1
|
Atiakshin D, Kostin A, Alekhnovich A, Volodkin A, Ignatyuk M, Klabukov I, Baranovskii D, Buchwalow I, Tiemann M, Artemieva M, Medvedeva N, LeBaron TW, Noda M, Medvedev O. The Role of Mast Cells in the Remodeling Effects of Molecular Hydrogen on the Lung Local Tissue Microenvironment under Simulated Pulmonary Hypertension. Int J Mol Sci 2024; 25:11010. [PMID: 39456794 PMCID: PMC11507233 DOI: 10.3390/ijms252011010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Molecular hydrogen (H2) has antioxidant, anti-inflammatory, and anti-fibrotic effects. In a rat model simulating pulmonary fibrotic changes induced by monocrotaline-induced pulmonary hypertension (MPH), we had previously explored the impact of inhaled H2 on lung inflammation and blood pressure. In this study, we further focused the biological effects of H2 on mast cells (MCs) and the parameters of the fibrotic phenotype of the local tissue microenvironment. MPH resulted in a significantly increased number of MCs in both the pneumatic and respiratory parts of the lungs, an increased number of tryptase-positive MCs with increased expression of TGF-β, activated interaction with immunocompetent cells (macrophages and plasma cells) and fibroblasts, and increased MC colocalization with a fibrous component of the extracellular matrix of connective tissue. The alteration in the properties of the MC population occurred together with intensified collagen fibrillogenesis and an increase in the integral volume of collagen and elastic fibers of the extracellular matrix of the pulmonary connective tissue. The exposure of H2 together with monocrotaline (MCT), despite individual differences between animals, tended to decrease the intrapulmonary MC population and the severity of the fibrotic phenotype of the local tissue microenvironment compared to changes in animals exposed to the MCT effect alone. In addition, the activity of collagen fibrillogenesis associated with MCs and the expression of TGF-β and tryptase in MCs decreased, accompanied by a reduction in the absolute and relative content of reticular and elastic fibers in the lung stroma. Thus, with MCT exposure, inhaled H2 has antifibrotic effects involving MCs in the lungs of rats. This reveals the unknown development mechanisms of the biological effects of H2 on the remodeling features of the extracellular matrix under inflammatory background conditions of the tissue microenvironment.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Alexander Alekhnovich
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Artem Volodkin
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Michael Ignatyuk
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
| | - Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia (D.B.)
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva st. 4, 249036 Obninsk, Russia (D.B.)
| | - Igor Buchwalow
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany;
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany;
| | - Marina Artemieva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (M.A.); (N.M.)
| | - Nataliya Medvedeva
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; (M.A.); (N.M.)
| | - Tyler W. LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA;
- Molecular Hydrogen Institute, Cedar City, UT 84720, USA
| | - Mami Noda
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Oleg Medvedev
- RUDN University, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (A.K.); (A.A.); (A.V.); (M.I.); (I.B.); (M.N.); (O.M.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Prospect 27-1, 119991 Moscow, Russia
| |
Collapse
|
2
|
Yasir M, Park J, Han ET, Park WS, Han JH, Chun W. Identification of Potential Tryptase Inhibitors from FDA-Approved Drugs Using Machine Learning, Molecular Docking, and Experimental Validation. ACS OMEGA 2024; 9:38820-38831. [PMID: 39310179 PMCID: PMC11411685 DOI: 10.1021/acsomega.4c04886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
This study explores the innovative use of machine learning (ML) to identify novel tryptase inhibitors from a library of FDA-approved drugs, with subsequent confirmation via molecular docking and experimental validation. Tryptase, a significant mediator in inflammatory and allergic responses, presents a therapeutic target for various inflammatory diseases. However, the development of effective tryptase inhibitors has been challenging due to the enzyme's complex activation and regulation mechanisms. Utilizing a machine learning model, we screened an extensive FDA-approved drug library to identify potential tryptase inhibitors. The predicted compounds were then subjected to molecular docking to assess their binding affinity and conformation within the tryptase active site. Experimental validation was performed using RBL-2H3 cells, a rat basophilic leukemia cell line, where the efficacy of these compounds was evaluated based on their ability to inhibit tryptase activity and suppress β-hexosaminidase activity and histamine release. Our results demonstrated that several FDA-approved drugs, including landiolol, laninamivir, and cidofovir, significantly inhibited tryptase activity. Their efficacy was comparable to that of the FDA-approved mast cell stabilizer nedocromil and the investigational agent APC-366. These findings not only underscore the potential of ML in accelerating drug repurposing but also highlight the feasibility of this approach in identifying effective tryptase inhibitors. This research contributes to the field of drug discovery, offering a novel pathway to expedite the development of therapeutics for tryptase-related pathologies.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department
of Pharmacology, Kangwon National University
School of Medicine, Chuncheon, 24341, Republic
of Korea
| | - Jinyoung Park
- Department
of Pharmacology, Kangwon National University
School of Medicine, Chuncheon, 24341, Republic
of Korea
| | - Eun-Taek Han
- Department
of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea
| | - Won Sun Park
- Department
of Physiology, Kangwon National University
School of Medicine, Chuncheon, 24341, Republic
of Korea
| | - Jin-Hee Han
- Department
of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Republic of Korea
| | - Wanjoo Chun
- Department
of Pharmacology, Kangwon National University
School of Medicine, Chuncheon, 24341, Republic
of Korea
| |
Collapse
|
3
|
Poto R, Cristinziano L, Criscuolo G, Strisciuglio C, Palestra F, Lagnese G, Di Salvatore A, Marone G, Spadaro G, Loffredo S, Varricchi G. The JAK1/JAK2 inhibitor ruxolitinib inhibits mediator release from human basophils and mast cells. Front Immunol 2024; 15:1443704. [PMID: 39188724 PMCID: PMC11345246 DOI: 10.3389/fimmu.2024.1443704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Introduction The Janus kinase (JAK) family includes four cytoplasmic tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) constitutively bound to several cytokine receptors. JAKs phosphorylate downstream signal transducers and activators of transcription (STAT). JAK-STAT5 pathways play a critical role in basophil and mast cell activation. Previous studies have demonstrated that inhibitors of JAK-STAT pathway blocked the activation of mast cells and basophils. Methods In this study, we investigated the in vitro effects of ruxolitinib, a JAK1/2 inhibitor, on IgE- and IL-3-mediated release of mediators from human basophils, as well as substance P-induced mediator release from skin mast cells (HSMCs). Results Ruxolitinib concentration-dependently inhibited IgE-mediated release of preformed (histamine) and de novo synthesized mediators (leukotriene C4) from human basophils. Ruxolitinib also inhibited anti-IgE- and IL-3-mediated cytokine (IL-4 and IL-13) release from basophils, as well as the secretion of preformed mediators (histamine, tryptase, and chymase) from substance P-activated HSMCs. Discussion These results indicate that ruxolitinib, inhibiting the release of several mediators from human basophils and mast cells, is a potential candidate for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità (ISS), Rome, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Leonardo Cristinziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialistic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesco Palestra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Antonio Di Salvatore
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
4
|
Atiakshin D, Morozov S, Dlin V, Kostin A, Volodkin A, Ignatyuk M, Kuzovleva G, Baiko S, Chekmareva I, Chesnokova S, Elieh-Ali-Komi D, Buchwalow I, Tiemann M. Renal Mast Cell-Specific Proteases in the Pathogenesis of Tubulointerstitial Fibrosis. J Histochem Cytochem 2024; 72:495-515. [PMID: 39263893 PMCID: PMC11529666 DOI: 10.1369/00221554241274878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 09/13/2024] Open
Abstract
Chronic kidney disease is detected in 8-15% of the world's population. Along with fibrotic changes, it can lead to a complete loss of organ function. Therefore, a better understanding of the onset of the pathological process is required. To address this issue, we examined the interaction between mast cells (MCs) and cells in fibrous and intact regions, focusing on the role of MC proteases such as tryptase, chymase, and carboxypeptidase A3 (CPA3). MCs appear to be involved in the development of inflammatory and fibrotic changes through the targeted secretion of tryptase, chymase, and CPA3 to the vascular endothelium, nephron epithelium, interstitial cells, and components of intercellular substances. Protease-based phenotyping of renal MCs showed that tryptase-positive MCs were the most common phenotype at all anatomic sites. The infiltration of MC in different anatomic sites of the kidney with an associated release of protease content was accompanied by a loss of contact between the epithelium and the basement membrane, indicating the active participation of MCs in the formation and development of fibrogenic niches in the kidney. These findings may contribute to the development of novel strategies for the treatment of tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, Moscow, Russian Federation
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| | - Sergey Morozov
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | - Vladimir Dlin
- Veltischev Research and Clinical Institute for Pediatrics and Pediatric Surgery of the Pirogov Russian National Research Medical University of the Russian Ministry of Health, Moscow, Russian Federation
| | | | | | | | - Galina Kuzovleva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Baiko
- Belarusian State Medical University, Minsk, Belarus
| | | | | | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology, Berlin, Germany
| | - Igor Buchwalow
- RUDN University, Moscow, Russian Federation
- Institute for Hematopathology, Hamburg, Germany
| | | |
Collapse
|
5
|
Ren G, Zhong R, Zou G, Du H, Zhang Y. Presence and significance of telocytes in cholelithiasis and biliary dilatation in benign biliary disorders. Sci Rep 2024; 14:14904. [PMID: 38942924 PMCID: PMC11213881 DOI: 10.1038/s41598-024-65776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Telocytes are closely associated with the regulation of tissue smooth muscle dynamics in digestive system disorders. They are widely distributed in the biliary system and exert their influence on biliary motility through mechanisms such as the regulation of CCK and their electrophysiological effects on smooth muscle cells. To investigate the relationship between telocytes and benign biliary diseases,such as gallbladder stone disease and biliary dilation syndrome, we conducted histopathological analysis on tissues affected by these conditions. Additionally, we performed immunohistochemistry and immunofluorescence double staining experiments for telocytes. The results indicate that the quantity of telocytes in the gallbladder and bile duct is significantly lower in pathological conditions compared to the control group. This reveals a close association between the decrease in telocyte quantity and impaired gallbladder motility and biliary fibrosis. Furthermore, further investigations have shown a correlation between telocytes in cholesterol gallstones and cholecystokinin-A receptor (CCK-AR), suggesting that elevated cholesterol levels may impair telocytes, leading to a reduction in the quantity of CCK-AR and ultimately resulting in impaired gallbladder motility.Therefore, we hypothesize that telocytes may play a crucial role in maintaining biliary homeostasis, and their deficiency may be associated with the development of benign biliary diseases, including gallstone disease and biliary dilation.
Collapse
Affiliation(s)
- Gongqing Ren
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Ruizi Zhong
- The Second Clinical Medical College, Jinan University, Shenzhen, China
| | - Gang Zou
- Department of Burns and Plastic Surgery, Shenzhen People's Hospital, Shenzhen, China
| | - Hongling Du
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Yue Zhang
- Department of Hepatobiliary Pancreatic Surgery, Shenzhen People's Hospital, No.1017 Dongmen North Road, Shenzhen, 518020, Guangdong Province, China.
| |
Collapse
|
6
|
Chekmaryova I, Kalinin D, Kostin A, Buchwalow I, Tiemann M, Elieh-Ali-Komi D, Atiakshin D. Ultrastructural features of tumor-associated mast cells in parasympathetic paragangliomas (chemodectomas) of the neck. Microsc Res Tech 2024; 87:1373-1383. [PMID: 38380731 DOI: 10.1002/jemt.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms of the pathogenesis of neck paraganglioma (PGL) and the possible role of mast cells (MCs) in its development and metastasis are still poorly understood. We analyzed MCs' morphologic characterization, activation, and the properties of their cytoplasmic/released granules in PGLs, using light and transmission electron microscopy. Paragangliomas showed a large tumor-associated MC population both in the connective tissue layers of the tumor and between the tumor cells. Notably, MCs were presented by a high expression of specific proteases, size variation, polymorphism, and variable ultrastructural phenotype of granules. A massive number of granules were released surrounding the degranulated MCs while the integrity of MC membrane was maintained. Granules were electron-dense with or without a membrane, ranging from 0.2 to 0.8 μm in diameter. MC plasmalemma was not found at the site of MC-collagen fibrils contact, whereas the secretome and fibrils were directly contacted. We observed direct and mediator-based interactions between MCs and paraganglioma cells. The latter preserved their membrane integrity when MC granules were not in proximity. The effects of the MC secretome on the paraganglioma microenvironment demonstrated its pathogenetic role in tumor progression and allow its application to new diagnostic criteria and the development of protocols for personalized therapy. RESEARCH HIGHLIGHTS: Ultrastructural analysis reveals novel regulatory effects of mast cells via diverse secretory pathways on the pathogenesis of parasympathetic paraganglioma, including fibrous extracellular matrix remodeling and mediator-based interactions between MCs and cells of the tumor microenvironment.
Collapse
Affiliation(s)
- Irina Chekmaryova
- Federal State Budgetary Institution "National Medical Research Center of Surgery named after A. Vishnevsky", Ministry of Health of the Russian Federation, Moscow, Russia
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Dmitry Kalinin
- Federal State Budgetary Institution "National Medical Research Center of Surgery named after A. Vishnevsky", Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
- Institute for Hematopathology, Hamburg, Germany
| | | | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia, Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Voronezh, Russia
| |
Collapse
|
7
|
Obeagu EI. Diagnostic and prognostic significance of mast cell markers in HIV/AIDS: Current insights and future directions. Medicine (Baltimore) 2024; 103:e38117. [PMID: 38758896 PMCID: PMC11098248 DOI: 10.1097/md.0000000000038117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to pose significant global health challenges, necessitating advancements in diagnostic and prognostic approaches to optimize disease management. While primarily recognized for their roles in allergic responses, mast cells have emerged as potential markers with diagnostic and prognostic significance in the context of HIV/AIDS. This paper aims to synthesize current insights and delineate future directions regarding the utility of mast cell markers in diagnosing HIV infection, predicting disease progression, and guiding therapeutic strategies. Mast cells, equipped with distinct markers such as tryptase, chymase, carboxypeptidase A3, and c-kit/CD117 receptors, exhibit tissue-specific expression patterns that offer potential as diagnostic indicators for HIV infection. Understanding the dynamics of these markers in different tissues and body fluids holds promise for accurate HIV diagnosis, disease staging, and monitoring treatment responses. Moreover, the prognostic significance of mast cell markers in HIV/AIDS lies in their potential to predict disease progression, immune dysregulation, and clinical outcomes. The integration of mast cell markers into clinical applications offers promising avenues for refining diagnostic assays, patient monitoring protocols, and therapeutic strategies in HIV/AIDS. Future research directions involve the development of novel diagnostic tools and targeted therapies based on mast cell-specific markers, potentially revolutionizing clinical practice and enhancing patient care in the management of HIV/AIDS. Continued investigations into mast cell markers' diagnostic and prognostic implications hold immense potential to advance our understanding and improve outcomes in HIV/AIDS management.
Collapse
|
8
|
Atiakshin D, Kulchenko N, Kostin A, Ignatyuk M, Protasov A, Klabukov I, Baranovskii D, Faniev M, Korovyakova E, Chekmareva I, Buchwalow I, Tiemann M. Cyto- and Histopographic Assessment of CPA3-Positive Testicular Mast Cells in Obstructive and Non-Obstructive Azoospermia. Cells 2024; 13:833. [PMID: 38786055 PMCID: PMC11120214 DOI: 10.3390/cells13100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Infertility is an important personal and society disease, of which the male factor represents half of all causes. One of the aspects less studied in male infertility is the immunological testicular microenvironment. Mast cells (MCs), having high potential for regulating spermatogenesis due to fine-tuning the state of the integrative buffer metabolic environment, are one of the most crucial cellular subpopulations of the testicular interstitium. One important component of the MC secretome is proteases that can act as proinflammatory agents and in extracellular matrix (ECM) remodeling. In the testis, MCs are an important cell component of the testicular interstitial tissue (TIT). However, there are still no studies addressing the analysis of a specific MC protease-carboxypeptidase A3 (CPA3)-in cases with altered spermatogenesis. The cytological and histotopographic features of testicular CPA3+ MCs were examined in a study involving 34 men with azoospermia. As revealed, in cases with non-obstructive azoospermia, a higher content of CPA3+ MCs in the TIT and migration to the microvasculature and peritubular tissue of seminiferous tubules were observed when compared with cases with obstructive azoospermia. Additionally, a high frequency of CPA3+ MCs colocalization with fibroblasts, Leydig cells, and elastic fibers was detected in cases with NOA. Thus, CPA3 seems to be of crucial pathogenetic significance in the formation of a profibrogenic background of the tissue microenvironment, which may have direct and indirect effects on spermatogenesis.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Nina Kulchenko
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Andrey Kostin
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Michael Ignatyuk
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Andrey Protasov
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia (D.B.)
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia (D.B.)
| | - Mikhail Faniev
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Elina Korovyakova
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Irina Chekmareva
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
| | - Igor Buchwalow
- RUDN University, 117198 Moscow, Russia; (N.K.); (A.K.); (M.I.); (A.P.); (M.F.); (E.K.); (I.C.); (I.B.)
- Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany;
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr, 75a, 22547 Hamburg, Germany;
| |
Collapse
|
9
|
Yoodee S, Rujitharanawong C, Sueksakit K, Tuchinda P, Kulthanan K, Thongboonkerd V. Comparative analyses of various IgE-mediated and non-IgE-mediated inducers of mast cell degranulation for in vitro study. Immunol Res 2024; 72:331-346. [PMID: 38001385 DOI: 10.1007/s12026-023-09438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
In vitro investigations of mast cell (MC) degranulation are essential for studying many diseases, particularly allergy and urticaria. Many MC-degranulation inducers are currently available. However, there is no previous systematic comparative analysis of these available inducers in term of their efficacies to induce MC degranulation. Herein, we performed systematic comparisons of efficacies of five well-known and commonly used MC-degranulation inducers. RBL-2H3 cells were sensitized with 50 ng/ml anti-DNP IgE or biotinylated IgE followed by stimulation with 100 ng/ml DNP-BSA or streptavidin, respectively. For non-IgE-mediated inducers, the cells were treated with 5 µg/ml substance P, compound 48/80, or A23187. At 15-, 30-, 45- and 60-min post-induction, several common MC-degranulation markers (including intracellular [Ca2+], β-hexosaminidase release, tryptase expression by immunofluorescence staining, cellular tryptase level by immunoblotting, secretory tryptase level by immunoblotting, CD63 expression by immunofluorescence staining, and CD63 expression by flow cytometry) were evaluated. The data showed that all these markers significantly increased after activation by all inducers. Among them, A23187 provided the greatest degrees of increases in intracellular [Ca2+] and β-hexosaminidase release at all time-points and upregulation of CD63 at one time-point. These data indicate that all these IgE-mediated (anti-DNP IgE/DNP-BSA and biotinylated IgE/streptavidin) and non-IgE-mediated (substance P, compound 48/80, and A23187) inducers effectively induce MC degranulation, while A23187 seems to be the most effective inducer for MC degranulation.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Chuda Rujitharanawong
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand
| | - Papapit Tuchinda
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanokvalai Kulthanan
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor - SiMR Building, 2 Wanglang Road, Bangkoknoi, 10700, Bangkok, Thailand.
| |
Collapse
|
10
|
Shishkina V, Kostin A, Alexeeva N, Klochkova S, Nikityuk D, Volodkin A, Buchwalow I, Tiemann M, Atiakshin D. Histoarchitecture of stromal collagen fibers in gastrointestinal hollow organs of mice after a 30-day space flight. Heliyon 2024; 10:e23287. [PMID: 38163118 PMCID: PMC10757000 DOI: 10.1016/j.heliyon.2023.e23287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
The digestive organs are highly sensitive to the influence of orbital flight factors and can limit the professional activities of crew members aboard the International Space Station. Connective tissue, as a system-forming matrix of the integrative-buffer metabolic environment, is of particular relevance in space biomedicine, ensuring the functioning of internal organs under an altered gravitational stimulus. However, the adaptive mechanisms of the fibrous extracellular matrix of the gastric and intestinal connective tissue have not been fully investigated under prolonged microgravity weightlessness. Using histochemical techniques, we experimentally studied the state of collagen fibers in the specific tissue microenvironment of the gastric and intestinal membranes in C57BL/6 N mice after a 30-day space flight, subsequent 7-day ground readaptation, and in animals of the relevant control groups. The 30-day stay of laboratory animals aboard the Bion-M 1 biosatellite resulted in a reduction in the fibrous extracellular matrix of connective tissue in the studied digestive organs, excepting the gastric lamina propria. Increased fibrillogenesis was revealed in the gastrointestinal mucous membranes of animals 7 days after biosatellite landing compared with the parameters of animals in the space flight group. During the experiment with ground simulated orbital flight conditions, changes in collagen fibers were not significant compared to the vivarium control group. Thus, the results obtained evidence gravisensitivity of the fibrous extracellular matrix of the intraorgan connective tissue. This fact also highlights the necessity to further improve gastrointestinal tract-related preventive measures for astronauts during orbital flight.
Collapse
Affiliation(s)
- Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Nataliya Alexeeva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - Dmitry Nikityuk
- Federal State Budgetary Institution "Federal Research Center for Nutrition, Biotechnology and Food Safety", 109240 Moscow, Russia
| | - Artem Volodkin
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Igor Buchwalow
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | | - Dmitrii Atiakshin
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
- RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| |
Collapse
|
11
|
Klabukov I, Atiakshin D, Kogan E, Ignatyuk M, Krasheninnikov M, Zharkov N, Yakimova A, Grinevich V, Pryanikov P, Parshin V, Sosin D, Kostin AA, Shegay P, Kaprin AD, Baranovskii D. Post-Implantation Inflammatory Responses to Xenogeneic Tissue-Engineered Cartilage Implanted in Rabbit Trachea: The Role of Cultured Chondrocytes in the Modification of Inflammation. Int J Mol Sci 2023; 24:16783. [PMID: 38069106 PMCID: PMC10706106 DOI: 10.3390/ijms242316783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells. The purpose of our work is to study the immunological features of tracheal repair during the implantation of tissue-engineered constructs based on human xenogeneic scaffolds modified via laser radiation in rabbits. The samples were stained with hematoxylin and Safranin O, and they were immunostained with antibodies against tryptase, collagen II, vimentin, and CD34. Immunological and inflammatory responses were studied by counting immune cells and evaluating blood vessels and collagen. Leukocyte-based inflammation prevailed during the implantation of decellularized unseeded scaffolds; meanwhile, plasma cells were significantly more abundant in tissue-engineered constructs. Mast cells were insignificantly more abundant in tissue-engineered construct samples. Conclusions: The seeding of decellularized xenogeneic cartilage with chondrocytes resulted in a change in immunological reactions upon implantation, and it was associated with plasma cell infiltration. Tissue-engineered grafts widely differed in design, including the type of used cells. The question of immunological response depending on the tissue-engineered graft composition requires further investigation.
Collapse
Affiliation(s)
- Ilya Klabukov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, 249031 Obninsk, Russia
| | - Dmitri Atiakshin
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Evgenia Kogan
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Michael Ignatyuk
- Scientific and Educational Resource Center for Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Mikhail Krasheninnikov
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Nickolay Zharkov
- Strukov Department of Pathological Anatomy, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anna Yakimova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Vyacheslav Grinevich
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Pavel Pryanikov
- Russian Child Clinical Hospital, Pirogov Russian National Research Medical University, 119571 Moscow, Russia
| | - Vladimir Parshin
- National Medical Research Center of Phthisiopulmonology and Infectious Diseases of the Ministry of Health of the Russian Federation, 127473 Moscow, Russia
| | - Dmitry Sosin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, 119121 Moscow, Russia
| | - Andrey A. Kostin
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
| | - Andrey D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva St. 4, 249036 Obninsk, Russia; (A.Y.)
- Department of Urology and Operative Nephrology, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- Department of Biomedicine, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
12
|
Atiakshin D, Kostin A, Shishkina V, Burtseva A, Buravleva A, Volodkin A, Elieh-Ali-Komi D, Buchwalow I, Tiemann M. Space-Flight- and Microgravity-Dependent Alteration of Mast Cell Population and Protease Expression in Digestive Organs of Mongolian Gerbils. Int J Mol Sci 2023; 24:13604. [PMID: 37686410 PMCID: PMC10488096 DOI: 10.3390/ijms241713604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Mast cell (MC)-specific proteases are of particular interest for space biology and medicine due to their biological activity in regulating targets of a specific tissue microenvironment. MC tryptase and chymase obtain the ability to remodel connective tissue through direct and indirect mechanisms. Yet, MC-specific protease expression under space flight conditions has not been adequately investigated. Using immunohistochemical stainings, we analyzed in this study the protease profile of the jejunal, gastric, and hepatic MC populations in three groups of Mongolian gerbils-vivarium control, synchronous experiment, and 12-day orbital flight on the Foton-M3 spacecraft-and in two groups-vivarium control and anti-orthostatic suspension-included in the experiment simulating effects of weightlessness in the ground-based conditions. After a space flight, there was a decreased number of MCs in the studied organs combined with an increased proportion of chymase-positive MCs and MCs with a simultaneous content of tryptase and chymase; the secretion of specific proteases into the extracellular matrix increased. These changes in the expression of proteases were observed both in the mucosal and connective tissue MC subpopulations of the stomach and jejunum. Notably, the relative content of tryptase-positive MCs in the studied organs of the digestive system decreased. Space flight conditions simulated in the synchronous experiment caused no similar significant changes in the protease profile of MC populations. The space flight conditions resulted in an increased chymase expression combined with a decreased total number of protease-positive MCs, apparently due to participating in the processes of extracellular matrix remodeling and regulating the state of the cardiovascular system.
Collapse
Affiliation(s)
- Dmitrii Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Alexandra Burtseva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Anastasia Buravleva
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia; (V.S.); (A.B.); (A.B.)
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, 12203 Berlin, Germany
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultra-structural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St, 117198 Moscow, Russia; (D.A.); (A.K.); (A.V.)
- Institute for Hematopathology, 22547 Hamburg, Germany;
| | | |
Collapse
|
13
|
Atiakshin D, Kostin A, Volodkin A, Nazarova A, Shishkina V, Esaulenko D, Buchwalow I, Tiemann M, Noda M. Mast Cells as a Potential Target of Molecular Hydrogen in Regulating the Local Tissue Microenvironment. Pharmaceuticals (Basel) 2023; 16:817. [PMID: 37375765 DOI: 10.3390/ph16060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Knowledge of the biological effects of molecular hydrogen (H2), hydrogen gas, is constantly advancing, giving a reason for the optimism in several healthcare practitioners regarding the management of multiple diseases, including socially significant ones (malignant neoplasms, diabetes mellitus, viral hepatitis, mental and behavioral disorders). However, mechanisms underlying the biological effects of H2 are still being actively debated. In this review, we focus on mast cells as a potential target for H2 at the specific tissue microenvironment level. H2 regulates the processing of pro-inflammatory components of the mast cell secretome and their entry into the extracellular matrix; this can significantly affect the capacity of the integrated-buffer metabolism and the structure of the immune landscape of the local tissue microenvironment. The analysis performed highlights several potential mechanisms for developing the biological effects of H2 and offers great opportunities for translating the obtained findings into clinical practice.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Artem Volodkin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Anna Nazarova
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
| | - Viktoriya Shishkina
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Dmitry Esaulenko
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples' Friendship University of Russia Named after Patrice Lumumba, 117198 Moscow, Russia
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 816-0811, Japan
| |
Collapse
|
14
|
Atiakshin D, Patsap O, Kostin A, Mikhalyova L, Buchwalow I, Tiemann M. Mast Cell Tryptase and Carboxypeptidase A3 in the Formation of Ovarian Endometrioid Cysts. Int J Mol Sci 2023; 24:ijms24076498. [PMID: 37047472 PMCID: PMC10095096 DOI: 10.3390/ijms24076498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The mechanisms of ovarian endometrioid cyst formation, or cystic ovarian endometriosis, still remain to be elucidated. To address this issue, we analyzed the involvement of mast cell (MC) tryptase and carboxypeptidase A3 (CPA3) in the development of endometriomas. It was found that the formation of endometrioid cysts was accompanied by an increased MC population in the ovarian medulla, as well as by an MC appearance in the cortical substance. The formation of MC subpopulations was associated with endometrioma wall structures. An active, targeted secretion of tryptase and CPA3 to the epithelium of endometrioid cysts, immunocompetent cells, and the cells of the cytogenic ovarian stroma was detected. The identification of specific proteases in the cell nuclei of the ovarian local tissue microenvironment suggests new mechanisms for the regulatory effects of MCs. The cytoplasmic outgrowths of MCs propagate in the structures of the stroma over a considerable distance; they offer new potentials for MC effects on the structures of the ovarian-specific tissue microenvironment under pathological conditions. Our findings indicate the potential roles of MC tryptase and CPA3 in the development of ovarian endometriomas and infer new perspectives on their uses as pharmacological targets in personalized medicine.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | - Olga Patsap
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Andrey Kostin
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | | | - Igor Buchwalow
- Research and Educational Resource Centre for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
- Institute for Hematopathology, 22547 Hamburg, Germany
| | | |
Collapse
|
15
|
Krishnan SN, Thanasupawat T, Arreza L, Wong GW, Sfanos K, Trock B, Arock M, Shah GG, Glogowska A, Ghavami S, Hombach-Klonisch S, Klonisch T. Human C1q Tumor Necrosis Factor 8 (CTRP8) defines a novel tryptase+ mast cell subpopulation in the prostate cancer microenvironment. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166681. [PMID: 36921737 DOI: 10.1016/j.bbadis.2023.166681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.
Collapse
Affiliation(s)
- Sai Nivedita Krishnan
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Thatchawan Thanasupawat
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Leanne Arreza
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - G William Wong
- Dept. of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Dept. of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bruce Trock
- Dept. of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Arock
- Laboratoire d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Paris, France
| | - G Girish Shah
- Dept. of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, CHU de Quebec-Laval, Quebec, Canada
| | - Aleksandra Glogowska
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada
| | - Saeid Ghavami
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sabine Hombach-Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| | - Thomas Klonisch
- Dept. of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Dept. of Pathology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada; Research Institute of Cancer and Hematology, CancerCare Manitoba, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada; Dept. of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Canada.
| |
Collapse
|
16
|
Gelardi M, Giancaspro R, Cassano M, Ribatti D. Nasal cytology and histology in CRSwNP: Two sides of the same coin. Front Med (Lausanne) 2023; 10:1143351. [PMID: 36968832 PMCID: PMC10033757 DOI: 10.3389/fmed.2023.1143351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Knowledge of chronic rhinosinusitis with nasal polyps (CRSwNP) has increased rapidly over the past decade. However, the study of the histological features of nasal polyps has not gone hand in hand with the study of the inflammatory mechanisms underlying CRSwNP. Indeed, precisely because they are benign neoformations, nasal polyps have not attracted the attention of pathologists over the years. Nasal cytology has shown that CRSwNP, generally defined as a Type-2 disease, is characterized not only by eosinophilic but also mast cell inflammation and, in particular, the most severe forms of CRSwNP are precisely characterized by a mixed eosinophilic-mast cell inflammation. Interestingly, mast cells cannot be visualized by histology due to limitations in staining and magnification, and therefore are not commonly described in histological reports of nasal polyps. However, immunohistochemistry can highlight these latter cells and specifically this technique has recently demonstrated that mast cells are located in the lamina propria of almost all types of polyps and in the epithelial level of the most severe forms. Unfortunately, the latter technique is not commonly carried out in clinical practice by virtue of the high cost and time burden. On the other hand, nasal cytology is an easy-to-apply and economic diagnostic tool, commonly practiced in rhinological setting, which can effectively fill the gap between histology and immunohistochemistry, allowing to non-invasively establish the endotype of nasal polyps and to highlight all cytotypes, including mast cells, that cannot be visualized by the other two techniques. The recent demonstration of the close correlation between mast cell intraepithelial infiltrate and CRSwNP severity paves the way for new therapeutic possibilities aimed at reducing not only eosinophilic infiltration but also mast cell infiltration.
Collapse
Affiliation(s)
- Matteo Gelardi
- Department of Clinical and Experimental Medicine, Unit of Otolaryngology, University Hospital of Foggia, Foggia, Italy
| | - Rossana Giancaspro
- Department of Clinical and Experimental Medicine, Unit of Otolaryngology, University Hospital of Foggia, Foggia, Italy
- *Correspondence: Rossana Giancaspro
| | - Michele Cassano
- Department of Clinical and Experimental Medicine, Unit of Otolaryngology, University Hospital of Foggia, Foggia, Italy
| | - Domenico Ribatti
- Department of Translational Biomedicine and Neurosciences, University of Bari Medical School, Bari, Italy
| |
Collapse
|
17
|
Mast Cells in Regeneration of the Skin in Burn Wound with Special Emphasis on Molecular Hydrogen Effect. Pharmaceuticals (Basel) 2023; 16:ph16030348. [PMID: 36986447 PMCID: PMC10059032 DOI: 10.3390/ph16030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The mechanisms of regeneration for the fibrous component of the connective tissue of the dermis are still insufficiently studied. The aim of this study was to evaluate the effectiveness of the use of molecular hydrogen on the local therapy of a II degree burn wound with the intensification of collagen fibrillogenesis in the skin. We analyzed the involvement of mast cells (MCs) in the regeneration of the collagen fibers of the connective tissue using water with a high content of molecular hydrogen and in a therapeutic ointment for the cell wounds. Thermal burns led to an increase in the skin MC population, accompanied by a systemic rearrangement of the extracellular matrix. The use of molecular hydrogen for the treatment of burn wounds stimulated the regeneration processes by activating the formation of the fibrous component of the dermis, accelerating wound healing. Thus, the intensification of collagen fibrillogenesis was comparable to the effects of a therapeutic ointment. The remodeling of the extracellular matrix correlated with a decrease in the area of damaged skin. Skin regeneration induced by the activation of the secretory activity of MCs may be one of the possible points of implementation of the biological effects of molecular hydrogen in the treatment of burn wounds. Thus, the positive effects of molecular hydrogen on skin repair can be used in clinical practice to increase the effectiveness of therapy after thermal exposure.
Collapse
|
18
|
Toti A, Micheli L, Lucarini E, Ferrara V, Ciampi C, Margiotta F, Failli P, Gomiero C, Pallecchi M, Bartolucci G, Ghelardini C, Di Cesare Mannelli L. Ultramicronized N-Palmitoylethanolamine Regulates Mast Cell-Astrocyte Crosstalk: A New Potential Mechanism Underlying the Inhibition of Morphine Tolerance. Biomolecules 2023; 13:233. [PMID: 36830602 PMCID: PMC9953591 DOI: 10.3390/biom13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Persistent pain can be managed with opioids, but their use is limited by the onset of tolerance. Ultramicronized N-palmitoylethanolamine (PEA) in vivo delays morphine tolerance with mechanisms that are still unclear. Since glial cells are involved in opioid tolerance and mast cells (MCs) are pivotal targets of PEA, we hypothesized that a potential mechanism by which PEA delays opioid tolerance might depend on the control of the crosstalk between these cells. Morphine treatment (30 μM, 30 min) significantly increased MC degranulation of RBL-2H3 cells, which was prevented by pre-treatment with PEA (100 μM, 18 h), as evaluated by β-hexosaminidase assay and histamine quantification. The impact of RBL-2H3 secretome on glial cells was studied. Six-hour incubation of astrocytes with control RBL-2H3-conditioned medium, and even more so co-incubation with morphine, enhanced CCL2, IL-1β, IL-6, Serpina3n, EAAT2 and GFAP mRNA levels. The response was significantly prevented by the secretome from PEA pre-treated RBL-2H3, except for GFAP, which was further upregulated, suggesting a selective modulation of glial signaling. In conclusion, ultramicronized PEA down-modulated both morphine-induced MC degranulation and the expression of inflammatory and pain-related genes from astrocytes challenged with RBL-2H3 medium, suggesting that PEA may delay morphine tolerance, regulating MC-astrocyte crosstalk.
Collapse
Affiliation(s)
- Alessandra Toti
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Elena Lucarini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Valentina Ferrara
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Clara Ciampi
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Francesco Margiotta
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Paola Failli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Chiara Gomiero
- Epitech Group SpA, Via Luigi Einaudi 13, 35030 Padua, Italy
| | - Marco Pallecchi
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Gianluca Bartolucci
- Department of Chemistry, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—NEUROFARBA—Pharmacology and Toxicology Section, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| |
Collapse
|
19
|
Chloroacetate esterase reaction combined with immunohistochemical characterization of the specific tissue microenvironment of mast cells. Histochem Cell Biol 2023; 159:353-361. [PMID: 36598563 PMCID: PMC10081974 DOI: 10.1007/s00418-022-02174-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/05/2023]
Abstract
This study provides a combined histochemical method for detecting enzyme activity of chloroacetate esterase simultaneously with immunolabeling of the components of a specific tissue microenvironment on formalin-fixed, paraffin-embedded specimens. Chromogenic detection of the molecular targets within and outside the mast cells provides novel options in determining the histoarchitectonics of organ-specific mast cell populations, studying the functional significance of chloroacetate esterase and specifying the immune landscape of the tissue microenvironment.
Collapse
|
20
|
Mast Cells and Interleukins. Int J Mol Sci 2022; 23:ijms232214004. [PMID: 36430483 PMCID: PMC9697830 DOI: 10.3390/ijms232214004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mast cells play a critical role in inflammatory diseases and tumor growth. The versatility of mast cells is reflected in their ability to secrete a wide range of biologically active cytokines, including interleukins, chemokines, lipid mediators, proteases, and biogenic amines. The aim of this review article is to analyze the complex involvement of mast cells in the secretion of interleukins and the role of interleukins in the regulation of biological activities of mast cells.
Collapse
|
21
|
Wang Z, Hao M, Wu L, He Y, Sun X. Mast cells disrupt the duodenal mucosal integrity: Implications for the mechanisms of barrier dysfunction in functional dyspepsia. Scand J Gastroenterol 2022; 58:460-470. [PMID: 36345966 DOI: 10.1080/00365521.2022.2141075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Functional dyspepsia (FD) is a common functional gastrointestinal (GI) disorder, but its pathophysiology is poorly understood. Mast cells (MCs) may play a critical role in the development of FD. Therefore, the aim of this study was to investigate the effect of MCs on barrier function, tight junction (TJ) proteins and related signaling pathways. METHODS The expression of the TJ proteins claudin-8, ZO-1 and occludin in biopsy tissues from seven FD patients and five controls was assessed. Based on the in vivo results, we further investigated the effect of (1) MC degranulation in a coculture model of Caco-2/RBL-2H3 cells and tryptase in Caco-2 monolayers, (2) MC degranulation in the presence or absence of a PAR-2 antagonist and (3) MC degranulation in the presence or absence of an ERK1/2 signaling pathway inhibitor. The epithelial integrity of Caco-2 cell monolayers was assessed by measuring the transepithelial electrical resistance (TEER). The expression of TJ proteins was evaluated by western blotting, QT-PCR and immunostaining. RESULTS Epithelial claudin-8, ZO-1 and occludin protein expression were significantly reduced in tissues from FD patients compared with controls. MC degranulation and tryptase decreased the TEER and reduced the expression of TJ proteins in Caco-2 cell monolayers. A PAR-2 antagonist and an ERK1/2 signaling pathway inhibitor significantly reduced the effect of MC degranulation on the TEER and TJ protein expression in Caco-2 cell monolayers. CONCLUSIONS MCs disrupt duodenal barrier function by modulating the levels of TJ proteins, and the PAR-2 and ERK1/2 signaling pathways may mediate the pathogenesis of FD.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Menghao Hao
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Liping Wu
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China.,Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Yumei He
- North Sichuan Medical College, Nanchong, PR China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
22
|
The temperature-sensitive receptors TRPV4 and TRPM8 have important roles in the pruritus of rosacea. J Dermatol Sci 2022; 108:68-76. [PMID: 36517318 DOI: 10.1016/j.jdermsci.2022.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Certain sensations are the secondary phenotypes of rosacea and affect patients' quality of life. Transient receptor potential (TRP) channels may be involved in its occurrence. However, there is a lack of research independently discussing itch in rosacea. OBJECTIVES Our study aimed to investigate risk factors for pruritus in rosacea patients and to discover the molecular mechanism of pruritus. METHODS A binary logistic regression model was used to identify significant variables affecting pruritus in 782 rosacea patients. The LL-37 was injected intradermally into the face of mice to establish the animal model. qRT-PCR, immunohistochemistry and immunofluorescence were used to analyse the expression differences in pruritus-related molecules in mouse skin and the corresponding trigeminal ganglion (TG) between pruritus and nonpruritus groups. RESULTS The incidence of pruritus in rosacea was 42.46%, and the incidence of other symptoms increased with pruritus. Temperature effects were prominently related to the itch sensation of rosacea. Intradermal injection of LL-37 not only caused rosacea-like facial lesions but also induced a behavioural pattern indicative of pruritus. Increased expression of the temperature-sensitive receptors TRPV4 and TRPM8 was found in pruritic mouse skin and TG and human skin samples. CONCLUSIONS In rosacea patients, pruritus occurs frequently along with burning, flushing and sensitivity, most likely due to changes in temperature. The temperature-sensitive receptors TRPV4 and TRPM8 are both involved in the mechanism of pruritus in rosacea.
Collapse
|
23
|
Bonadonna P, Nalin F, Olivieri F. Hereditary alpha-tryptasemia. Curr Opin Allergy Clin Immunol 2022; 22:277-282. [PMID: 35942852 DOI: 10.1097/aci.0000000000000849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To discuss our evolving knowledge about the genetic variations in human tryptase and recent advances in associated clinical phenotypes. RECENT FINDINGS Hereditary alpha-tryptasemia (HAT) is an autosomal dominant genetic trait and a common cause of elevated basal serum tryptase (BST) in Western populations. It is a risk factor for severe anaphylaxis and an established modifier of mast cell mediator-associated symptoms among patients with systemic mastocytosis (SM). SUMMARY The unique properties of naturally occurring alpha/beta-tryptase heterotetramers may explain certain elements of phenotypes associated with HAT. Understanding the physiology of tryptases and how this may relate to the clinical features associated with HAT is the first step in identifying optimal medical management and targets for novel therapeutics.
Collapse
Affiliation(s)
- Patrizia Bonadonna
- Allergy Unit and Asthma Center, Verona University Hospital, Verona, Italy
| | | | | |
Collapse
|
24
|
Protease Profile of Tumor-Associated Mast Cells in Melanoma. Int J Mol Sci 2022; 23:ijms23168930. [PMID: 36012196 PMCID: PMC9408654 DOI: 10.3390/ijms23168930] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) produce a variety of mediators, including proteases—tryptase, chymase, and carboxypeptidases—which are important for the immune response. However, a detailed assessment of the mechanisms of biogenesis and excretion of proteases in melanoma has yet to be carried out. In this study, we present data on phenotype and secretory pathways of proteases in MCs in the course of melanoma. The development of melanoma was found to be accompanied by the appearance in the tumor-associated MC population of several pools with a predominant content of one or two specific proteases with a low content or complete absence of others. Elucidation of the molecular and morphological features of the expression of MC proteases in melanoma allows us a fresh perspective of the pathogenesis of the disease, and can be used to clarify MCs classification, the disease prognosis, and evaluate the effectiveness of ongoing antitumor therapy.
Collapse
|
25
|
Szukiewicz D, Wojdasiewicz P, Watroba M, Szewczyk G. Mast Cell Activation Syndrome in COVID-19 and Female Reproductive Function: Theoretical Background vs. Accumulating Clinical Evidence. J Immunol Res 2022; 2022:9534163. [PMID: 35785029 PMCID: PMC9242765 DOI: 10.1155/2022/9534163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a pandemic disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, can affect almost all systems and organs of the human body, including those responsible for reproductive function in women. The multisystem inflammatory response in COVID-19 shows many analogies with mast cell activation syndrome (MCAS), and MCAS may be an important component in the course of COVID-19. Of note, the female sex hormones estradiol (E2) and progesterone (P4) significantly influence mast cell (MC) behavior. This review presents the importance of MCs and the mediators from their granules in the female reproductive system, including pregnancy, and discusses the mechanism of potential disorders related to MCAS. Then, the available data on COVID-19 in the context of hormonal disorders, the course of endometriosis, female fertility, and the course of pregnancy were compiled to verify intuitively predicted threats. Surprisingly, although COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in MCAS, the available clinical data do not provide grounds for treating this mechanism as significantly increasing the risk of abnormal female reproductive function, including pregnancy. Further studies in the context of post COVID-19 condition (long COVID), where inflammation and a procoagulative state resemble many aspects of MCAS, are needed.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Wojdasiewicz
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Watroba
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Sciumè M, De Magistris C, Galli N, Ferretti E, Milesi G, De Roberto P, Fabris S, Grifoni FI. Target Therapies for Systemic Mastocytosis: An Update. Pharmaceuticals (Basel) 2022; 15:ph15060738. [PMID: 35745657 PMCID: PMC9229771 DOI: 10.3390/ph15060738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023] Open
Abstract
Systemic mastocytosis (SM) results from a clonal proliferation of abnormal mast cells (MCs) in extra-cutaneous organs. It could be divided into indolent SM, smoldering SM, SM with an associated hematologic (non-MC lineage) neoplasm, aggressive SM, and mast cell leukemia. SM is generally associated with the presence of a gain-of-function somatic mutation in KIT at codon 816. Clinical features could be related to MC mediator release or to uncontrolled infiltration of MCs in different organs. Whereas indolent forms have a near-normal life expectancy, advanced diseases have a poor prognosis with short survival times. Indolent forms should be considered for symptom-directed therapy, while cytoreductive therapy represents the first-line treatment for advanced diseases. Since the emergence of tyrosine kinase inhibitors (TKIs), KIT inhibition has been an attractive approach. Initial reports showed that only the rare KITD816V negative cases were responsive to first-line TKI imatinib. The development of new TKIs with activity against the KITD816V mutation, such as midostaurin or avapritinib, has changed the management of this disease. This review aims to focus on the available clinical data of therapies for SM and provide insights into possible future therapeutic targets.
Collapse
Affiliation(s)
- Mariarita Sciumè
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
- Correspondence: ; Tel.: +39-02-5503-3466
| | - Claudio De Magistris
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Nicole Galli
- Department of Oncology and Oncohaematology, Università degli Studi di Milano, 20122 Milan, Italy; (C.D.M.); (N.G.)
| | - Eleonora Ferretti
- Direzione Scientifica, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giulia Milesi
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Pasquale De Roberto
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| | - Federica Irene Grifoni
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.M.); (P.D.R.); (S.F.); (F.I.G.)
| |
Collapse
|
27
|
Connecting the Dots in Emerging Mast Cell Research: Do Factors Affecting Mast Cell Activation Provide a Missing Link between Adverse COVID-19 Outcomes and the Social Determinants of Health? Med Sci (Basel) 2022; 10:medsci10020029. [PMID: 35736349 PMCID: PMC9228930 DOI: 10.3390/medsci10020029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023] Open
Abstract
Evidence continues to emerge that the social determinants of health play a role in adverse outcomes related to COVID-19, including increased morbidity and mortality, increased risk of long COVID, and vaccine adverse effects. Therefore, a more nuanced understanding of the biochemical and cellular pathways of illnesses commonly associated with adverse social determinants of health is urgently needed. We contend that a commitment to understanding adverse outcomes in historically marginalized communities will increase community-level confidence in public health measures. Here, we synthesize emerging literature on mast cell disease, and the role of mast cells in chronic illness, alongside emerging research on mechanisms of COVID illness and vaccines. We propose that a focus on aberrant and/or hyperactive mast cell behavior associated with chronic underlying health conditions can elucidate adverse COVID-related outcomes and contribute to the pandemic recovery. Standards of care for mast cell activation syndrome (MCAS), as well as clinical reviews, experimental research, and case reports, suggest that effective and cost-efficient remedies are available, including antihistamines, vitamin C, and quercetin, among others. Primary care physicians, specialists, and public health workers should consider new and emerging evidence from the biomedical literature in tackling COVID-19. Specialists and researchers note that MCAS is likely grossly under-diagnosed; therefore, public health agencies and policy makers should urgently attend to community-based experiences of adverse COVID outcomes. It is essential that we extract and examine experiential evidence of marginalized communities from the broader political–ideological discourse.
Collapse
|
28
|
Chen Y, Sun W, Tang H, Li Y, Li C, Wang L, Chen J, Lin W, Li S, Fan Z, Cheng Y, Chen C. Interactions Between Immunomodulatory Biomaterials and Immune Microenvironment: Cues for Immunomodulation Strategies in Tissue Repair. Front Bioeng Biotechnol 2022; 10:820940. [PMID: 35646833 PMCID: PMC9140325 DOI: 10.3389/fbioe.2022.820940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The foreign body response (FBR) caused by biomaterials can essentially be understood as the interaction between the immune microenvironment and biomaterials, which has severely impeded the application of biomaterials in tissue repair. This concrete interaction occurs via cells and bioactive substances, such as proteins and nucleic acids. These cellular and molecular interactions provide important cues for determining which element to incorporate into immunomodulatory biomaterials (IMBs), and IMBs can thus be endowed with the ability to modulate the FBR and repair damaged tissue. In terms of cellular, IMBs are modified to modulate functions of immune cells, such as macrophages and mast cells. In terms of bioactive substances, proteins and nucleic acids are delivered to influence the immune microenvironment. Meanwhile, IMBs are designed with high affinity for spatial targets and the ability to self-adapt over time, which allows for more efficient and intelligent tissue repair. Hence, IMB may achieve the perfect functional integration in the host, representing a breakthrough in tissue repair and regeneration medicine.
Collapse
Affiliation(s)
- Yi Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weiyan Sun
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Hai Tang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yingze Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chen Li
- School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Long Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiafei Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Weikang Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shenghui Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Ziwen Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yu Cheng
- Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- The Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
29
|
Atiakshin D, Kostin A, Trotsenko I, Samoilova V, Buchwalow I, Tiemann M. Carboxypeptidase A3—A Key Component of the Protease Phenotype of Mast Cells. Cells 2022; 11:cells11030570. [PMID: 35159379 PMCID: PMC8834431 DOI: 10.3390/cells11030570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
Carboxypeptidase A3 (CPA3) is a specific mast cell (MC) protease with variable expression. This protease is one of the preformed components of the secretome. During maturation of granules, CPA3 becomes an active enzyme with a characteristic localization determining the features of the cytological and ultrastructural phenotype of MC. CPA3 takes part in the regulation of a specific tissue microenvironment, affecting the implementation of innate immunity, the mechanisms of angiogenesis, the processes of remodeling of the extracellular matrix, etc. Characterization of CPA3 expression in MC can be used to refine the MC classification, help in a prognosis, and increase the effectiveness of targeted therapy.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
- Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Studencheskaya Str. 10, 394036 Voronezh, Russia
| | - Andrey Kostin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
| | - Ivan Trotsenko
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
| | - Vera Samoilova
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany; (V.S.); (M.T.)
| | - Igor Buchwalow
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia; (D.A.); (A.K.); (I.T.)
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany; (V.S.); (M.T.)
- Correspondence: ; Tel.: +49-(040)-7070-85317; Fax: +49-(040)-7070-85110
| | - Markus Tiemann
- Institute for Hematopathology, Fangdieckstr. 75a, 22547 Hamburg, Germany; (V.S.); (M.T.)
| |
Collapse
|
30
|
Budnevsky AV, Avdeev SN, Kosanovic D, Shishkina VV, Filin AA, Esaulenko DI, Ovsyannikov ES, Samoylenko TV, Redkin AN, Suvorova OA, Perveeva IM. Role of mast cells in the pathogenesis of severe lung damage in COVID-19 patients. Respir Res 2022; 23:371. [PMID: 36544127 PMCID: PMC9769495 DOI: 10.1186/s12931-022-02284-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There is still insufficient knowledge with regard to the potential involvement of mast cells (MCs) and their mediators in the pathology of coronavirus disease-2019 (COVID-19). Therefore, our study aimed to investigate the role of MCs, their activation and protease profiles in the pathogenesis of early and late lung damage in COVID-19 patients. METHODS Formalin-fixed and paraffin embedded lung specimens from 30 patients who died from COVID-19 and 9 controls were used for histological detection of MCs and their proteases (tryptase, chymase) followed by morphometric quantification. RESULTS Our results demonstrated increased numbers of MCs at early stage and further augmentation of MCs number during the late stage of alveolar damage in COVID-19 patients, as compared to the control group. Importantly, the percentage of degranulated (activated) MCs was higher during both stages of alveolar lesions in comparison to the controls. While there was no prominent alteration in the profile of tryptase-positive MCs, our data revealed a significant elevation in the number of chymase-positive MCs in the lungs of COVID-19 patients, compared to the controls. CONCLUSIONS MCs are characterized by dysregulated accumulation and increased activation in the lungs of patients suffering from COVID-19. However, future profound studies are needed for precise analysis of the role of these immune cells in the context of novel coronavirus disease.
Collapse
Affiliation(s)
- Andrey V. Budnevsky
- grid.445088.50000 0004 0620 3837Department of Faculty Therapy, Burdenko Voronezh State Medical University, 10 Studencheskaya Str., Voronezh, Russia 394036
| | - Sergey N. Avdeev
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Djuro Kosanovic
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Victoria V. Shishkina
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Andrey A. Filin
- Budgetary Health Care Institution of the Voronezh Region “Voronezh Regional Pathoanatomical Bureau”, Moskovsky Prospect, 151, Voronezh, Russia 394036
| | - Dmitry I. Esaulenko
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Evgeniy S. Ovsyannikov
- grid.445088.50000 0004 0620 3837Department of Faculty Therapy, Burdenko Voronezh State Medical University, 10 Studencheskaya Str., Voronezh, Russia 394036
| | - Tatiana V. Samoylenko
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Alexander N. Redkin
- grid.445088.50000 0004 0620 3837Scientific Research Institute of Experimental Biology and Medicine, Burdenko Voronezh State Medical University, Moskovsky Prospect, 185, Voronezh, Russia 394036
| | - Olga A. Suvorova
- grid.448878.f0000 0001 2288 8774Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Healthcare Ministry of Russia, Trubetskaya Street 8, 119991 Moscow, Russia
| | - Inna M. Perveeva
- Department of Pulmonology, Voronezh Regional Clinical Hospital, № 1, Moskovsky Prospect, 151, Voronezh, Russia 394036
| |
Collapse
|
31
|
Jackson CW, Pratt CM, Rupprecht CP, Pattanaik D, Krishnaswamy G. Mastocytosis and Mast Cell Activation Disorders: Clearing the Air. Int J Mol Sci 2021; 22:ijms222011270. [PMID: 34681933 PMCID: PMC8540348 DOI: 10.3390/ijms222011270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mast cells are derived from hematopoietic stem cell precursors and are essential to the genesis and manifestations of the allergic response. Activation of these cells by allergens leads to degranulation and elaboration of inflammatory mediators, responsible for regulating the acute dramatic inflammatory response seen. Mast cells have also been incriminated in such diverse disorders as malignancy, arthritis, coronary artery disease, and osteoporosis. There has been a recent explosion in our understanding of the mast cell and the associated clinical conditions that affect this cell type. Some mast cell disorders are associated with specific genetic mutations (such as the D816V gain-of-function mutation) with resultant clonal disease. Such disorders include cutaneous mastocytosis, systemic mastocytosis (SM), its variants (indolent/ISM, smoldering/SSM, aggressive systemic mastocytosis/ASM) and clonal (or monoclonal) mast cell activation disorders or syndromes (CMCAS/MMAS). Besides clonal mast cell activations disorders/CMCAS (also referred to as monoclonal mast cell activation syndromes/MMAS), mast cell activation can also occur secondary to allergic, inflammatory, or paraneoplastic disease. Some disorders are idiopathic as their molecular pathogenesis and evolution are unclear. A genetic disorder, referred to as hereditary alpha-tryptasemia (HαT) has also been described recently. This condition has been shown to be associated with increased severity of allergic and anaphylactic reactions and may interact variably with primary and secondary mast cell disease, resulting in complex combined disorders. The role of this review is to clarify the classification of mast cell disorders, point to molecular aspects of mast cell signaling, elucidate underlying genetic defects, and provide approaches to targeted therapies that may benefit such patients.
Collapse
Affiliation(s)
- Clayton Webster Jackson
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | - Cristina Marie Pratt
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
| | | | - Debendra Pattanaik
- The Division of Allergy and Immunology, UT Memphis College of Medicine, Memphis, TN 38103, USA;
| | - Guha Krishnaswamy
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA; (C.W.J.); (C.M.P.)
- The Bill Hefner VA Medical Center, The Division of Allergy and Immunology, Salisbury, NC 28144, USA
- Correspondence: or
| |
Collapse
|
32
|
Do Mast Cells Contribute to the Antifungal Host Defense? Cells 2021; 10:cells10102510. [PMID: 34685489 PMCID: PMC8534142 DOI: 10.3390/cells10102510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The fungal kingdom includes a group of microorganisms that are widely distributed in the environment, and therefore the exposure to them is almost constant. Furthermore, fungal components of the microbiome, i.e., mycobiome, could serve as a reservoir of potentially opportunistic pathogens. Despite close encounters with fungi, defense mechanisms that develop during fungal infections remain unexplored. The strategic location of mast cells (MCs) close to the external environment places them among the first cells to encounter pathogens along with the other innate immune cells. MCs are directly involved in the host defense through the ability to destroy pathogens or indirectly by activating other immune cells. Most available data present MCs’ involvement in antibacterial, antiviral, or antiparasitic defense mechanisms. However, less is known about their contribution in defense mechanisms against fungi. MCs may support immune responses to fungi or their specific molecules through initiated degranulation, synthesis and release of cytokines, chemokines, mediators, and generation of reactive oxygen species (ROS), as well as immune cells’ recruitment, phagocytosis, or provision of extracellular DNA traps. This review summarizes current knowledge on host defense mechanisms against fungi and MCs’ involvement in those processes. It also describes the effects of fungi or fungus-derived constituents on MCs’ activity.
Collapse
|
33
|
Taatjes DJ, Roth J. In focus in HCB. Histochem Cell Biol 2021; 154:1-5. [PMID: 32601749 DOI: 10.1007/s00418-020-01893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| | - Jürgen Roth
- University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
34
|
Zhang Z, Kurashima Y. Two Sides of the Coin: Mast Cells as a Key Regulator of Allergy and Acute/Chronic Inflammation. Cells 2021; 10:cells10071615. [PMID: 34203383 PMCID: PMC8308013 DOI: 10.3390/cells10071615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
It is well known that mast cells (MCs) initiate type I allergic reactions and inflammation in a quick response to the various stimulants, including—but not limited to—allergens, pathogen-associated molecular patterns (PAMPs), and damage-associated molecular patterns (DAMPs). MCs highly express receptors of these ligands and proteases (e.g., tryptase, chymase) and cytokines (TNF), and other granular components (e.g., histamine and serotonin) and aggravate the allergic reaction and inflammation. On the other hand, accumulated evidence has revealed that MCs also possess immune-regulatory functions, suppressing chronic inflammation and allergic reactions on some occasions. IL-2 and IL-10 released from MCs inhibit excessive immune responses. Recently, it has been revealed that allergen immunotherapy modulates the function of MCs from their allergic function to their regulatory function to suppress allergic reactions. This evidence suggests the possibility that manipulation of MCs functions will result in a novel approach to the treatment of various MCs-mediated diseases.
Collapse
Affiliation(s)
- Zhongwei Zhang
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Yosuke Kurashima
- Department of Innovative Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Mucosal Immunology, The University of Tokyo Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- CU-UCSD Center for Mucosal Immunology, Department of Pathology/Medicine, Allergy and Vaccines, University of California, San Diego, CA 92093-0063, USA
- Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
- Correspondence: ; Tel.: +81-43-226-2848; Fax: +81-43-226-2183
| |
Collapse
|
35
|
Noh CS, Chung HY, Han IH, Kim JH, Kim YM, Ryu JS. Mast cell tryptase-PAR2 pathway in proliferation of prostatic stromal cells reacted with Trichomonas vaginalis. Parasite Immunol 2021; 43:e12868. [PMID: 33991355 DOI: 10.1111/pim.12868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
We investigated whether tryptase released from mast cells activated by prostate stromal cells (PSC) reacted with Trichomonas vaginalis (Tv) promoted the proliferation of PSC through protease- activated receptor 2 (PAR2). Conditioned medium of PSC was prepared by stimulating them with Tv (Trichomonad-conditioned medium (TCM)), and mast cell-conditioned medium were prepared by incubating them with TCM (mast cell-TCM (M-TCM)). Mast cells incubated with TCM migrated more efficiently and produced more β-hexosaminidase and tryptase. M-TCM containing tryptase increased the proliferation of PSC, while inhibition of tryptase decreased proliferation. Expression of signalling molecules such as PAR2, p-ERK, COX-2, 15d-PGJ2 and PPARγ, known to be involved in the tryptase-PAR2 pathway, increased in response to M-TCM, and blocking any of these signals decreased proliferation, indicating that tryptase-PAR2 signalling is involved in the proliferation of PSC. Inhibition of tryptase and PAR2 led to reduced expression of PAR2, p-ERK, COX-2, 15d-PGJ2 and PPARγ, while inhibition of ERK or COX-2 reduced the expression of COX-2, 15d-PGJ2 and PPARγ indicating that the tryptase-PAR2 pathway proceeds in the order p-ERK, COX-2, 15d-PGJ2 , and PPARγ. These results show that interaction between PSC stimulated with Tv and mast cells causes proliferation of PSC through the tryptase-PAR2 pathway.
Collapse
Affiliation(s)
- Chang-Suk Noh
- Department of Internal Medicine, Seongnam Citizen Medical Center, Seongnam, Korea
| | - Hyo-Yeoung Chung
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Ik-Hwan Han
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Jung-Hyun Kim
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea
| | - Yu-Mi Kim
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Jae-Sook Ryu
- Department of Environmental Biology and Medical Parasitology, Hanyang University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Graduate School of Biomedical Science & Engineering, Seoul, Korea
| |
Collapse
|
36
|
Significance of Mast Cell Formed Extracellular Traps in Microbial Defense. Clin Rev Allergy Immunol 2021; 62:160-179. [PMID: 34024033 PMCID: PMC8140557 DOI: 10.1007/s12016-021-08861-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Mast cells (MCs) are critically involved in microbial defense by releasing antimicrobial peptides (such as cathelicidin LL-37 and defensins) and phagocytosis of microbes. In past years, it has become evident that in addition MCs may eliminate invading pathogens by ejection of web-like structures of DNA strands embedded with proteins known together as extracellular traps (ETs). Upon stimulation of resting MCs with various microorganisms, their products (including superantigens and toxins), or synthetic chemicals, MCs become activated and enter into a multistage process that includes disintegration of the nuclear membrane, release of chromatin into the cytoplasm, adhesion of cytoplasmic granules on the emerging DNA web, and ejection of the complex into the extracellular space. This so-called ETosis is often associated with cell death of the producing MC, and the type of stimulus potentially determines the ratio of surviving vs. killed MCs. Comparison of different microorganisms with specific elimination characteristics such as S pyogenes (eliminated by MCs only through extracellular mechanisms), S aureus (removed by phagocytosis), fungi, and parasites has revealed important aspects of MC extracellular trap (MCET) biology. Molecular studies identified that the formation of MCET depends on NADPH oxidase-generated reactive oxygen species (ROS). In this review, we summarize the present state-of-the-art on the biological relevance of MCETosis, and its underlying molecular and cellular mechanisms. We also provide an overview over the techniques used to study the structure and function of MCETs, including electron microscopy and fluorescence microscopy using specific monoclonal antibodies (mAbs) to detect MCET-associated proteins such as tryptase and histones, and cell-impermeant DNA dyes for labeling of extracellular DNA. Comparing the type and biofunction of further MCET decorating proteins with ETs produced by other immune cells may help provide a better insight into MCET biology in the pathogenesis of autoimmune and inflammatory disorders as well as microbial defense.
Collapse
|
37
|
Atiakshin DA, Shishkina VV, Gerasimova OA, Meshkova VY, Samodurova NY, Samoilenko TV, Buchwalow IB, Samoilova VE, Tiemann M. Combined histochemical approach in assessing tryptase expression in the mast cell population. Acta Histochem 2021; 123:151711. [PMID: 33838578 DOI: 10.1016/j.acthis.2021.151711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/28/2022]
Abstract
To increase the efficiency of interpretation of mast cell's contribution to the state of a specific tissue microenvironment, it is necessary to detail the molecular composition of their secretome and analyze the pathways of degranulation. Developed method of combining immunomorphological and histochemical staining protocols contributes to the most objective detection of the integral level of tryptase expression in the intraorgan population of the skin mast cells. Novel technique for tryptase detection expands the possibilities of morphological analysis, provides researchers with additional data on the structure of the mast cell population and helps visualize the processing and cytological features and structural targets of tryptase during the development of adaptive and pathological reactions. Objective determination of the tryptase profile for organ-specific mast cell populations is in great demand in clinical practice for the interpretation of pathological processes, including inflammation and oncogenesis.
Collapse
Affiliation(s)
- D A Atiakshin
- Peoples' Friendship University of Russia, Moscow, Russia; Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - V V Shishkina
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - O A Gerasimova
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - V Y Meshkova
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - N Y Samodurova
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - T V Samoilenko
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | | | | | - M Tiemann
- Institute for Hematopathology, Hamburg, Germany
| |
Collapse
|
38
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
39
|
Weinstock LB, Pace LA, Rezaie A, Afrin LB, Molderings GJ. Mast Cell Activation Syndrome: A Primer for the Gastroenterologist. Dig Dis Sci 2021; 66:965-982. [PMID: 32328892 DOI: 10.1007/s10620-020-06264-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Mast cell activation syndrome is thought to be a common, yet under-recognized, chronic multi-system disorder caused by inappropriate mast cell activation. Gastrointestinal symptoms are frequently reported by these patients and are often mistaken by physicians as functional gastrointestinal disorders. This syndrome can be diagnosed by the medical history and measurable biomarkers. Gastroenterologists manage diseases associated with active inflammatory cells including neutrophils, lymphocytes, macrophages, and eosinophils. The mast cell has only recently been recognized as a major player in our specialty. Gastrointestinal disorders from mast cell mediators often present with apparent irritable bowel syndrome, dyspepsia, chronic or cyclical nausea, and heartburn. Individuals with mast cell activation syndrome experience significant delays in diagnosis. The gastrointestinal symptoms are often refractory to symptom-targeted prescription medications. Beyond avoiding triggers, the best therapy is directed at modulating mast cell activation and the effects of the mediators. Many of these therapies are simple over-the-counter medications. In this article, we review mast cell function and dysfunction and the gastrointestinal symptoms, comorbid conditions, diagnosis, and management of mast cell activation syndrome. Gastroenterologists who become aware of this syndrome can dramatically improve the quality of life for their patients who previously have been labeled with a functional gastrointestinal disorder.
Collapse
Affiliation(s)
- Leonard B Weinstock
- Specialists in Gastroenterology, 11525 Olde Cabin Rd, St. Louis, MO, 63141, USA.
| | - Laura A Pace
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, 30 N 1900 E, SOM 4R118, Salt Lake City, UT, 84132, USA
| | - Ali Rezaie
- Cedars-Sinai Medical Center, Gastroenterology, 8730 Alden Dr., Suite 204E, Los Angeles, CA, 90048, USA
| | - Lawrence B Afrin
- Armonk Integrative Medicine, Hematology/Oncology, 3010 Westchester Avenue, Suite 401, Armonk, NY, 10577, USA
| | | |
Collapse
|
40
|
Mast Cells Positive for c-Kit Receptor and Tryptase Correlate with Angiogenesis in Cancerous and Adjacent Normal Pancreatic Tissue. Cells 2021; 10:cells10020444. [PMID: 33669751 PMCID: PMC7923170 DOI: 10.3390/cells10020444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Mast cells (MCs) contain proangiogenic factors, in particular tryptase, associated with increased angiogenesis in several tumours. With special reference to pancreatic cancer, few data have been published on the role of MCs in angiogenesis in both pancreatic ductal adenocarcinoma tissue (PDAT) and adjacent normal tissue (ANT). In this study, density of mast cells positive for c-Kit receptor (MCDP-c-KitR), density of mast cells positive for tryptase (MCDPT), area of mast cells positive for tryptase (MCAPT), and angiogenesis in terms of microvascular density (MVD) and endothelial area (EA) were evaluated in a total of 45 PDAT patients with stage T2–3N0–1M0. Results: For each analysed tissue parameter, the mean ± standard deviation was evaluated in both PDAT and ANT and differences were evaluated by Student’s t-test (p ranged from 0.001 to 0.005). Each analysed tissue parameter was then correlated to each other one by Pearson t-test analysis (p ranged from 0.01 to 0.03). No other correlation among MCDP-c-KitR, MCDPT, MCAPT, MVD, EA and the main clinical–pathological characteristics was found. Conclusions: Our results suggest that tissue parameters increased from ANT to PDAT and that mast cells are strongly associated with angiogenesis in PDAT. On this basis, the inhibition of MCs through tyrosine kinase inhibitors, such as masitinib, or inhibition of tryptase by gabexate mesylate may become potential novel antiangiogenetic approaches in pancreatic cancer therapy.
Collapse
|
41
|
Protease profile of normal and neoplastic mast cells in the human bone marrow with special emphasis on systemic mastocytosis. Histochem Cell Biol 2021; 155:561-580. [PMID: 33492488 PMCID: PMC8134284 DOI: 10.1007/s00418-021-01964-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Mast cells (MC) are immune cells that produce a variety of mediators, such as proteases, that are important in the body's immune responses. MC proteases have pronounced multifunctionality and in many respects determine the biological characteristics of the organ-specific MC population. Although, increased numbers of MC are one of the objective mastocytosis signs, a detailed assessment of the proteases biogenesis and excretion mechanisms in the bone marrow (BM) has not yet been carried out. Here, we performed an analysis of the expression of proteases in patients with various forms of systemic mastocytosis. We presented data on intracellular protease co-localization in human BM MCs and discussed their implication in secretory pathways of MCs in the development of the disease. Systemic mastocytosis, depending on the course, is featured by the formation of definite profiles of specific proteases in various forms of atypical mast cells. Intragranular accumulation of tryptase, chymase and carboxypeptidases in the hypochromic phenotype of atypical mast cells is characterized. Characterization of MC proteases expression during mastocytosis can be used to refine the MC classification, help in a prognosis, and increase the effectiveness of targeted therapy.
Collapse
|
42
|
Falduto GH, Pfeiffer A, Luker A, Metcalfe DD, Olivera A. Emerging mechanisms contributing to mast cell-mediated pathophysiology with therapeutic implications. Pharmacol Ther 2020; 220:107718. [PMID: 33130192 DOI: 10.1016/j.pharmthera.2020.107718] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Mast cells are tissue-resident immune cells that play key roles in the initiation and perpetuation of allergic inflammation, usually through IgE-mediated mechanisms. Mast cells are, however, evolutionary ancient immune cells that can be traced back to urochordates and before the emergence of IgE antibodies, suggesting their involvement in antibody-independent biological functions, many of which are still being characterized. Herein, we summarize recent advances in understanding the roles of mast cells in health and disease, partly through the study of emerging non-IgE receptors such as the Mas-related G protein-coupled receptor X2, implicated in pseudo-allergic reactions as well as in innate defense and neuronal sensing; the mechano-sensing adhesion G protein-coupled receptor E2, variants of which are associated with familial vibratory urticaria; and purinergic receptors, which orchestrate tissue damage responses similarly to the IL-33 receptor. Recent evidence also points toward novel mechanisms that contribute to mast cell-mediated pathophysiology. Thus, in addition to releasing preformed mediators contained in granules and synthesizing mediators de novo, mast cells also secrete extracellular vesicles, which convey biological functions. Understanding their release, composition and uptake within a variety of clinical conditions will contribute to the understanding of disease specific pathology and likely lead the way to novel therapeutic approaches. We also discuss recent advances in the development of therapies targeting mast cell activity, including the ligation of inhibitory ITIM-containing receptors, and other strategies that suppress mast cells or responses to mediators for the management of mast cell-related diseases.
Collapse
Affiliation(s)
- Guido H Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Luker
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Szczepek AJ, Dudnik T, Karayay B, Sergeeva V, Olze H, Smorodchenko A. Mast Cells in the Auditory Periphery of Rodents. Brain Sci 2020; 10:brainsci10100697. [PMID: 33019672 PMCID: PMC7601519 DOI: 10.3390/brainsci10100697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MCs) are densely granulated cells of myeloid origin and are a part of immune and neuroimmune systems. MCs have been detected in the endolymphatic sac of the inner ear and are suggested to regulate allergic hydrops. However, their existence in the cochlea has never been documented. In this work, we show that MCs are present in the cochleae of C57BL/6 mice and Wistar rats, where they localize in the modiolus, spiral ligament, and stria vascularis. The identity of MCs was confirmed in cochlear cryosections and flat preparations using avidin and antibodies against c-Kit/CD117, chymase, tryptase, and FcεRIα. The number of MCs decreased significantly during postnatal development, resulting in only a few MCs present in the flat preparation of the cochlea of a rat. In addition, exposure to 40 µM cisplatin for 24 h led to a significant reduction in cochlear MCs. The presence of MCs in the cochlea may shed new light on postnatal maturation of the auditory periphery and possible involvement in the ototoxicity of cisplatin. Presented data extend the current knowledge about the physiology and pathology of the auditory periphery. Future functional studies should expand and translate this new basic knowledge to clinics.
Collapse
Affiliation(s)
- Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
- Correspondence: ; Tel.: +49-30-450-555-224
| | - Tatyana Dudnik
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
| | - Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
| | - Valentina Sergeeva
- Department of Medical Biology with Course of Microbiology and Virology, Chuvash State University, 428034 Cheboksary, Russia;
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (T.D.); (B.K.); (H.O.)
| | - Alina Smorodchenko
- Department of Human Medicine, MSH Medical School Hamburg, University of Applied Sciences and Medical University, 20457 Hamburg, Germany;
| |
Collapse
|
44
|
Kröger M, Scheffel J, Nikolaev VV, Shirshin EA, Siebenhaar F, Schleusener J, Lademann J, Maurer M, Darvin ME. In vivo non-invasive staining-free visualization of dermal mast cells in healthy, allergy and mastocytosis humans using two-photon fluorescence lifetime imaging. Sci Rep 2020; 10:14930. [PMID: 32913196 PMCID: PMC7484787 DOI: 10.1038/s41598-020-71901-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are multifunctional cells of the immune system and are found in skin and all major tissues of the body. They contribute to the pathology of several diseases including urticaria, psoriasis, atopic dermatitis and mastocytosis where they are increased at lesional sites. Histomorphometric analysis of skin biopsies serves as a routine method for the assessment of MC numbers and their activation status, which comes with major limitations. As of now, non-invasive techniques to study MCs in vivo are not available. Here, we describe a label-free imaging technique to visualize MCs and their activation status in the human papillary dermis in vivo. This technique uses two-photon excited fluorescence lifetime imaging (TPE-FLIM) signatures, which are different for MCs and other dermal components. TPE-FLIM allows for the visualization and quantification of dermal MCs in healthy subjects and patients with skin diseases. Moreover, TPE-FLIM can differentiate between two MC populations in the papillary dermis in vivo-resting and activated MCs with a sensitivity of 0.81 and 0.87 and a specificity of 0.85 and 0.84, respectively. Results obtained on healthy volunteers and allergy and mastocytosis patients indicate the existence of other MC subpopulations within known resting and activated MC populations. The developed method may become an important tool for non-invasive in vivo diagnostics and therapy control in dermatology and immunology, which will help to better understand pathomechanisms involving MC accumulation, activation and degranulation and to characterize the effects of therapies that target MCs.
Collapse
Affiliation(s)
- Marius Kröger
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jörg Scheffel
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Viktor V Nikolaev
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Faculty of Physics, Tomsk State University, Lenin Ave. 36, 634050, Tomsk, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, Lomonosov Moscow State University, Leninskie gory 1/2, 119991, Moscow, Russia
| | - Frank Siebenhaar
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Johannes Schleusener
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jürgen Lademann
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Maurer
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Maxim E Darvin
- Department of Dermatology, Venerology and Allergology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
45
|
Nirmal RM. Diagnosis of malignant lymphoma - An overview. J Oral Maxillofac Pathol 2020; 24:195-199. [PMID: 33456221 PMCID: PMC7802846 DOI: 10.4103/0973-029x.294653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- R Madhavan Nirmal
- Department of Oral and Maxillofacial Pathology, Rajah Muthiah Dental College and Hospital, Annamalai University, Chidambaram, Tamil Nadu, India E-mail:
| |
Collapse
|
46
|
Li C, Li X, Li G, Sun L, Zhang W, Jiang J, Ge Q. Identification of a prognosis‑associated signature associated with energy metabolism in triple‑negative breast cancer. Oncol Rep 2020; 44:819-837. [PMID: 32582991 PMCID: PMC7388543 DOI: 10.3892/or.2020.7657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
At present, a large number of exciting results have been found regarding energy metabolism within the triple-negative breast cancer (TNBC) field. Apart from aerobic glycolysis, a number of other catabolic pathways have also been demonstrated to participate in energy generation. However, the prognostic value of energy metabolism for TNBC currently remains unclear. In the present study, the association between gene expression profiles of energy metabolism and outcomes in patients with TNBC was examined using datasets obtained from the Gene Expression Omnibus and The Cancer Genome Atlas. In total, four robust TNBC subtypes were identified on the basis of negative matrix factorization clustering and gene expression patterns, which exhibited distinct immunological, molecular and prognostic (disease-free survival) features. The differentially expressed genes were subsequently identified from the subgroup that demonstrated the poorest prognosis compared with the remaining 3 subgroups, where their biological functions were assessed further by means of gene ontology enrichment analysis. Any signatures found to be associated with energy metabolism were then established using the Cox proportional hazards model to assess patient prognosis. According to results of Kaplan-Meier analysis, the constructed signature consisting of eight genes that were associated with energy metabolism distinguished patient outcomes into low- and high-risk groups. In addition, this signature, which was found to be markedly associated with the clinical characteristics of the patients, served as an independent factor in predicting TNBC patient prognosis. According to gene set enrichment analysis, the gene sets related to the high-risk group participated in the MAPK signal transduction pathway, focal adhesion and extracellular matrix receptor interaction, whilst those related to the low-risk group were revealed to be mainly associated with mismatch repair and propanoate metabolism. Findings from the present study shed new light on the role of energy metabolism within TNBC, where the eight-gene signature associated with energy metabolism constructed can be utilized as a new prognostic marker for predicting survival in patients with TNBC.
Collapse
Affiliation(s)
- Chao Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Xujun Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Guangming Li
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Long Sun
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Wei Zhang
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Jing Jiang
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| | - Qidong Ge
- Department of Breast Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
47
|
Oxytocin ameliorates ischemia/reperfusion-induced injury by inhibiting mast cell degranulation and inflammation in the rat heart. Biomed Pharmacother 2020; 128:110358. [PMID: 32526456 DOI: 10.1016/j.biopha.2020.110358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Oxytocin (OT) has shown a cardioprotective effect on myocardial ischemia/reperfusion injury (MIRI). This study aimed to investigate whether the cardioprotective effect of OT is associated with the inhibition of mast cell degranulation and inflammation. METHODS The left anterior descending coronary artery of rats was ligated for 30 min and reperfused for 120 min to establish an ischemia and reperfusion (I/R) injury model. A preliminary experiment was conducted to evaluate the optimal dose of OT (0.01, 0.1, 1 μg/kg via intraperitoneal). The mast cell secretagogue compound 48/80 (C48/80) was used to promote the degranulation of mast cells with or without I/R injury, while rats were pretreated with OT to determine whether this compound suppresses mast cell degranulation. The expression of the inflammatory factors HMGB1 and NF-κB p65 was evaluated. A cell experiment was performed for verification. RESULTS C48/80 (0.5 mg/kg, intravenous) increased mast cell degranulation and tryptase release compared with I/R-treated alone (27.12 ± 3.52 % vs. 16.57 ± 2.23 %; 8.34 ± 1.66 ng/mL vs. 3.63 ± 0.63 ng/mL), but these effects could be decreased by OT (0.1 μg/kg, intraperitoneal) preconditioning (19.29 ± 0.74 %; 5.37 ± 0.73 ng/mL). Besides that, hemodynamic disorders, arrhythmias, cardiac edema, infarct size, histopathological damage, and the levels of cTnI, HMGB1 and NF-κB p65 were significantly increased in I/R-treated group compared with corresponding observations in the control group, and C48/80 exacerbated these injuries, but pretreatment with OT could ameliorate these effects. Furthermore, C48/80 (10 μg/mL) inhibited the viability and promoted the apoptosis of H9C2(2-1) and RBL-2H3 cells, and increased the release of cTnI and tryptase, all of which were reversed by prophylactic OT (0.01 ng/mL) treatment. CONCLUSION We concluded that OT pretreatment inhibits the degranulation of cardiac mast cells induced by I/R injury and downregulates the expression of the inflammatory factors HMGB1 and NF-κB p65.
Collapse
|
48
|
Mastocytosis as a risk factor for insect venom allergy. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-2516-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Kempuraj D, Ahmed ME, Selvakumar GP, Thangavel R, Dhaliwal AS, Dubova I, Mentor S, Premkumar K, Saeed D, Zahoor H, Raikwar SP, Zaheer S, Iyer SS, Zaheer A. Brain Injury-Mediated Neuroinflammatory Response and Alzheimer's Disease. Neuroscientist 2020; 26:134-155. [PMID: 31092147 PMCID: PMC7274851 DOI: 10.1177/1073858419848293] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Mohammad Ejaz Ahmed
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Ramasamy Thangavel
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Arshdeep S. Dhaliwal
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Iuliia Dubova
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shireen Mentor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Keerthivaas Premkumar
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Daniyal Saeed
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Haris Zahoor
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Sudhanshu P. Raikwar
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Smita Zaheer
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Shankar S. Iyer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Asgar Zaheer
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs’, Columbia, MO 65201, USA
- Department of Neurology, and the Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
50
|
Atiakshin D, Buchwalow I, Tiemann M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol 2020; 154:21-40. [PMID: 32222902 DOI: 10.1007/s00418-020-01875-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
This article presents 20 combinations of histochemical stainings for the determination of mast cell co-localization with the fibrous component of the connective tissue in the fibrillogenesis course. Best results were obtained using metachromatic detection of mast cells in combination with silver or picro-fuchsin impregnation, staining with brilliant green using van Gieson staining, and a combination of aniline blue staining with neutral red. Proposed variants of histochemical protocols open up new opportunities to analyze the participation of mast cells in extracellular matrix remodeling of the tissue microenvironment in the course of adaptive and pathological processes. Results obtained expand the current theoretical views of the process of fibrillogenesis in the extracellular matrix. They also shed new light on the participation of mast cell secretion components in the molecular mechanisms of fiber formation.
Collapse
Affiliation(s)
- Dmitri Atiakshin
- Research Institute of Experimental Biology and Medicine, Voronezh N. N. Burdenko State Medical University, Voronezh, Russia
| | - Igor Buchwalow
- Institute of Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany.
| | - Markus Tiemann
- Institute of Hematopathology, Fangdieckstr. 75a, 22547, Hamburg, Germany
| |
Collapse
|