumor grade and poor survival. Using a chondroitin sulfate-specific antibody, we showed that the expression of CHSY1 was significantly associated with CS formation in glioma tissue and cells. In addition, overexpression of CHSY1 in glioma cells enhanced cell viability and orthotopic tumor growth, whereas CHSY1 silencing suppressed malignant growth. Mechanistic investigations revealed that CHSY1 selectively regulates PDGFRA activation and PDGF-induced signaling in glioma cells by stabilizing PDGFRA protein levels. Inhibiting PDGFR activity with crenolanib decreased CHSY1-induced malignant characteristics of GL261 cells and prolonged survival in an orthotopic mouse model of glioma, which underlines the critical role of PDGFRA in mediating the effects of CHSY1. Taken together, these results provide information on CHSY1 expression and its role in glioma progression, and highlight novel insights into the significance of CHSY1 in PDGFRA signaling. Thus, our findings point to new molecular targets for glioma treatment.
Collapse
|
19
|
Elgundi Z, Papanicolaou M, Major G, Cox TR, Melrose J, Whitelock JM, Farrugia BL. Cancer Metastasis: The Role of the Extracellular Matrix and the Heparan Sulfate Proteoglycan Perlecan. Front Oncol 2020; 9:1482. [PMID: 32010611 PMCID: PMC6978720 DOI: 10.3389/fonc.2019.01482] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer metastasis is the dissemination of tumor cells to new sites, resulting in the formation of secondary tumors. This process is complex and is spatially and temporally regulated by intrinsic and extrinsic factors. One important extrinsic factor is the extracellular matrix, the non-cellular component of tissues. Heparan sulfate proteoglycans (HSPGs) are constituents of the extracellular matrix, and through their heparan sulfate chains and protein core, modulate multiple events that occur during the metastatic cascade. This review will provide an overview of the role of the extracellular matrix in the events that occur during cancer metastasis, primarily focusing on perlecan. Perlecan, a basement membrane HSPG is a key component of the vascular extracellular matrix and is commonly associated with events that occur during the metastatic cascade. Its contradictory role in these events will be discussed and we will highlight the recent advances in cancer therapies that target HSPGs and their modifying enzymes.
Collapse
Affiliation(s)
- Zehra Elgundi
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Gretel Major
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, UNSW Sydney, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - James Melrose
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - John M Whitelock
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke L Farrugia
- Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, Australia.,Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Chondroitin sulfate content and decorin expression in glioblastoma are associated with proliferative activity of glioma cells and disease prognosis. Cell Tissue Res 2019; 379:147-155. [PMID: 31773303 DOI: 10.1007/s00441-019-03127-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are important components of brain extracellular matrix (ECM), although their contribution in gliomagenesis remains underinvestigated. Here, both chondroitin sulfate (CS) content/distribution and expression of a number of CSPG core proteins were studied in glioblastoma multiforme (GBM) tumours with different prognosis (n = 40) using immunohistochemistry and RT-PCR analysis. Survival rates for clinically different patient groups were compared using the Kaplan-Meier analysis and univariate Cox model. CS content was increased in 60-65% of studied GBM tumours and distributed heterogeneously, mainly at perinecrotic and perivascular zones rather than tumour cells with specific morphology. CS accumulation, especially in the tumour extracellular matrix, was positively associated with the proliferative activity of GBM cells according to theKi67 index (p < 0.01) but revealed no significant association with age or sex of the patients, tumour localisation, relapse or disease outcome. The increase in CS content in GBM tumours was accompanied by upregulation of decorin (1.5-fold), biglycan (3-fold) and serglycin (2-fold) expression (p < 0.05), while only decorin expression level was negatively associated with the overall survival rate of the GBM patients (p < 0.05). These results demonstrate a contribution of CS to high intratumoural heterogeneity of GBM and suggest CS content and decorin expression for further investigation as potential microenvironmental glycomarkers/targets for GBM diagnostics and treatment.
Collapse
|
21
|
Cammarata FP, Torrisi F, Forte GI, Minafra L, Bravatà V, Pisciotta P, Savoca G, Calvaruso M, Petringa G, Cirrone GAP, Fallacara AL, Maccari L, Botta M, Schenone S, Parenti R, Cuttone G, Russo G. Proton Therapy and Src Family Kinase Inhibitor Combined Treatments on U87 Human Glioblastoma Multiforme Cell Line. Int J Mol Sci 2019; 20:E4745. [PMID: 31554327 PMCID: PMC6801826 DOI: 10.3390/ijms20194745] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma Multiforme (GBM) is the most common of malignant gliomas in adults with an exiguous life expectancy. Standard treatments are not curative and the resistance to both chemotherapy and conventional radiotherapy (RT) plans is the main cause of GBM care failures. Proton therapy (PT) shows a ballistic precision and a higher dose conformity than conventional RT. In this study we investigated the radiosensitive effects of a new targeted compound, SRC inhibitor, named Si306, in combination with PT on the U87 glioblastoma cell line. Clonogenic survival assay, dose modifying factor calculation and linear-quadratic model were performed to evaluate radiosensitizing effects mediated by combination of the Si306 with PT. Gene expression profiling by microarray was also conducted after PT treatments alone or combined, to identify gene signatures as biomarkers of response to treatments. Our results indicate that the Si306 compound exhibits a radiosensitizing action on the U87 cells causing a synergic cytotoxic effect with PT. In addition, microarray data confirm the SRC role as the main Si306 target and highlights new genes modulated by the combined action of Si306 and PT. We suggest, the Si306 as a new candidate to treat GBM in combination with PT, overcoming resistance to conventional treatments.
Collapse
Affiliation(s)
- Francesco P Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Filippo Torrisi
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giusi I Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Pietro Pisciotta
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Departments of Physics and Astronomy, University of Catania, 95123 Catania, Italy.
| | - Gaetano Savoca
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
| | - Marco Calvaruso
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Giada Petringa
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giuseppe A P Cirrone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Anna L Fallacara
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Laura Maccari
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
| | - Maurizio Botta
- Lead Discovery Siena s.r.l. (LDS), 53100 Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, 53100 Siena, Italy.
| | - Silvia Schenone
- Department of Pharmacy, Università degli Studi di Genova, 16126 Genova, Italy.
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95123 Catania, Italy.
| | - Giacomo Cuttone
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, 90015 Cefalù, Italy.
- National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, 95123 Catania, Italy.
| |
Collapse
|
22
|
Discovery of HSPG2 (Perlecan) as a Therapeutic Target in Triple Negative Breast Cancer. Sci Rep 2019; 9:12492. [PMID: 31462656 PMCID: PMC6713791 DOI: 10.1038/s41598-019-48993-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
In recent years, there have been significant advances in the treatment of breast cancer resulting in remarkably high survival rates. However, treatment options for metastatic triple negative breast cancer (TNBC) are quite limited due to a lack of identifiable, unique markers. Using a phage display-based whole cell biopanning procedure, we developed two human antibodies that bind to tumor cells with a metastatic TNBC phenotype. Our studies further identified domain 1 of HSPG2 (perlecan) protein as the cognate cell surface antigen bound by the antibody. Immunohistochemistry studies utilizing patient tissue samples revealed significant cell surface expression of HSPG2 in both primary tumors and metastatic lesions. Further, higher HSPG2 expression correlated with poor survival in TNBC. The affinity-matured antibody inhibited the growth of triple negative MDA-MB-231 tumors to a greater extent in nude mice than in NSG mice, pointing to the potential role of natural killer cell-mediated antibody-dependent cell cytotoxicity. This mechanism of action was confirmed through in vitro assays using mouse splenocytes and human peripheral blood mononuclear cells (PBMCs). These results suggest that HSPG2 is a promising target in metastatic TNBC and HSPG2-targeted antibodies could represent a potentially novel class of targeted therapeutics for TNBC.
Collapse
|
23
|
De Pasquale V, Pavone LM. Heparan sulfate proteoglycans: The sweet side of development turns sour in mucopolysaccharidoses. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165539. [PMID: 31465828 DOI: 10.1016/j.bbadis.2019.165539] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) are complex carbohydrate-modified proteins ubiquitously expressed on cell surfaces, extracellular matrix and basement membrane of mammalian tissues. Beside to serve as structural constituents, they regulate multiple cellular activities. A critical involvement of HSPGs in development has been established, and perturbations of HSPG-dependent pathways are associated with many human diseases. Recent evidence suggest a role of HSPGs in the pathogenesis of mucopolysaccharidoses (MPSs) where the accumulation of undigested HS results in the loss of cellular functions, tissue damage and organ dysfunctions accounting for clinical manifestations which include central nervous system (CNS) involvement, degenerative joint disease and reduced bone growth. Current therapies are not curative but only ameliorate the disease symptoms. Here, we highlight the link between HSPG functions in the development of CNS and musculoskeletal structures and the etiology of some MPS phenotypes, suggesting that HSPGs may represent potential targets for the therapy of such incurable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, Medical School, University of Naples Federico II, Via S. Pansini n. 5, 80131 Naples, Italy.
| |
Collapse
|
24
|
Tsidulko AY, Bezier C, de La Bourdonnaye G, Suhovskih AV, Pankova TM, Kazanskaya GM, Aidagulova SV, Grigorieva EV. Conventional Anti-glioblastoma Chemotherapy Affects Proteoglycan Composition of Brain Extracellular Matrix in Rat Experimental Model in vivo. Front Pharmacol 2018; 9:1104. [PMID: 30333749 PMCID: PMC6176078 DOI: 10.3389/fphar.2018.01104] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
Temozolomide (TMZ) is a conventional chemotherapy drug for adjuvant treatment of glioblastoma multiforme (GBM), often accompanied by dexamethasone (DXM) to prevent brain oedema and alleviate clinical side effects. Here, we aimed to investigate an ability of the drugs to affect normal brain tissue in terms of proteoglycan (PG) composition/content in experimental rat model in vivo. Age- and brain zone-specific transcriptional patterns of PGs were demonstrated for 8, 60, and 120 days old rats, and syndecan-1, glypican-1, decorin, biglycan, and lumican were identified as the most expressed PGs. DXM treatment affected both PG core proteins expression (mainly syndecan-1, glypican-1, decorin, biglycan, lumican, versican, brevican, and NG2) and heparan sulphate (HS)/chondroitin sulphate (CS) content in organotypic brain slice culture ex vivo and experimental animals in vivo in a dose-dependent manner. TMZ treatment did not result in the significant changes in PG core proteins expression both in normal rat brain hippocampus and cortex in vivo (although generics did), but demonstrated significant effects onto polysaccharide HS/CS content in the brain tissue. The effects were age- and brain zone-specific and similar with the age-related PGs expression changes in rat brain. Combination of TMZ with DXM resulted in the most profound deterioration in PGs composition and content in the brain tissue both at core protein and glycosaminoglycan levels. Taken together, the obtained results demonstrate that conventional anti-glioblastoma therapy affects proteoglycan structure and composition in normal brain tissue, potentially resulting in deterioration of brain extracellular matrix and formation of the favourable tumorigenic niche for the expansion of the residual glioma cells. During the TMZ chemotherapy, dose and regimen of DXM treatment matter, and repetitive low DXM doses seem to be more sparing treatment compared with high DXM dose(s), which should be avoided where possible, especially in combination with TMZ.
Collapse
Affiliation(s)
| | - Cynthia Bezier
- Novosibirsk State University, Novosibirsk, Russia.,UPMC-Sorbonne Universities, Paris, France
| | - Gabin de La Bourdonnaye
- Novosibirsk State University, Novosibirsk, Russia.,Institut National des Sciences Appliquées de Toulouse, Toulouse, France
| | - Anastasia V Suhovskih
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | | | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Meshalkin Novosibirsk State Research Institute of Circulation Pathology, Novosibirsk, Russia
| | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|