1
|
Wigger N, Krüger J, Vankriekelsvenne E, Kipp M. Titration of cuprizone induces reliable demyelination. Brain Res 2024; 1850:149410. [PMID: 39716594 DOI: 10.1016/j.brainres.2024.149410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Cuprizone-induced demyelination, wherein mice are fed a diet containing the copper chelator cuprizone, is a well-established model that replicates key features of demyelination and remyelination. However, the dose-response relationship of cuprizone is complex; high concentrations can induce toxicity, whereas low doses may fail to produce reliable demyelination across subjects. This study aimed to investigate whether titration of the cuprizone concentration results in reliable acute demyelination and weight stabilization. To this end, experimental animals were intoxicated with cuprizone over a period of 5 weeks to induce acute demyelination. In one group, during the first 10 days, the initial cuprizone dose was gradually reduced until the experimental animals showed stable weights. Another group was subjected to a continuous cuprizone intoxication protocol without adaptions. Histological analyses were performed to quantify the extent of demyelination and glia activation. Animals of both groups experienced significant weight loss. Histological analyses revealed, despite adopting the cuprizone concentration, substantial demyelination of various brain regions, including the corpus callosum. This pattern was consistent across multiple staining methods, including anti-proteolipid protein (PLP), anti-myelin basic protein (MBP), and luxol-fast-blue (LFB) stains. Additionally, grey matter regions, specifically the neocortex, demonstrated significant demyelination. Accompanying these changes, there was notable activation and accumulation of microglia and astrocytes in white and grey matter regions. These histopathological changes were comparably pronounced in both cuprizone-treated groups. In summary, we demonstrate that titration of cuprizone is a reliable approach to induce acute demyelination in the mouse forebrain. This work represents a significant step toward refining animal models of MS, contributing to the broader effort of understanding and treating this complex disease.
Collapse
Affiliation(s)
- Nicole Wigger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Johann Krüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Elise Vankriekelsvenne
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, Rostock 18057, Germany.
| |
Collapse
|
2
|
Yakimov V, Moussiopoulou J, Roell L, Kallweit MS, Boudriot E, Mortazavi M, Papiol S, Krčmář L, Campana M, Schulte EC, Glaichenhaus N, Martinuzzi E, Halstead S, Warren N, Siskind D, Maurus I, Hasan A, Falkai P, Schmitt A, Raabe FJ, Keeser D, Wagner E. Investigation of choroid plexus variability in schizophrenia-spectrum disorders-insights from a multimodal study. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:121. [PMID: 39706851 DOI: 10.1038/s41537-024-00543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Previous studies have suggested that choroid plexus (ChP) enlargement occurs in individuals with schizophrenia-spectrum disorders (SSD) and is associated with peripheral inflammation. However, it is unclear whether such an enlargement delineates a biologically defined subgroup of SSD. Moreover, it remains elusive how ChP is linked to brain regions associated with peripheral inflammation in SSD. A cross-sectional cohort of 132 individuals with SSD and 107 age-matched healthy controls (HC) underwent cerebral magnetic resonance imaging (MRI) and clinical phenotyping to investigate the ChP and associated regions. A case-control comparison of ChP volumes was conducted, and structural variance was analyzed by employing the variability ratio (VR). K-means clustering analysis was used to identify subgroups with distinct patterns of the ventricular system, and the clusters were compared in terms of demographic, clinical, and immunological measures. The relationship between ChP volumes and brain regions, previously associated with peripheral inflammation, was investigated. We did not find a significant enlargement of the ChP in SSD compared to HC but detected an increased VR of ChP and lateral ventricle volumes. Based on these regions, we identified 3 clusters with differences in cognitive measures and possibly inflammatory markers. Larger ChP volume was associated with higher volumes of hippocampus, putamen, and thalamus in SSD but not in HC. This study suggests that ChP variability, but not mean volume, is increased in individuals with SSD, compared to HC. Larger ChP volumes in SSD were associated with higher volumes of regions previously associated with peripheral inflammation.
Collapse
Affiliation(s)
- Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany.
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany.
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany.
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, 80336, Munich, Germany
| | - Lukas Roell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, 80336, Munich, Germany
| | - Marcel S Kallweit
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Matin Mortazavi
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Sergi Papiol
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lenka Krčmář
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, 80336, Munich, Germany
| | - Mattia Campana
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics, LMU University Hospital, LMU Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
| | - Nicolas Glaichenhaus
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de La Recherche Scientifique, Valbonne, France
| | - Emanuela Martinuzzi
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Centre National de La Recherche Scientifique, Valbonne, France
| | - Sean Halstead
- Medical School, The University of Queensland, Brisbane, QLD, Australia
| | - Nicola Warren
- Medical School, The University of Queensland, Brisbane, QLD, Australia
- Metro South Addiction and Mental Health, Brisbane, QLD, Australia
| | - Dan Siskind
- Medical School, The University of Queensland, Brisbane, QLD, Australia
- Metro South Addiction and Mental Health, Brisbane, QLD, Australia
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
| | - Alkomiet Hasan
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, 05403-903, São Paulo, Brazil, SP, Brazil
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804, Munich, Germany
- Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, 80336, Munich, Germany
| | - Elias Wagner
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- DZPG (German Center for Mental Health), partner site Munich/Augsburg, Munich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, University of Augsburg, 86156, Augsburg, Germany
- Evidence-based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| |
Collapse
|
3
|
Hashemi E, Srivastava IN, Aguirre A, Yoseph ET, Kaushal E, Awani A, Ryu JK, Akassoglou K, Talebian S, Chu P, Pisani L, Musolino P, Steinman L, Doyle K, Robinson WH, Sharpe O, Cayrol R, Orchard PJ, Lund T, Vogel H, Lenail M, Han MH, Bonkowsky JL, Van Haren KP. A Novel Mouse Model for Cerebral Inflammatory Demyelination in X-Linked Adrenoleukodystrophy: Insights into Pathogenesis and Potential Therapeutic Targets. Ann Neurol 2024. [PMID: 39467011 DOI: 10.1002/ana.27117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE X-linked adrenoleukodystrophy (ALD) is caused by mutations in ABCD1, a peroxisomal gene. More than half of males with an ABCD1 mutation develop inflammatory cerebral demyelination (cALD), but underlying mechanisms remain unknown and therapies are limited. We sought to develop and characterize a mouse model of cALD to facilitate study of disease mechanisms and therapy development. METHODS We used immunoassays and immunohistochemistry to assess novel (interleukin 18 [IL-18]) and established molecular markers in cerebrospinal fluid (CSF) and postmortem brain tissue from cALD patients. We generated a cALD phenotype in Abcd1-knockout mice using a 2-hit method that combines cuprizone and experimental autoimmune encephalomyelitis models. We then used magnetic resonance imaging (MRI) and immunohistochemistry to assess the fidelity of cALD molecular markers in the mice. RESULTS Human and mouse cALD lesions shared histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-knockout mice displayed more cerebral demyelination, blood-brain barrier disruption, and perivascular immune cell infiltration. This enhanced inflammatory response was associated with higher levels of fibrin deposition, oxidative stress, demyelination, and axonal injury. IL-18 immunoreactivity co-localized with perivascular monocytes/macrophages in both human and mouse brain tissue. In cALD patients, CSF IL-18 levels correlated with MRI lesion severity. INTERPRETATION Our results suggest loss of Abcd1 function in mice predisposes to more severe blood-brain barrier disruption, cerebral inflammation driven by the infiltration of peripheral immune cells, demyelination, and axonal damage, replicating human cALD features. This novel mouse model could shed light on cALD mechanisms and accelerate cALD therapy development. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Isha N Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Alejandro Aguirre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Ezra T Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Esha Kaushal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Avni Awani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Jae K Ryu
- Gladstone Institute for Neurological Disease, San Francisco, CA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease, San Francisco, CA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shahrzad Talebian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA
| | - Laura Pisani
- Department of Radiology, Stanford University School of Medicine Stanford, Stanford, CA
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Kristian Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ
| | - William H Robinson
- Department of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Orr Sharpe
- Department of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Romain Cayrol
- Department of Pathology, Clinical Department of Laboratory Medicine, University of Montreal, Quebec, Canada
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - Troy Lund
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Max Lenail
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
- Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT
- Primary Children's Center for Personalized Medicine, Salt Lake City, UT
| | - Keith P Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
4
|
Schuster K, Staffeld A, Zimmermann A, Böge N, Lang S, Kuhla A, Frintrop L. Starvation in Mice Induces Liver Damage Associated with Autophagy. Nutrients 2024; 16:1191. [PMID: 38674881 PMCID: PMC11053507 DOI: 10.3390/nu16081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Anorexia nervosa (AN) induces organ dysfunction caused by malnutrition, including liver damage leading to a rise in transaminases due to hepatocyte damage. The underlying pathophysiology of starvation-induced liver damage is poorly understood. We investigate the effect of a 25% body weight reduction on murine livers in a mouse model and examine possible underlying mechanisms of starvation-induced liver damage. Female mice received a restricted amount of food with access to running wheels until a 25% weight reduction was achieved. This weight reduction was maintained for two weeks to mimic chronic starvation. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured spectrophotometrically. Liver fat content was analyzed using an Oil Red O stain, and liver glycogen was determined using a Periodic acid-Schiff (PAS) stain. Immunohistochemical stains were used to investigate macrophages, proliferation, apoptosis, and autophagy. Starvation led to an elevation of AST and ALT values, a decreased amount of liver fat, and reduced glycogen deposits. The density of F4/80+ macrophage numbers as well as proliferating KI67+ cells were decreased by starvation, while apoptosis was not altered. This was paralleled by an increase in autophagy-related protein staining. Increased transaminase values suggest the presence of liver damage in the examined livers of starved mice. The observed starvation-induced liver damage may be attributed to increased autophagy. Whether other mechanisms play an additional role in starvation-induced liver damage remains to be investigated.
Collapse
Affiliation(s)
- Katharina Schuster
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Anna Staffeld
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Annelie Zimmermann
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Natalie Böge
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Stephan Lang
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| | - Angela Kuhla
- Rudolf-Zenker-Institute for Experimental Surgery, Medical University Rostock, 18057 Rostock, Germany
| | - Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany; (K.S.); (A.Z.); (S.L.)
| |
Collapse
|
5
|
Zimmermann A, Böge N, Schuster K, Staffeld A, Lang S, Gill S, Rupprecht H, Frintrop L. Glial cell changes in the corpus callosum in chronically-starved mice. J Eat Disord 2023; 11:227. [PMID: 38111061 PMCID: PMC10726510 DOI: 10.1186/s40337-023-00948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Anorexia nervosa (AN) is characterized by emaciation, hyperactivity, and amenorrhea. Imaging studies in AN patients have revealed reductions in grey and white matter volume, which correlate with the severity of neuropsychological deficits. However, the cellular basis for the observed brain atrophy is poorly understood. Although distinct hypothalamic centers, including the arcuate nucleus (ARC) are critically involved in regulating feeding behavior, little is known about potential hypothalamic modifications in this disorder. Since glia e.g. astrocytes and microglia influence neuronal circuits, we investigated the glial changes underlying pathophysiology of starvation in the corpus callosum (CC) and hypothalamus. Female mice were given a limited amount of food once a day and had unlimited access to a running wheel until a 20% weight reduction was achieved (acute starvation). This weight reduction was maintained for two weeks to mimic chronic starvation. Immunohistochemistry was used to quantify the density of astrocytes, microglia, oligodendrocytes, and the staining intensity of neuropeptide Y (NPY), a potent orexigenic peptide. Chronic starvation induced a decreased density of OLIG2+ oligodendrocytes, GFAP+ astrocytes, and IBA1+ microglia in the CC. However, the densities of glial cells remained unchanged in the ARC following starvation. Additionally, the staining intensity of NPY increased after both acute and chronic starvation, indicating an increased orexigenic signaling. Chronic starvation induced glial cell changes in the CC in a mouse model of AN suggesting that glia pathophysiology may play a role in the disease.
Collapse
Affiliation(s)
- Annelie Zimmermann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Natalie Böge
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Katharina Schuster
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Anna Staffeld
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Stephan Lang
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Sadaf Gill
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Hanna Rupprecht
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany
| | - Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstr. 9, 18057, Rostock, Germany.
| |
Collapse
|
6
|
Hashemi E, Narain Srivastava I, Aguirre A, Tilahan Yoseph E, Kaushal E, Awani A, Kyu. Ryu J, Akassoglou K, Talebian S, Chu P, Pisani L, Musolino P, Steinman L, Doyle K, Robinson WH, Sharpe O, Cayrol R, Orchard P, Lund T, Vogel H, Lenail M, Han MH, Bonkowsky JL, Van Haren KP. A novel mouse model of cerebral adrenoleukodystrophy highlights NLRP3 activity in lesion pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.564025. [PMID: 37986739 PMCID: PMC10659266 DOI: 10.1101/2023.11.07.564025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Objective We sought to create and characterize a mouse model of the inflammatory, cerebral demyelinating phenotype of X-linked adrenoleukodystrophy (ALD) that would facilitate the study of disease pathogenesis and therapy development. We also sought to cross-validate potential therapeutic targets such as fibrin, oxidative stress, and the NLRP3 inflammasome, in post-mortem human and murine brain tissues. Background ALD is caused by mutations in the gene ABCD1 encoding a peroxisomal transporter. More than half of males with an ABCD1 mutation develop the cerebral phenotype (cALD). Incomplete penetrance and absence of a genotype-phenotype correlation imply a role for environmental triggers. Mechanistic studies have been limited by the absence of a cALD phenotype in the Abcd1-null mouse. Methods We generated a cALD phenotype in 8-week-old, male Abcd1-null mice by deploying a two-hit method that combines cuprizone (CPZ) and experimental autoimmune encephalomyelitis (EAE) models. We employed in vivo MRI and post-mortem immunohistochemistry to evaluate myelin loss, astrogliosis, blood-brain barrier (BBB) disruption, immune cell infiltration, fibrin deposition, oxidative stress, and Nlrp3 inflammasome activation in mice. We used bead-based immunoassay and immunohistochemistry to evaluate IL-18 in CSF and post-mortem human cALD brain tissue. Results MRI studies revealed T2 hyperintensities and post-gadolinium enhancement in the medial corpus callosum of cALD mice, similar to human cALD lesions. Both human and mouse cALD lesions shared common histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-null mice had more severe cerebral inflammation, demyelination, fibrin deposition, oxidative stress, and IL-18 activation. IL-18 immunoreactivity co-localized with macrophages/microglia in the perivascular region of both human and mouse brain tissue. Interpretation This novel mouse model of cALD suggests loss of Abcd1 function predisposes to more severe cerebral inflammation, oxidative stress, fibrin deposition, and Nlrp3 pathway activation, which parallels the findings seen in humans with cALD. We expect this model to enable long-sought investigations into cALD mechanisms and accelerate development of candidate therapies for lesion prevention, cessation, and remyelination.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Isha Narain Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Alejandro Aguirre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ezra Tilahan Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Esha Kaushal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Avni Awani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jae Kyu. Ryu
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease; San Francisco, CA, USA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF; San Francisco, CA USA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco; San Francisco, CA, USA
| | - Shahrzad Talebian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Pisani
- Department of Radiology, Stanford University School of Medicine Stanford, CA, USA
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristian Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| | - William H Robinson
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Orr Sharpe
- Department of Immunology & Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Romain Cayrol
- Department of Pathology, Clinical Department of Laboratory Medicine, University of Montreal, Quebec, Canada
| | - Paul Orchard
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Troy Lund
- Division of Pediatric Blood & Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Hannes Vogel
- Departments of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Max Lenail
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - May Htwe Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Leith Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
- Brain and Spine Center, Primary Children’s Hospital, Salt Lake City, Utah
- Primary Children’s Center for Personalized Medicine, Salt Lake City, Utah
| | - Keith P. Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Torrillas-de la Cal A, Torres-Sanchez S, Bravo L, Llorca-Torralba M, Garcia-Partida JA, Arroba AI, Berrocoso E. Chemogenetic activation of locus coeruleus neurons ameliorates the severity of multiple sclerosis. J Neuroinflammation 2023; 20:198. [PMID: 37658434 PMCID: PMC10474779 DOI: 10.1186/s12974-023-02865-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/30/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Most current disease-modifying therapies approved for multiple sclerosis (MS) are immunomodulatory drugs that counteract the aberrant activity of the immune system. Hence, new pharmacological interventions that drive anti-inflammatory activity and neuroprotection would represent interesting alternative therapeutic approaches or complementary strategies to treat progressive forms of MS. There is evidence of reduced noradrenaline levels and alterations to locus coeruleus (LC) noradrenergic neurons in MS patients, as well as in animal models of this disease, potentially factors contributing to the pathophysiology. Drugs that enhance noradrenaline appear to have some beneficial effects in MS, suggesting their potential to dampen the underlying pathology and disease progression. METHODS Therefore, we explored the consequences of chronic LC noradrenergic neurons activation by chemogenetics in experimental autoimmune encephalomyelitis (EAE) mice, the most widely used experimental model of MS. LC activation from the onset or the peak of motor symptoms was explored as two different therapeutic approaches, assessing the motor and non-motor behavioral changes as EAE progresses, and studying demyelination, inflammation and glial activation in the spinal cord and cerebral cortex during the chronic phase of EAE. RESULTS LC activation from the onset of motor symptoms markedly alleviated the motor deficits in EAE mice, as well as their anxiety-like behavior and sickness, in conjunction with reduced demyelination and perivascular infiltration in the spinal cord and glial activation in the spinal cord and prefrontal cortex (PFC). When animals exhibited severe paralysis, LC activation produced a modest alleviation of EAE motor symptoms and it enhanced animal well-being, in association with an improvement of the EAE pathology at the spinal cord and PFC level. Interestingly, the reduced dopamine beta-hydroxylase expression associated with EAE in the spinal cord and PFC was reversed through chemogenetic LC activation. CONCLUSION Therefore, clear anti-inflammatory and neuroprotective effects were produced by the selective activation of LC noradrenergic neurons in EAE mice, having greater benefits when LC activation commenced earlier. Overall, these data suggest noradrenergic LC neurons may be targets to potentially alleviate some of the motor and non-motor symptoms in MS.
Collapse
Grants
- #FPU20-03072 "Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades"; FPU fellowship
- PID2022-1427850B-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PDC2022-133987-I00 "Fondo Europeo de Desarrollo Regional" (FEDER)-UE "A way to build Europe" from the "Ministerio de Economía y Competitividad
- PY20_00958 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CTS-510 "Consejería de Transformación Económica, Industria, Conocimiento y Universidad, Junta de Andalucía"
- CEIJ-003 CEIMAR
- “CIBERSAM”: CIBER-Consorcio Centro de Investigación Biomédica en Red (CB07/09/0033), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación
- “Agencia Estatal de Investigación-Ministerio de Ciencia, Innovación y Universidades”; FPU fellowship
- “Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz-INiBICA” (IN-CO9)
- "Fondo Europeo de Desarrollo Regional” (FEDER)-UE “A way to build Europe” from the “Ministerio de Economía y Competitividad
- Universidad de Cadiz
Collapse
Affiliation(s)
- Alejandro Torrillas-de la Cal
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Sonia Torres-Sanchez
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Meritxell Llorca-Torralba
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Department of Cell Biology and Histology, University of Cádiz, 11003, Cádiz, Spain
| | - Jose Antonio Garcia-Partida
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
| | - Ana I Arroba
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain
- Department of Biomedicine, Biotechnology and Public Health (Immunology Area), University of Cádiz, 11003, Cádiz, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain.
- Ciber de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, 11009, Cádiz, Spain.
| |
Collapse
|
8
|
Lindsay SL, McCanney GA, Zhan J, Scheld M, Smith RS, Goodyear CS, Yates EA, Kipp M, Turnbull JE, Barnett SC. Low sulfated heparan sulfate mimetic differentially affects repair in immune-mediated and toxin-induced experimental models of demyelination. Glia 2023; 71:1683-1698. [PMID: 36945189 PMCID: PMC10952530 DOI: 10.1002/glia.24363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.
Collapse
Affiliation(s)
- Susan L. Lindsay
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - George A. McCanney
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Jiangshan Zhan
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Miriam Scheld
- Institute of Neuroanatomy, Faculty of MedicineRWTH Aachen University52074AachenGermany
| | - Rebecca Sherrard Smith
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Carl S. Goodyear
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| | - Edwin A. Yates
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
| | - Markus Kipp
- Institute of AnatomyUniversity of RostockGertrudenstrasse 918057RostockGermany
| | - Jeremy E. Turnbull
- Institute of Systems, Molecules and Integrative BiologyUniversity of LiverpoolLiverpoolL69 7ZBUK
- Centre for GlycosciencesKeele UniversityKeeleST5 5BGUK
| | - Susan C. Barnett
- School of Infection and ImmunityUniversity of Glasgow120 University PlaceGlasgowG12 8TAUK
| |
Collapse
|
9
|
Wittekindt M, Kaddatz H, Joost S, Staffeld A, Bitar Y, Kipp M, Frintrop L. Different Methods for Evaluating Microglial Activation Using Anti-Ionized Calcium-Binding Adaptor Protein-1 Immunohistochemistry in the Cuprizone Model. Cells 2022; 11:cells11111723. [PMID: 35681418 PMCID: PMC9179561 DOI: 10.3390/cells11111723] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Microglia play an important role in the pathology of various central nervous system disorders, including multiple sclerosis (MS). While different methods exist to evaluate the extent of microglia activation, comparative studies investigating the sensitivity of these methods are missing for most models. In this study, we systematically evaluated which of the three commonly used histological methods (id est, quantification of microglia density, densitometrically evaluated staining intensity, or cellular morphology based on the determination of a ramification index, all measured in anti-ionized calcium-binding adaptor protein-1 (IBA1) immunohistochemical stains) is the most sensitive method to detect subtle changes in the microglia activation status in the context of MS. To this end, we used the toxin-induced cuprizone model which allows the experimental induction of a highly reproducible demyelination in several central nervous system regions, paralleled by early microglia activation. In this study, we showed that after 3 weeks of cuprizone intoxication, all methods reveal a significant microglia activation in the white matter corpus callosum. In contrast, in the affected neocortical grey matter, the evaluation of anti-IBA1 cell morphologies was the most sensitive method to detect subtle changes of microglial activation. The results of this study provide a useful guide for future immunohistochemical evaluations in the cuprizone and other neurodegenerative models.
Collapse
|
10
|
Vankriekelsvenne E, Chrzanowski U, Manzhula K, Greiner T, Wree A, Hawlitschka A, Llovera G, Zhan J, Joost S, Schmitz C, Ponsaerts P, Amor S, Nutma E, Kipp M, Kaddatz H. Transmembrane protein 119 is neither a specific nor a reliable marker for microglia. Glia 2022; 70:1170-1190. [PMID: 35246882 DOI: 10.1002/glia.24164] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Microglia are the resident innate immune cells of the central nervous system (CNS) parenchyma. To determine the impact of microglia on disease development and progression in neurodegenerative and neuroinflammatory diseases, it is essential to distinguish microglia from peripheral macrophages/monocytes, which are eventually equally recruited. It has been suggested that transmembrane protein 119 (TMEM119) serves as a reliable microglia marker that discriminates resident microglia from blood-derived macrophages in the human and murine brain. Here, we investigated the validity of TMEM119 as a microglia marker in four in vivo models (cuprizone intoxication, experimental autoimmune encephalomyelitis (EAE), permanent filament middle cerebral artery occlusion (fMCAo), and intracerebral 6-hydroxydopamine (6-OHDA) injections) as well as post mortem multiple sclerosis (MS) brain tissues. In all applied animal models and post mortem MS tissues, we found increased densities of ionized calcium-binding adapter molecule 1+ (IBA1+ ) cells, paralleled by a significant decrease in TMEM119 expression. In addition, other cell types in peripheral tissues (i.e., follicular dendritic cells and brown adipose tissue) were also found to express TMEM119. In summary, this study demonstrates that TMEM119 is not exclusively expressed by microglia nor does it label all microglia, especially under cellular stress conditions. Since novel transgenic lines have been developed to label microglia using the TMEM119 promotor, downregulation of TMEM119 expression might interfere with the results and should, thus, be considered when working with these transgenic mouse models.
Collapse
Affiliation(s)
| | - Uta Chrzanowski
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany.,Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Katerina Manzhula
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Theresa Greiner
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Andreas Wree
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | | | - Gemma Llovera
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | - Jiangshan Zhan
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Sarah Joost
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Christoph Schmitz
- Faculty of Medicine, LMU Munich, Institute of Anatomy II, Munich, Germany
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Wilrijk, Belgium
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands.,Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC, VUMC Site, Amsterdam, The Netherlands
| | - Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| | - Hannes Kaddatz
- Rostock University Medical Center, Institute of Anatomy, Rostock, Germany
| |
Collapse
|
11
|
Longoria V, Parcel H, Toma B, Minhas A, Zeine R. Neurological Benefits, Clinical Challenges, and Neuropathologic Promise of Medical Marijuana: A Systematic Review of Cannabinoid Effects in Multiple Sclerosis and Experimental Models of Demyelination. Biomedicines 2022; 10:539. [PMID: 35327341 PMCID: PMC8945692 DOI: 10.3390/biomedicines10030539] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Despite current therapeutic strategies for immunomodulation and relief of symptoms in multiple sclerosis (MS), remyelination falls short due to dynamic neuropathologic deterioration and relapses, leading to accrual of disability and associated patient dissatisfaction. The potential of cannabinoids includes add-on immunosuppressive, analgesic, neuroprotective, and remyelinative effects. This study evaluates the efficacy of medical marijuana in MS and its experimental animal models. A systematic review was conducted by a literature search through PubMed, ProQuest, and EBSCO electronic databases for studies reported since 2007 on the use of cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) in MS and in experimental autoimmune encephalomyelitis (EAE), Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD), and toxin-induced demyelination models. Study selection and data extraction were performed by 3 reviewers, and 28 studies were selected for inclusion. The certainty of evidence was appraised using the Cochrane GRADE approach. In clinical studies, there was low- and moderate-quality evidence that treatment with ~1:1 CBD/THC mixtures as a nabiximols (Sativex®) oromucosal spray reduced numerical rating scale (NRS) scores for spasticity, pain, and sleep disturbance, diminished bladder overactivity, and decreased proinflammatory cytokine and transcription factor expression levels. Preclinical studies demonstrated decreases in disease severity, hindlimb stiffness, motor function, neuroinflammation, and demyelination. Other experimental systems showed the capacity of cannabinoids to promote remyelination in vitro and by electron microscopy. Modest short-term benefits were realized in MS responders to adjunctive therapy with CBD/THC mixtures. Future studies are recommended to investigate the cellular and molecular mechanisms of cannabinoid effects on MS lesions and to evaluate whether medical marijuana can accelerate remyelination and retard the accrual of disability over the long term.
Collapse
Affiliation(s)
- Victor Longoria
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Hannah Parcel
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Bameelia Toma
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Annu Minhas
- Basic Medical Sciences, St. Vincent Campus, Saint James School of Medicine, 1480 Renaissance Drive, Park Ridge, IL 60068, USA; (V.L.); (H.P.); (B.T.); (A.M.)
| | - Rana Zeine
- School of Natural Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
12
|
Translational value of choroid plexus imaging for tracking neuroinflammation in mice and humans. Proc Natl Acad Sci U S A 2021; 118:2025000118. [PMID: 34479997 DOI: 10.1073/pnas.2025000118] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023] Open
Abstract
Neuroinflammation is a pathophysiological hallmark of multiple sclerosis and has a close mechanistic link to neurodegeneration. Although this link is potentially targetable, robust translatable models to reliably quantify and track neuroinflammation in both mice and humans are lacking. The choroid plexus (ChP) plays a pivotal role in regulating the trafficking of immune cells from the brain parenchyma into the cerebrospinal fluid (CSF) and has recently attracted attention as a key structure in the initiation of inflammatory brain responses. In a translational framework, we here address the integrity and multidimensional characteristics of the ChP under inflammatory conditions and question whether ChP volumes could act as an interspecies marker of neuroinflammation that closely interrelates with functional impairment. Therefore, we explore ChP characteristics in neuroinflammation in patients with multiple sclerosis and in two experimental mouse models, cuprizone diet-related demyelination and experimental autoimmune encephalomyelitis. We demonstrate that ChP enlargement-reconstructed from MRI-is highly associated with acute disease activity, both in the studied mouse models and in humans. A close dependency of ChP integrity and molecular signatures of neuroinflammation is shown in the performed transcriptomic analyses. Moreover, pharmacological modulation of the blood-CSF barrier with natalizumab prevents an increase of the ChP volume. ChP enlargement is strongly linked to emerging functional impairment as depicted in the mouse models and in multiple sclerosis patients. Our findings identify ChP characteristics as robust and translatable hallmarks of acute and ongoing neuroinflammatory activity in mice and humans that could serve as a promising interspecies marker for translational and reverse-translational approaches.
Collapse
|
13
|
Kaddatz H, Joost S, Nedelcu J, Chrzanowski U, Schmitz C, Gingele S, Gudi V, Stangel M, Zhan J, Santrau E, Greiner T, Frenz J, Müller-Hilke B, Müller M, Amor S, van der Valk P, Kipp M. Cuprizone-induced demyelination triggers a CD8-pronounced T cell recruitment. Glia 2020; 69:925-942. [PMID: 33245604 DOI: 10.1002/glia.23937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023]
Abstract
The loss of myelinating oligodendrocytes is a key characteristic of many neurological diseases, including Multiple Sclerosis (MS). In progressive MS, where effective treatment options are limited, peripheral immune cells can be found at the site of demyelination and are suggested to play a functional role during disease progression. In this study, we hypothesize that metabolic oligodendrocyte injury, caused by feeding the copper chelator cuprizone, is a potent trigger for peripheral immune cell recruitment into the central nervous system (CNS). We used immunohistochemistry and flow cytometry to evaluate the composition, density, and activation status of infiltrating T lymphocytes in cuprizone-intoxicated mice and post-mortem progressive MS tissues. Our results demonstrate a predominance of CD8+ T cells along with high proliferation rates and cytotoxic granule expression, indicating an antigenic and pro-inflammatory milieu in the CNS of cuprizone-intoxicated mice. Numbers of recruited T cells and the composition of lymphocytic infiltrates in cuprizone-intoxicated mice were found to be comparable to those found in progressive MS lesions. Finally, amelioration of the cuprizone-induced pathology by treating mice with laquinimod significantly reduces the number of recruited T cells. Overall, this study provides strong evidence that toxic demyelination is a sufficient trigger for T cells to infiltrate the demyelinated CNS. Further investigation of the mode of action and functional consequence of T cell recruitment might offer promising new therapeutic approaches for progressive MS.
Collapse
Affiliation(s)
- Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Nedelcu
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Uta Chrzanowski
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany.,Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Christoph Schmitz
- Institute of Anatomy II, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Viktoria Gudi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Emily Santrau
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Theresa Greiner
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Analysing, Rostock University Medical Center, Rostock, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands.,Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
14
|
Sen MK, Almuslehi MSM, Shortland PJ, Coorssen JR, Mahns DA. Revisiting the Pathoetiology of Multiple Sclerosis: Has the Tail Been Wagging the Mouse? Front Immunol 2020; 11:572186. [PMID: 33117365 PMCID: PMC7553052 DOI: 10.3389/fimmu.2020.572186] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022] Open
Abstract
Multiple Sclerosis (MS) is traditionally considered an autoimmune-mediated demyelinating disease, the pathoetiology of which is unknown. However, the key question remains whether autoimmunity is the initiator of the disease (outside-in) or the consequence of a slow and as yet uncharacterized cytodegeneration (oligodendrocytosis), which leads to a subsequent immune response (inside-out). Experimental autoimmune encephalomyelitis has been used to model the later stages of MS during which the autoimmune involvement predominates. In contrast, the cuprizone (CPZ) model is used to model early stages of the disease during which oligodendrocytosis and demyelination predominate and are hypothesized to precede subsequent immune involvement in MS. Recent studies combining a boost, or protection, to the immune system with disruption of the blood brain barrier have shown CPZ-induced oligodendrocytosis with a subsequent immune response. In this Perspective, we review these recent advances and discuss the likelihood of an inside-out vs. an outside-in pathoetiology of MS.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Mohammed S M Almuslehi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia.,Department of Physiology, College of Veterinary Medicine, University of Diyala, Baqubah, Iraq
| | - Peter J Shortland
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jens R Coorssen
- Departments of Health Sciences and Biological Sciences, Faculties of Applied Health Sciences and Mathematics & Science, Brock University, St. Catharines, ON, Canada
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|