1
|
Broyles LMT, Huanca T, Conde E, Rosinger AY. Water insecurity may exacerbate food insecurity even in water-rich environments: Evidence from the Bolivian Amazon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176705. [PMID: 39389144 PMCID: PMC11567797 DOI: 10.1016/j.scitotenv.2024.176705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Globally, challenges with water and food are two of the most pressing problems people face. Yet hydrologically water-rich environments and rural environments are often overlooked in these discussions due to abundance of natural water resources. Here we test the relationship between water and food insecurity among 270 Tsimane' households in the Bolivian Amazon. Water challenges were evaluated with the Household Water Insecurity Experiences Scale (HWISE), water quality perception, objective water quality analyses, and water access via the JMP drinking water ladder. Food insecurity was measured with the Household Food Insecurity Access Scale (HFIAS), and quantitative measures of food frequency recall were used to further test the water and food insecurity relationship. Using multilevel mixed-effects linear regression, each point increase in HWISE score was associated with 0.47 point (95 % CI: 0.30, 0.62, p < 0.001) higher food insecurity, and households with access to improved water sources had between 1.25 and 1.36 points (95 % CI: -2.61, -0.01, p < 0.05) lower food insecurity compared to households reliant on surface water. These relationships held true independent of quantitative measures of both fish and meat consumption. Using mixed-effects logistic regression analyses, each point increase in HWISE score was associated with 43 % (95 % CI: 1.25-1.66, p < 0.001) increased odds of experiencing severe food insecurity. Households changing what was eaten due to experienced water problems was associated with 2.33 points (95 % CI: 0.41, 4.25, p < 0.05) higher food insecurity. This relationship held true independent of perceived water quality, indicating other structural water problems may be important here in the household water and food insecurity relationship. These results demonstrate that even in water-rich environments, like the Amazon, water and food insecurity are interconnected. Further, despite the challenging conditions, equitable structural interventions, like the development of improved water infrastructure, are critical for the provision of clean drinking water and may simultaneously help alleviate food insecurity.
Collapse
Affiliation(s)
- Lauren M T Broyles
- Population Research Institute, Pennsylvania State University, University Park, PA 16802, United States of America.
| | - Tomas Huanca
- Centro Boliviano de Investigación y Desarrollo Socio Integral, San Borja, Bolivia
| | - Esther Conde
- Centro Boliviano de Investigación y Desarrollo Socio Integral, San Borja, Bolivia
| | - Asher Y Rosinger
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA 16802, United States of America; Department of Anthropology, Pennsylvania State University, State College, PA 16802, United States of America.
| |
Collapse
|
2
|
Corral-García LS, Molina MC, Bautista LF, Simarro R, Espinosa CI, Gorines-Cordero G, González-Benítez N. Bacterial Diversity in Old Hydrocarbon Polluted Sediments of Ecuadorian Amazon River Basins. TOXICS 2024; 12:119. [PMID: 38393214 PMCID: PMC10892221 DOI: 10.3390/toxics12020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
The Ecuadorian Amazon rainforest stands out as one of the world's most biodiverse regions, yet faces significant threats due to oil extraction activities dating back to the 1970s in the northeastern provinces. This research investigates the environmental and societal consequences of prolonged petroleum exploitation and oil spills in Ecuador's Amazon. Conducted in June 2015, the study involved a comprehensive analysis of freshwater sediment samples from 24 locations in the Rio Aguarico and Napo basins. Parameters such as water and air temperature, conductivity, soil pH, and hydrocarbon concentrations were examined. Total petroleum hydrocarbon (TPH) concentrations ranged from 9.4 to 847.4 mg kg-1, with polycyclic aromatic hydrocarbon (PAH) levels varying from 10.15 to 711.1 mg kg-1. The pristane/phytane ratio indicated historic hydrocarbon pollution in 8 of the 15 chemically analyzed sediments. Using non-culturable techniques (Illumina), bacterial analyses identified over 350 ASV, with prominent families including Comamonadaceae, Chitinophagaceae, Anaeromyxobacteraceae, Sphingomonadaceae, and Xanthobacteraceae. Bacterial diversity, assessed in eight samples, exhibited a positive correlation with PAH concentrations. The study provides insights into how microbial communities respond to varying levels of hydrocarbon pollution, shedding light on the enduring impact of oil exploitation in the Amazonian region. Its objective is to deepen our understanding of the environmental and human well-being in the affected area, underscoring the pressing need for remedial actions in the face of ongoing ecological challenges.
Collapse
Affiliation(s)
- Lara S. Corral-García
- Centro de Investigación en Biodiversidad y Cambio Global, Department of Ecology, Universidad Autónoma de Madrid, C/Darwin, 2, 28049 Madrid, Spain
| | - María Carmen Molina
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| | - Luis Fernando Bautista
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain;
| | - Raquel Simarro
- Plant Pathology Laboratory (DTEVL), INIA-CSIC, Ctra, de La Coruña, Km 7.5, 28040 Madrid, Spain;
| | - Carlos Iván Espinosa
- Department of Biological and Agricultural Sciences, Universidad Técnica Particular de Loja, San Cayetano alto s/n, Loja 1101608, Ecuador;
| | - Guillermo Gorines-Cordero
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| | - Natalia González-Benítez
- Biodiversity and Conservation Unit, Department of Biology and Geology, Physics and Inorganic Chemistry, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Tulipán s/n, Mostoles, 28933 Madrid, Spain; (M.C.M.); (N.G.-B.)
| |
Collapse
|
3
|
González N, Souza MCO, Cezarette GN, Rocha BA, Devoz PP, Dos Santos LC, Barcelos GRM, Nadal M, Domingo JL, Barbosa F. Evaluation of exposure to multiple organic pollutants in riparian communities of the Brazilian Amazon: Screening levels and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168294. [PMID: 37924872 DOI: 10.1016/j.scitotenv.2023.168294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Organic pollutants are widely distributed in the environment. Due to their physical and chemical characteristics, they tend to be biomagnified in food chains, mainly in aquatic organisms. Therefore, food consumption is a significant route of lifelong exposure. Although the Amazon River basin contains the highest freshwater biodiversity on Earth, there is scarce literature focusing on the levels of organic pollutants in the local population. The present study was aimed at assessing the levels of several environmental pollutants (polycyclic aromatic hydrocarbons, bisphenols, parabens, and benzophenones) in urine samples from riverside communities along the Tapajós and Amazon Rivers in the Brazilian Amazon region. The results show a 100 % detection of naphthalene metabolites (namely, 1-hydroxy-naphthalene (1OH-NAP), 2-hydroxy-naphthalene (2OH-NAP)), with the highest levels belonging to benzylparaben (BzP) (17.3 ng/mL). Gender-specific analysis revealed that women had significantly higher levels of certain PAH metabolites (i.e., 1OH-NAP and 2-hydroxy-fluorene (2OH-FLU)) than men. In turn, most of the evaluated compounds were higher in urine samples from people living near the Amazon River, which presents increased traffic of boats and ships than the Tapajós River. On the other hand, the human health risk assessment suggested that all communities are at risk of suffering non-carcinogenic effects from exposure to PAHs. At the same time, they are also at risk of carcinogenic effects from exposure to benzo[a]pyrene metabolites. Thus, further studies are needed in order to evaluate the potential health effects of exposure to a mixture of these organic pollutants and other contaminants present in the area, such as mercury.
Collapse
Affiliation(s)
- Neus González
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| | - Gabriel Neves Cezarette
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Paula Pícoli Devoz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Cassulatti Dos Santos
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | | | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Warren-Vega WM, Campos-Rodríguez A, Zárate-Guzmán AI, Romero-Cano LA. A Current Review of Water Pollutants in American Continent: Trends and Perspectives in Detection, Health Risks, and Treatment Technologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4499. [PMID: 36901509 PMCID: PMC10001968 DOI: 10.3390/ijerph20054499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Currently, water pollution represents a serious environmental threat, causing an impact not only to fauna and flora but also to human health. Among these pollutants, inorganic and organic pollutants are predominantly important representing high toxicity and persistence and being difficult to treat using current methodologies. For this reason, several research groups are searching for strategies to detect and remedy contaminated water bodies and effluents. Due to the above, a current review of the state of the situation has been carried out. The results obtained show that in the American continent a high diversity of contaminants is present in the water bodies affecting several aspects, in which in some cases, there exists alternatives to realize the remediation of contaminated water. It is concluded that the actual challenge is to establish sanitation measures at the local level based on the specific needs of the geographical area of interest. Therefore, water treatment plants must be designed according to the contaminants present in the water of the region and tailored to the needs of the population of interest.
Collapse
Affiliation(s)
| | | | - Ana I. Zárate-Guzmán
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| | - Luis A. Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Facultad de Ciencias Químicas, Universidad Autónoma de Guadalajara, Av. Patria 1201, Zapopan C.P. 45129, Jalisco, Mexico
| |
Collapse
|
5
|
Rodríguez-Báez AS, Medellín-Garibay SE, Rodríguez-Aguilar M, Sagahón-Azúa J, Milán-Segoviaa RDC, Flores-Ramírez R. Environmental endocrine disruptor concentrations in urine samples from Mexican Indigenous women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38645-38656. [PMID: 35080728 DOI: 10.1007/s11356-021-18197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 05/26/2023]
Abstract
The Indigenous communities in Mexico show significant degrees of vulnerability to pollution due to the lack of knowledge of health risks, traditions, low levels of support, and restricted access to healthcare. As a result, exposure to environmental endocrine disruptors increases in these populations through plastic components or indoor air pollution. Therefore, the aim of the study was to evaluate the exposure to phthalate metabolites, 1-hydroxypyrene, and bisphenol A through biomonitoring data from indigenous Mexican women. A total of 45 women from the Tocoy community in San Luis Potosí, Mexico, were included. Urine samples were analyzed for Bisphenol A and 4 phthalate metabolites by ultra-performance liquid chromatography couples to tandem mass spectrometry; additionally, the 1-hydroxypyrene concentrations were evaluated by high-performance liquid chromatography coupled to a fluorescence detector. Among the main pollution sources were the use of plastic containers and burning garbage (98-100%). Indigenous women presented an exposure of 100% to mono-2-ethyl phthalate, mono-n-butyl phthalate, and 1-hydroxypyrene, with a median (25th-75th percentiles) of 17,478 (11,362-37,355), 113.8 (61.7-203.5), and 1.2 (0.9-1.7) µg/g creatinine, respectively. The major findings show urinary mono-2-ethyl phthalate concentrations higher than those measured from other studies. Therefore, these results show an impressive exposure to di(2-ethylhexyl) phthalate in Indigenous women. The current study reflects the absence of regulatory policies in marginalized populations. It highlights the need to design strategies that mitigate exposure and the importance of biological monitoring to evaluate and prevent health risk associated with exposure to environmental endocrine disruptors.
Collapse
Affiliation(s)
- Ana Socorro Rodríguez-Báez
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Susanna Edith Medellín-Garibay
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico.
| | - Maribel Rodríguez-Aguilar
- Department of Basic Sciences, Universidad de Quintana Roo, MéxicoCenter for Applied Research in Environment and Health, CIACYT, Autonomous University of San Luis Potosi, San Luis Potosi, Quintana Roo, Mexico
| | - Julia Sagahón-Azúa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rosa Del Carmen Milán-Segoviaa
- Department of Pharmacy, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, #6 Ave. Manuel Nava, C.P. 78210, San Luis Potosi, Mexico
| | - Rogelio Flores-Ramírez
- Coordination for Innovation and Application of Science and Technology (CIACYT), Autonomous University of San Luis Potosi, #550 Ave. Sierra Leona, C.P. 78210, San Luis Potosi, Mexico.
| |
Collapse
|
6
|
Díaz de León-Martínez L, Ortega-Romero MS, Barbier OC, Pérez-Herrera N, May-Euan F, Perera-Ríos J, Rodríguez-Aguilar M, Flores-Ramírez R. Evaluation of hydroxylated metabolites of polycyclic aromatic hydrocarbons and biomarkers of early kidney damage in indigenous children from Ticul, Yucatán, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52001-52013. [PMID: 33997934 DOI: 10.1007/s11356-021-14460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental persistent chemicals, produced by the incomplete combustion of solid fuels, found in smoke. PAHs are considered carcinogenic, teratogenic, and genotoxic. Children are susceptible to environmental pollutants, particularly those living in high-exposure settings. Therefore, the main objective of this study was to evaluate the exposure to PAHs through hydroxylated metabolites of PAHs (OH-PAHs), 1-hydroxynaphtalene (1-OH-NAP), and 2-hydroxynaphtalene (2-OH-NAP); 2-,3-, and 9-hydroxyfluorene (2-OH-FLU, 3-OH-FLU, 9-OH-FLU); 1-,2-,3-, and 4-hydroxyphenanthrene (1-OH-PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE); and 1-hydroxypyrene (1-OH-PYR), as well as kidney health through biomarkers of early kidney damage (osteopontin (OPN), neutrophil gelatinase-associated lipocalin (NGAL), α1-microglobulin (α1-MG), and cystatin C (Cys-C)) in children from an indigenous community dedicated to footwear manufacturing and pottery in Ticul, Yucatán, Mexico. The results show a high exposure to PAHs from the found concentrations of OH-PAHs in urine in 80.5% of the children in median concentrations of 18.4 (5.1-71.0) μg/L of total OH-PAHs, as well as concentrations of kidney damage proteins in 100% of the study population in concentrations of 4.8 (3-12.2) and 7.9 (6.5-13.7) μg/g creatinine of NGAL and Cys-C respectively, and 97.5% of the population with concentrations of OPN and α1-MG at mean concentrations of 207.3 (119.8-399.8) and 92.2 (68.5-165.5) μg/g creatinine. The information provided should be considered and addressed by the health authorities to establish continuous biomonitoring and programs to reduce para-occupational exposure in the vulnerable population, particularly children, based on their fundamental human right to health.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo S Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Olivier C Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | | | - Fernando May-Euan
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Javier Perera-Ríos
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maribel Rodríguez-Aguilar
- Department of Pharmacy, Health Sciences Division, Universidad de Quintana Roo, Av. Erick Paolo Martínez, Chetumal, Quintana Roo, Mexico.
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
7
|
Flores-Ramírez R, Ortega-Romero M, Christophe-Barbier O, Meléndez-Marmolejo JG, Rodriguez-Aguilar M, Lee-Rangel HA, Díaz de León-Martínez L. Exposure to polycyclic aromatic hydrocarbon mixtures and early kidney damage in Mexican indigenous population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23060-23072. [PMID: 33432415 DOI: 10.1007/s11356-021-12388-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The traditions and habits of indigenous communities in México include the use of wood and biomass burning to cook their food, which generates large amounts of smoke and therefore pollution inside the households. This smoke is composed of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) which at high levels of exposure cause carcinogenic, genotoxic effects and some chronic pulmonary and cardiovascular diseases; however, few studies relate kidney health with exposure to PAHs. Thus, the aim of this study was the evaluation of 10 hydroxylated metabolites of PAHs (OH-PAHs), and their correlation with biomarkers of early kidney damage renal (cystatin-C (Cys-C)), osteopontin (OPN), retinol-binding protein-4 (RPB-4), and neutrophil gelatinase-associated lipocalin (NGAL) in the indigenous population of the Huasteca Potosina in Mexico. The results demonstrate the presence of the OH-PAHs and kidney damage biomarkers in 100% of the study population. The OH-PAHs were shown in the following order of frequency, 1-OH-PYR > 4-OH-PHE > 2-OH-NAP > 1-OH-NAP > 9-OH-FLU > 3-OH-FLU > 2-OH-FLU > 3-OH-PHE and with the following percentages of detection 97.6, 87.8, 78, 73.2, 68.3, 31.7, 14.6, and 12.2%, respectively. NGAL and RBP-4 were present in above 85% of the population, with mean concentrations of 78.5 ± 143.9 and 139.4 ± 131.7 ng/g creatinine, respectively, OPN (64%) with a mean concentration of 642.6 ± 723.3 ng/g g creatinine, and Cys-C with a mean concentration of 33.72 ± 44.96 ng/g creatinine. Correlations were found between 1-OH-NAP, 2-OH-NAP, 9-OH-FLU, and 4-OH-PHE and the four biomarkers of early kidney damage. 3-OH-FLU with OPN and 1-OH-PYR correlated significantly with NGAL, OPN, and RPB-4.
Collapse
Affiliation(s)
- Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Manolo Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Olivier Christophe-Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), México, Ciudad de México, Mexico
| | - Jessica Guadalupe Meléndez-Marmolejo
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | | | - Héctor A Lee-Rangel
- Facultad de Agronomía y Veterinaria, Centro de Biociencias, Universidad Autonoma de San Luis Potosí, km. 14.5 Carr. San Luis Potosí-Matehuala, 78321, San Luis Potosí, SLP, Mexico
| | - Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, Colonia Lomas Segunda Sección, CP 78210, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
8
|
Abstract
As the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic continues to expand, healthcare resources globally have been spread thin. Now, the disease is rapidly spreading across South America, with deadly consequences in areas with already weakened public health systems. The Amazon region is particularly susceptible to the widespread devastation from Coronavirus disease 2019 (COVID-19) because of its immunologically fragile native Amerindian inhabitants and epidemiologic vulnerabilities. Herein, we discuss the current situation and potential impact of COVID-19 in the Amazon region and how further spread of the epidemic wave could prove devastating for many Amerindian people living in the Amazon rainforest.
Collapse
|
9
|
Is this a Real Choice? Critical Exploration of the Social License to Operate in the Oil Extraction Context of the Ecuadorian Amazon. SUSTAINABILITY 2020. [DOI: 10.3390/su12208416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purpose of this research was to critically analyze the social license to operate (SLO) for an oil company operating in Block 10, an oil concession located in the Ecuadorian Amazon. The specific study area is an important biodiversity hotspot, inhabited by indigenous villages. A mixed-methods approach was used to support a deeper understanding of SLO, grounded in participants’ direct experience. Semi-structured interviews (N = 53) were conducted with village leaders and members, indigenous associations, State institutions, and oil company staff, while household surveys were conducted with village residents (N = 346). The qualitative data informed a modified version of Moffat and Zhang’s SLO model, which was tested through structural equation modelling (SEM) analyses. Compared to the reference model, our findings revealed a more crucial role of procedural fairness in building community trust, as well as acceptance and approval of the company. Procedural fairness was found to be central in mediating the relationship between trust and the effects of essential services provided by the company (medical assistance, education, house availability) and sources of livelihoods (i.e., fishing, hunting, harvesting, cultivating, and waterway quality). The main results suggested that the concept of SLO may not appropriately apply without taking into account a community’s autonomy to decline company operation. To enhance procedural fairness and respect for the right of community self-determination, companies may need to consider the following: Establishing a meaningful and transparent dialogue with the local community; engaging the community in decision-making processes; enhancing fair distribution of project benefits; and properly addressing community concerns, even in the form of protests. The respect of the free prior informed consent procedure is also needed, through the collaboration of both the State and companies. The reduction of community dependence on companies (e.g., through the presence of developmental alternatives to oil extraction) is another important requirement to support an authentic SLO in the study area.
Collapse
|
10
|
Coronel Vargas G, Au WW, Izzotti A. Public health issues from crude-oil production in the Ecuadorian Amazon territories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134647. [PMID: 31837875 DOI: 10.1016/j.scitotenv.2019.134647] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Crude oil production (COP) is a high-pollution industry but the vast Amazon rainforest has been an active COP zone for South America. Although COP has been associated with a variety of health effects among workers around the world, such effects have not been adequately investigated in the Amazon region, especially at the community level. Therefore, this review was conducted to provide a report about COP in the Amazon of Ecuador and about its association with health status of indigenous human populations. Some epidemiological surveys in the Amazonian Territories indicate that COP has been associated with health problems in the surrounding populations, e.g. cancers in the stomach, rectum, skin, soft tissue, kidney and cervix in adults, and leukemia in children. In addition, some biomarkers and mechanistic studies show exposure effects. However, due to limitations from these studies, contradictory associations have been reported. Our review indicates that COP in the Amazonian territories of northern Ecuador was characterised by contamination which could have affected the indigenous and non-indigenous populations. However, there have not been dedicated investigations to provide relationships between the contamination and the subsequent exposure-health effects. Since indigenous populations have different lifestyle and cultures from regular city dwellers, systematic studies on their potential health hazards need to be conducted. Due to the remote locations and sparse populations, these new studies may involve the use of novel and genomic-based biomarkers as well as using high technology in the remote regions.
Collapse
Affiliation(s)
| | - William W Au
- University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, Via L.B. Albertis 2, Genoa, Italy; Policlinic Hospital San Martino, Genoa, Italy.
| |
Collapse
|
11
|
Maurice L, López F, Becerra S, Jamhoury H, Le Menach K, Dévier MH, Budzinski H, Prunier J, Juteau-Martineau G, Ochoa-Herrera V, Quiroga D, Schreck E. Drinking water quality in areas impacted by oil activities in Ecuador: Associated health risks and social perception of human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1203-1217. [PMID: 31470483 DOI: 10.1016/j.scitotenv.2019.07.089] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/21/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The unregulated oil exploitation in the Northern Ecuadorian Amazon Region (NEAR), mainly from 1964 to the 90's, led to toxic compounds largely released into the environment. A large majority of people living in the Amazon region have no access to drinking water distribution systems and collects water from rain, wells or small streams. The concentrations of major ions, trace elements, PAHs (polycyclic aromatic hydrocarbons) and BTEX (benzene, toluene, ethylbenzene, xylenes) were analyzed in different water sources to evaluate the impacts of oil extraction and refining. Samples were taken from the NEAR and around the main refinery of the country (Esmeraldas Oil Refinery/State Oil Company of Ecuador) and were compared with domestic waters from the Southern region, not affected by petroleum activities. In most of the samples, microbiological analysis revealed a high level of coliforms representing significant health risks. All measured chemical compounds in waters were in line with national and international guidelines, except for manganese, zinc and aluminum. In several deep-water wells, close to oil camps, toluene concentrations were higher than the natural background while PAHs concentrations never exceeded individually 2 ng·L-1. Water ingestion represented 99% of the total exposure pathways for carcinogenic and non-carcinogenic elements (mainly zinc) in adults and children, while 20% to 49% of the Total Cancer Risk was caused by arsenic concentrations. The health index (HI) indicates acceptable chronic effects for domestic use according the US-EPA thresholds. Nevertheless, these limits do not consider the cocktail effects of metallic and organic compounds. Furthermore, they do not include the social determinants of human exposure, such as socio-economic living conditions or vulnerability. Most (72%) of interviewed families knew sanitary risks but a discrepancy was observed between knowledge and action: religious beliefs, cultural patterns, information sources, experience and emotions play an important role front to exposure.
Collapse
Affiliation(s)
- Laurence Maurice
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Toulouse University, CNRS, IRD, 31400 Toulouse, France; Universidad Andina Simón Bolívar, Área de Salud, Toledo N22-80, P.O. Box 17-12-569, Quito, Ecuador.
| | - Fausto López
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Toulouse University, CNRS, IRD, 31400 Toulouse, France
| | - Sylvia Becerra
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Toulouse University, CNRS, IRD, 31400 Toulouse, France
| | - Hala Jamhoury
- Swiss Federal Institute of Technology in Zurich, Master Génie de l'Environnement, Switzerland
| | - Karyn Le Menach
- Bordeaux University - CNRS, EPOC UMR 5805, LPTC, F-33400 Talence, France
| | | | - Hélène Budzinski
- Bordeaux University - CNRS, EPOC UMR 5805, LPTC, F-33400 Talence, France
| | - Jonathan Prunier
- Laboratoire des Sciences du Bois, UMR EcoFoG, CNRS, Campus Agronomique de Kourou, 97387 Kourou, France; Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Toulouse University, CNRS, IRD, 31400 Toulouse, France
| | - Guilhem Juteau-Martineau
- Centre d'Études et de Recherches Travail Organisation Pouvoir (CERTOP), Maison de la Recherche, Université de Toulouse, 31058 Toulouse, France
| | - Valeria Ochoa-Herrera
- Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, P.O. 17-0901, Quito, Ecuador; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 2759, USA
| | - Diego Quiroga
- Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, P.O. 17-0901, Quito, Ecuador
| | - Eva Schreck
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Toulouse University, CNRS, IRD, 31400 Toulouse, France
| |
Collapse
|
12
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|