1
|
Rayo VU, Cervantes M, Hong MY, Hooshmand S, Jason N, Liu C, North E, Okamoto L, Storm S, Witard OC, Kern M. Almond Consumption Modestly Improves Pain Ratings, Muscle Force Production, and Biochemical Markers of Muscle Damage Following Downhill Running in Mildly Overweight, Middle-Aged Adults: A Randomized, Crossover Trial. Curr Dev Nutr 2024; 8:104432. [PMID: 39257478 PMCID: PMC11381864 DOI: 10.1016/j.cdnut.2024.104432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/12/2024] Open
Abstract
Background Almonds promote cardiometabolic health benefits; however, the ergogenic effect of almond supplementation on exercise recovery is less explored. Objectives We evaluated the impacts of raw, shelled, almonds on pain, muscle force production, and biochemical indices of muscle damage and inflammation during recovery from eccentrically biased exercise. Methods Using a randomized, crossover design, 26 healthy adults (37 ± 6 y) ran downhill (-10%) for 30 min at a heart rate corresponding to 65%-70% of maximal oxygen consumption followed by 3-d recovery periods after 8-wk adaptations to either ALMOND (2 oz/d) or isocaloric pretzel (CONTROL) feedings. Volunteers consumed the study food immediately following the run and each day during recovery. Fasted blood samples were collected, and pain and muscle function were tested before the downhill run and over 72 h of recovery. Results Downhill running elicited moderate muscle damage (Time: P < 0.001; η2 = 0.395) with creatine kinase (CK) peaking after 24 h (CONTROL: Δ + 180% from baseline compared with ALMOND: Δ + 171% from baseline). CK was reduced after 72 h in ALMOND (Δ - 50% from peak; P < 0.05) but not CONTROL (Δ - 33% from peak; P > 0.05). Maximal torque at 120°/s of flexion was greater (Trial: P = 0.004; η2 = 0.315) in ALMOND compared with CONTROL at 24 h (Δ + 12% between trials; P < 0.05) and 72 h (Δ + 9% between trials; P < 0.05) timepoints. Pain during maximal contraction was lower (Trial: P < 0.026; η2 = 0.225) in ALMOND compared with CONTROL after 24 h (Δ - 37% between trials; P < 0.05) and 48 h (Δ - 33% between trials; P < 0.05). No differences (P > 0.05) in vertical jump force, C-reactive protein concentrations, myoglobin concentrations, and total antioxidant capacity were observed between trials. Conclusions This study demonstrates that 2.0 oz/d of almonds modestly reduces pain, better maintains muscle strength, and reduces the CK response to eccentric-based exercise. This apparent effect of almond ingestion on exercise recovery has the potential to promote increased exercise adherence, which should be investigated in future studies.This trial was registered at the clinicaltrials.gov as NCT04787718.
Collapse
Affiliation(s)
- Vernon Uganiza Rayo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Maricarmen Cervantes
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Nathaniel Jason
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Elise North
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Lauren Okamoto
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Svitlana Storm
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | - Oliver C Witard
- Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| |
Collapse
|
2
|
Christ T, Ringleb M, Haunhorst S, Fennen L, Jordan PM, Wagner H, Puta C. The acute effects of pre- and mid-exercise carbohydrate ingestion on the immunoregulatory stress hormone release in experienced endurance athletes-a systematic review. Front Sports Act Living 2024; 6:1264814. [PMID: 38362064 PMCID: PMC10868406 DOI: 10.3389/fspor.2024.1264814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Background In times of physical stress, the body orchestrates a multisystemic regulatory response. The hormones epinephrine and norepinephrine play a role in the immediate regulation chain, while cortisol is involved in delayed regulation. The release of those stress hormones in response to exercise has previously been reported to elicit diverse immune reactions. Objective The aim of this systematic review was to examine and present the acute effects of immediate pre- and mid-exercise carbohydrate ingestion on cortisol, epinephrine and norepinephrine levels in experienced endurance athletes. Methods A systematic literature search was conducted using PubMed, Cochrane Library and Web of Science in accordance with PRISMA guidelines up to February 2023. Randomized controlled trials in English or German language were included if baseline and at least two follow-up measures of blood plasma or serum of chosen stress hormones (cortisol, epinephrine, norepinephrine) were collected in response to prolonged continuous endurance activity. Eligibility furthermore required an acute carbohydrate ingestion of at least 30 g of carbohydrates per hour no more than 30 min before start of the exercise, as well as a placebo-controlled study design. Results Eleven studies of moderate to high quality were included in this review. Carbohydrate ingestion of at least 30 g per hour was able to attenuate rises in cortisol concentration in majority of the included studies. Epinephrine levels were considerably lower with ingestion of carbohydrates compared to placebo in all studies. Norepinephrine concentrations were largely unaffected by acute carbohydrate feeding. Conclusion Pre- and mid-exercise ingestion of carbohydrates seems an effective dietary strategy to attenuate rises in cortisol and epinephrine levels and, thus, an effective countermeasure for endurance exercise-induced increases in stress hormone levels.
Collapse
Affiliation(s)
- Tabea Christ
- Department of Movement Science, University of Münster, Münster, Germany
| | - Miriam Ringleb
- Department of Movement Science, University of Münster, Münster, Germany
- Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany
- NeuroPsycho Immunology Research Unit, Department for Molecular and Cellular Sports Medicine, Institute for Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Simon Haunhorst
- Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Jena, Germany
| | - Lena Fennen
- Department of Movement Science, University of Münster, Münster, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Heiko Wagner
- Department of Movement Science, University of Münster, Münster, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich Schiller University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Jena, Germany
- Center for Sepsis Control & Care (CSCC), Jena University Hospital/Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Agha-Alinejad H, Ahmadi Hekmatikar AH, Ruhee RT, Shamsi MM, Rahmati M, Khoramipour K, Suzuki K. A Guide to Different Intensities of Exercise, Vaccination, and Sports Nutrition in the Course of Preparing Elite Athletes for the Management of Upper Respiratory Infections during the COVID-19 Pandemic: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031888. [PMID: 35162910 PMCID: PMC8835175 DOI: 10.3390/ijerph19031888] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023]
Abstract
Elite athletes use high-intensity training to maintain their fitness level. However, intense training can harm the immune system, making athletes suspectable to COVID-19 and negatively affecting their performance. In addition, the diet of athletes should be appreciated more as it is another influencer of the immune system, especially during the COVID 19 pandemic. The other important issue elite athletes face currently is vaccination and its possible intervention with their training. The present study attempts to discuss the impact of different training intensities, nutritional strategies, and vaccination on the immune system function in elite athletes. To this end, Scopus, ISC, PubMed, Web of Science, and Google Scholar databases were searched from 1988 to 2021 using the related keywords. The results of our review showed that although high-intensity exercise can suppress the immune system, elite athletes should not stop training in the time of infection but use low- and moderate-intensity training. Moderate-intensity exercise can improve immune function and maintain physical fitness. In addition, it is also better for athletes not to undertake high-intensity training at the time of vaccination, but instead perform moderate to low-intensity training. Furthermore, nutritional strategies can be employed to improve immune function during high-intensity training periods.
Collapse
Affiliation(s)
- Hamid Agha-Alinejad
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Teheran 1411713116, Iran; (H.A.-A.); (A.H.A.H.); (M.M.S.)
| | - Amir Hossein Ahmadi Hekmatikar
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Teheran 1411713116, Iran; (H.A.-A.); (A.H.A.H.); (M.M.S.)
| | | | - Mahdieh Molanouri Shamsi
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Tarbiat Modares University, Teheran 1411713116, Iran; (H.A.-A.); (A.H.A.H.); (M.M.S.)
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad 6816785468, Iran;
| | - Kayvan Khoramipour
- Institute of Neuropharmacology, Neuroscience Research Center, Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran
- Correspondence: or (K.K.); (K.S.); Tel.: +98-9120356383 (K.K.); +81-4-2947-6898 (K.S.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
- Correspondence: or (K.K.); (K.S.); Tel.: +98-9120356383 (K.K.); +81-4-2947-6898 (K.S.)
| |
Collapse
|
4
|
Tominaga T, Ikemura T, Yada K, Kanda K, Sugama K, Ma S, Choi W, Araya M, Huang J, Nakamura N, Suzuki K. The Effects of Beverage Intake after Exhaustive Exercise on Organ Damage, Inflammation and Oxidative Stress in Healthy Males. Antioxidants (Basel) 2021; 10:antiox10060866. [PMID: 34071378 PMCID: PMC8229363 DOI: 10.3390/antiox10060866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 12/20/2022] Open
Abstract
Strenuous exercise induces organ damage, inflammation and oxidative stress. To prevent exercise-induced organ damage, inflammation and oxidative stress, rehydrating may be an effective strategy. In the present study, we aimed to examine whether beverage intake after exhaustive exercise to recover from dehydration prevents such disorders. Thirteen male volunteers performed incremental cycling exercise until exhaustion. Immediately after exercise, the subjects drank an electrolyte containing water (rehydrate trial: REH) or did not drink any beverage (control trial: CON). Blood samples were collected before (Pre), immediately (Post), 1 h and 2 h after exercise. Urine samples were also collected before (Pre) and 2 h after exercise. We measured biomarkers of organ damage, inflammation and oxidative stress in blood and urine. Biomarkers of muscle, renal and intestinal damage and inflammation increased in the blood and urine after exercise. However, changes in biomarkers of organ damage and inflammation did not differ between trials (p > 0.05). The biomarker of oxidative stress, thiobarbituric acid reactive substances (TBARS), in plasma, showed different changes between trials (p = 0.027). One hour after exercise, plasma TBARS concentration in REH had a higher trend than that in CON (p = 0.052), but there were no significant differences between Pre and the other time points in each trial. These results suggest that beverage intake after exercise does not attenuate exercise-induced organ damage, inflammation or oxidative stress in healthy males. However, rehydration restores exercise-induced oxidative stress more quickly.
Collapse
Affiliation(s)
- Takaki Tominaga
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (W.C.); (M.A.); (J.H.)
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan;
| | - Tsukasa Ikemura
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.I.); (K.Y.); (N.N.)
| | - Koichi Yada
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.I.); (K.Y.); (N.N.)
| | - Kazue Kanda
- Future Innovation Institute, Waseda University, Shinjuku 162-0041, Japan; (K.K.); (K.S.)
| | - Kaoru Sugama
- Future Innovation Institute, Waseda University, Shinjuku 162-0041, Japan; (K.K.); (K.S.)
| | - Sihui Ma
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan;
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.I.); (K.Y.); (N.N.)
| | - Wonjun Choi
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (W.C.); (M.A.); (J.H.)
| | - Mayu Araya
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (W.C.); (M.A.); (J.H.)
| | - Jiapeng Huang
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.T.); (W.C.); (M.A.); (J.H.)
| | - Nobuhiro Nakamura
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.I.); (K.Y.); (N.N.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan; (T.I.); (K.Y.); (N.N.)
- Correspondence: ; Tel.: +81-42-947-6898
| |
Collapse
|
5
|
Bryl-Górecka P, Sathanoori R, Al-Mashat M, Olde B, Jögi J, Evander M, Laurell T, Erlinge D. Effect of exercise on the plasma vesicular proteome: a methodological study comparing acoustic trapping and centrifugation. LAB ON A CHIP 2018; 18:3101-3111. [PMID: 30178811 DOI: 10.1039/c8lc00686e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of actively released vesicles originating from a wide range of cell types. Characterization of these EVs and their proteomes in the human plasma provides a novel approach in clinical diagnostics, as they reflect physiological and pathological states. However, EV isolation is technically challenging with the current methods having several disadvantages, requiring large sample volumes, and resulting in loss of sample and EV integrity. Here, we use an alternative, non-contact method based on a microscale acoustic standing wave technology. Improved coupling of the acoustic resonator increased the EV recovery from 30% in earlier reports to 80%, also displaying long term stability between experiment days. We report a pilot study, with 20 subjects who underwent physical exercise. Plasma samples were obtained before and 1 h after the workout. Acoustic trapping was compared to a standard high-speed centrifugation protocol, and the method was validated by flow cytometry (FCM). To monitor the device stability, the pooled frozen plasma from volunteers was used as an internal control. A key finding from the FCM analysis was a decrease in CD62E+ (E-selectin) EVs 1 h after exercise that was consistent for both methods. Furthermore, we report the first data that analyse differential EV protein expression before and after physical exercise. Olink-based proteomic analysis showed 54 significantly changed proteins in the EV fraction in response to physical exercise, whereas the EV-free plasma proteome only displayed four differentially regulated proteins, thus underlining an important role of these vesicles in cellular communication, and their potential as plasma derived biomarkers. We conclude that acoustic trapping offers a fast and efficient method comparable with high-speed centrifugation protocols. Further, it has the advantage of using smaller sample volumes (12.5 μL) and rapid contact-free separation with higher yield, and can thus pave the way for future clinical EV-based diagnostics.
Collapse
Affiliation(s)
- Paulina Bryl-Górecka
- Department of Cardiology, Clinical Sciences, Lund University, Box 118, 221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Effects of Ingestion of Different Amounts of Carbohydrate after Endurance Exercise on Circulating Cytokines and Markers of Neutrophil Activation. Antioxidants (Basel) 2018; 7:antiox7040051. [PMID: 29614808 PMCID: PMC5946117 DOI: 10.3390/antiox7040051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
We aimed to examine the effects of ingestion of different amounts of carbohydrate (CHO) after endurance exercise on neutrophil count, circulating cytokine levels, and the markers of neutrophil activation and muscle damage. Nine participants completed three separate experimental trials consisting of 1 h of cycling exercise at 70% V·O2 max, followed by ingestion of 1.2 g CHO·kg body mass−1·h−1 (HCHO trial), 0.2 g CHO·kg body mass−1·h−1 (LCHO trial), or placebo (PLA trial) during the 2 h recovery phase in random order. Circulating glucose, insulin, and cytokine levels, blood cell counts, and the markers of neutrophil activation and muscle damage were measured. The concentrations of plasma glucose and serum insulin at 1 h after exercise were higher in the HCHO trial than in the LCHO and PLA trials. Although there were significant main effects of time on several variables, including neutrophil count, cytokine levels, and the markers of neutrophil activation and muscle damage, significant time × trial interactions were not observed for any variables. These results suggest that CHO ingestion after endurance exercise does not enhance exercise-induced increase in circulating neutrophil and cytokine levels and markers of neutrophil activation and muscle damage, regardless of the amount of CHO ingested.
Collapse
|
7
|
Resende NM, de Magalhães Neto AM, Bachini F, de Castro LEV, Bassini A, Cameron LC. Metabolic changes during a field experiment in a world-class windsurfing athlete: a trial with multivariate analyses. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:695-704. [PMID: 21978397 DOI: 10.1089/omi.2011.0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Physical exercise affects hematological equilibrium and metabolism. This study evaluated the biochemical and hematological responses of a male world-class athlete in sailing who is ranked among the top athletes on the official ISAF ranking list of windsurfing, class RS:X. The results describe the metabolic adaptations of this athlete in response to exercise in two training situations: the first when the athlete was using the usual training and dietary protocol, and the second following training and nutritional interventions based on a careful analysis of his diet and metabolic changes measured in a simulated competition. The intervention protocol for this study consisted of a 3-month facility-based program using neuromuscular training (NT), aerobic training (AT), and nutritional changes to promote anabolism and correct micronutrient malnutrition. Nutritional and training intervention produced an increase in the plasma availability of branched-chain amino acids (BCAAs), aromatic amino acids (AAAs), alanine, glutamate, and glutamine during exercise. Both training and nutritional interventions reduced ammonemia, uricemia, and uremia. In addition, we are able to correct a significant drop in potassium levels during races by correct supplementation. Due to the uniqueness of this experiment, these results may not apply to other windsurfers, but we nonetheless had the opportunity to characterize the metabolic adaptations of this athlete. We also proposed the importance of in-field metabolic analyses to the understanding, support, and training of world-class elite athletes.
Collapse
Affiliation(s)
- Nathália Maria Resende
- Laboratory of Biochemistry of Proteins, Federal University of State of Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Murphy EA, Davis JM, Brown AS, Carmichael MD, Ghaffar A, Mayer EP. Oat beta-glucan effects on neutrophil respiratory burst activity following exercise. Med Sci Sports Exerc 2007; 39:639-44. [PMID: 17414801 DOI: 10.1249/mss.0b013e3180306309] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Fatiguing exercise has been associated with a decrease in certain functions of neutrophils, whereas moderate exercise has generally been associated with an increase. Consumption of oat beta-glucan (ObetaG), a soluble fiber and mild immune system enhancer, may offset the immunosuppression associated with intense training and perhaps further enhance the benefits of moderate exercise. PURPOSE To test the effects of ObetaG consumption on neutrophil function and number after both moderate and fatiguing exercise. METHODS Male mice were assigned to one of six treatment groups. Fatiguing exercise mice (Ftg-ObetaG and Ftg-H2O) ran to volitional fatigue on a treadmill for three consecutive days, and moderate exercise mice (Mod-ObetaG and Mod-H2O) ran for six consecutive days for 1 h. Control mice (Con-ObetaG and Con-H2O) were exposed to the treadmill environment but did not run. ObetaG was consumed in the drinking water (approximately 0.6 mL x d(-1)) for 10 consecutive days. After rest or exercise on the last day of training, mice were given a 1-mL i.p. injection of thioglycollate. Mice were sacrificed 3 h later; neutrophils were harvested from the peritoneal cavity and counted, and their respiratory burst activity was measured using flow cytometry. RESULTS Both moderate exercise and ObetaG increased neutrophil burst activity, whereas fatiguing exercise had no effect. Neutrophil number was increased by fatiguing exercise and ObetaG, but not moderate exercise. There were no additive effects of exercise and ObetaG on either of these variables. CONCLUSION These data suggest that although not additive in their effects, both ObetaG and exercise can alter overall neutrophil respiratory burst activity (number and/or function), but only ObetaG increased both number and function, which may have important ramifications for defense against infection.
Collapse
Affiliation(s)
- E Angela Murphy
- Divison of Applied Physiology, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|