1
|
Bougault V, Valorso R, Sarda-Esteve R, Baisnee D, Visez N, Oliver G, Bureau J, Abdoussi F, Ghersi V, Foret G. Paris air quality monitoring for the 2024 Olympics and Paralympics: focus on air pollutants and pollen. Br J Sports Med 2024; 58:973-982. [PMID: 39054048 PMCID: PMC11420723 DOI: 10.1136/bjsports-2024-108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Exposure to air pollution can affect the health of individuals with respiratory disease, but may also impede the health and performance of athletes. This is potentially relevant for people travelling to and competing in the Olympic and Paralympic Games (OPG) in Paris. We describe anticipated air quality in Paris based on historical monitoring data and describe the impact of the process on the development of monitoring strategies for future international sporting events. METHODS Air pollutant data for July to September 2020-2023 and pollen data for 2015-2022 were provided by Airparif (particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3)) and RNSA stations in the Paris region. Airparif's street-level numerical modelling provided spatial data for the OPG venues. RESULTS The maximum daily mean PM2.5 was 11±6 µg/m3 at traffic stations, below the WHO recommended daily air quality threshold (AQT). Daily NO2 concentrations ranged from 5±3 µg/m3 in rural areas to 17±14 µgm3 in urban areas. Near traffic stations, this rose to 40±24 µg/m3 exceeding the WHO AQT. Both peaked around 06:00 and 20:00 UTC (coordinated universal time). The ambient O3 level exceeded the AQT on 20 days per month and peaked at 14:00 UTC. The main allergenic taxa from June to September was Poaceae (ie, grass pollen variety). CONCLUSION Air pollutant levels are expected to be within accepted air quality thresholds at the Paris OPG. However, O3 concentrations may be significantly raised in very hot and clear conditions and grass pollen levels will be high, prompting a need to consider and manage this risk in susceptible individuals.
Collapse
Affiliation(s)
| | - Richard Valorso
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Roland Sarda-Esteve
- CEA Orme des merisiers, UMR 8212, Laboratoire des Sciences du Climat et de l'Environnement, Saint-Aubin, France
| | - Dominique Baisnee
- CEA Orme des merisiers, UMR 8212, Laboratoire des Sciences du Climat et de l'Environnement, Saint-Aubin, France
| | - Nicolas Visez
- CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Université de Lille, Lille, France
- RNSA, Réseau National de Surveillance Aérobiologique, Brussieu, France
| | - Gilles Oliver
- RNSA, Réseau National de Surveillance Aérobiologique, Brussieu, France
| | | | | | | | - Gilles Foret
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| |
Collapse
|
2
|
Harris OD, Gonçalves PEO, Hung A, Stothers B, Bougault V, Sheel AW, Koehle MS. Ozone exposure limits cardiorespiratory function during maximal cycling exercise in endurance athletes. J Appl Physiol (1985) 2024; 136:1507-1515. [PMID: 38660726 DOI: 10.1152/japplphysiol.00085.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Ground-level ozone (O3) is a potent air pollutant well recognized to acutely induce adverse respiratory symptoms and impairments in pulmonary function. However, it is unclear how the hyperpnea of exercise may modulate these effects, and the subsequent consequences on exercise performance. We tested the hypothesis that pulmonary function and exercise capability would be diminished, and symptom development would be increased during peak real-world levels of O3 exposure compared with room air. Twenty aerobically trained participants [13 M, 7 F; maximal O2 uptake (V̇o2max), 64.1 ± 7.0 mL·kg-1·min-1] completed a three-visit double-blinded, randomized crossover trial. Following a screening visit, participants were exposed to 170 ppb O3 or room air (<10 ppb O3) on separate visits during exercise trials, consisting of a 25-min moderate-intensity warmup, 30-min heavy-intensity bout, and a subsequent time-to-exhaustion (TTE) performance test. No differences in O2 uptake or ventilation were observed during submaximal exercise between conditions. During the TTE test, we observed significantly lower end-exercise O2 uptake (-3.2 ± 4.3%, P = 0.004), minute ventilation (-3.2 ± 6.5%, P = 0.043), tidal volume (-3.6 ± 5.1%, P = 0.008), and a trend toward lower exercise duration in O3 compared with room air (-10.8 ± 26.5%, P = 0.092). As decreases in O2 uptake and alterations in respiratory pattern were also present at matched time segments between conditions, a limitation of oxygen transport seems likely during maximal exercise. A more comprehensive understanding of the direct mechanisms that limit oxygen transport during exercise in high-pollutant concentrations is key for mitigating performance changes.NEW & NOTEWORTHY We demonstrate that in highly trained endurance athletes, exposure to peak real-world levels of O3 air pollution (170 ppb) significantly diminishes O2 uptake along with corresponding changes in ventilation during maximal exercise. As no differences were observed during extended submaximal exercise, a combined effect of effective dose of pollution and exercise intensity on severity of responses seems likely.
Collapse
Affiliation(s)
- Owen D Harris
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patric E O Gonçalves
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andy Hung
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bennett Stothers
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Koehle
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Sports Medicine, Department of Family Practice, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Carvalho RB, Marmett B, Dorneles GP, da Silva IM, Romão PRT, da Silva Júnior FMR, Rhoden CR. O 3 concentration and duration of exposure are factors influencing the environmental health risk of exercising in Rio Grande, Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2733-2742. [PMID: 34415460 DOI: 10.1007/s10653-021-01060-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ozone (O3) represents a great threat to human health, contributing to respiratory diseases and premature mortality. This pollutant is often considered a critical pollutant in regions of southern Brazil. Exposure to this pollutant during vigorous physical activity should be the subject of thorough investigations due to the increased ventilation rate and altered breathing pattern present during vigorous physical activity that result in greater inhalation of O3. Thus, this study aimed to evaluate the health risk of exposure to low, mean, and high concentrations of O3 during different durations of exercise in the city of Rio Grande (southern Brazil). Healthy young men (n = 45) performed cardiopulmonary exercise testing, and ventilation rate data were collected to predict total ventilation and pollutant inhalation during a 5 km running session. The O3 concentration in the city of Rio Grande was obtained from data reported by the Copernicus Atmosphere Monitoring Service (CAMS). The environmental health risk was calculated based on the potential intake dose. The lowest, mean, and highest concentrations of O3 detected during the monitoring period were 32.5, 64.9, and 115.2 µg/m3, respectively. In all evaluated scenarios, there was a toxicological risk (RQ > 1), except when exercising when the O3 concentration was lowest for the shortest length of time (p < 0.001). As the concentration of O3 and the duration of the exposure increase, the health risk is increased. Therefore, O3 concentration and duration of exposure are factors influencing the health risk of exercising. These findings are extremely relevant in cities that have high levels of O3, such as the city of Rio Grande.
Collapse
Affiliation(s)
- Roseana Böek Carvalho
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| | - Bruna Marmett
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Gilson Pires Dorneles
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Igor Martins da Silva
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Flávio Manoel Rodrigues da Silva Júnior
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
- Programa de Pós-Graduação Em Ciências da Saúde, Faculdade de Medicina (FAMED), Universidade Federal do Rio Grande-FURG, Rio Grande, RS, Brazil
| | - Cláudia Ramos Rhoden
- Laboratory of Atmospheric Pollution, Graduate Program in Health Science, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
The Acute Effects of Exercising in Air Pollution: A Systematic Review of Randomized Controlled Trials. Sports Med 2021; 52:139-164. [PMID: 34499337 DOI: 10.1007/s40279-021-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The acute effects of air pollution (AP) exposure during physical activity have been studied. However, comprehensive systematic reviews are lacking, particularly regarding moderate-to-vigorous physical activity (MVPA). OBJECTIVE Our objective was to determine the acute health- and exercise-related effects of AP exposure during a bout of MVPA in healthy individuals. METHODS We searched for randomized controlled trials in MEDLINE, Embase, Cochrane CENTRAL, SPORTDiscus, Agricultural and Environmental Science Database, ClinicalTrials.gov, International Standard Randomised Controlled Trial Number Registry, and the World Health Organization (WHO) International Clinical Trials Registry Platform up to July 2020 without language or date restrictions. Studies including healthy subjects engaging in a bout of MVPA while exposed to one or more of the following air pollutants were eligible: particulate matter, black carbon, carbon monoxide, nitrogen dioxide, ozone, diesel exhaust, and traffic-related air pollution (TRAP). Main outcome measures were markers of pulmonary function, symptoms, cardiovascular function, cognitive function, systemic inflammation, and exercise response. The evidence was synthesized by vote counting based on direction of effect. RESULTS In total, 53 studies were included in the systematic review. Studies employed a heterogeneous mix of exercise protocols, AP interventions, and measured outcomes. Pooled results suggest ozone exposure during MVPA has an adverse effect on pulmonary function (100% [95% confidence interval (CI) 88-100], p < 0.001; high-certainty evidence) and reported symptoms (88% [95% CI 69-96], p < 0.001; low-certainty evidence). The effect of exposure to carbon monoxide, nitrogen dioxide, small engine exhaust, or diesel exhaust during MVPA on health- and exercise-related outcomes is uncertain because of insufficient evidence and the low to very low certainty of available evidence. DISCUSSION The evidence is strongest for ozone, exposure to which generally induced a reduction in pulmonary function and increased symptoms during MVPA. The research related to other outcome domains remains inconclusive. Although long-term exposure to AP is proven to be hazardous, the evidence for healthy individuals to forgo MVPA during periods of high (non-ozone) pollution remains weak. TRIAL REGISTRATION Retrospectively registered in PROSPERO (CRD42020188280) on 10 July 2020.
Collapse
|
5
|
Morici G, Cibella F, Cogo A, Palange P, Bonsignore MR. Respiratory Effects of Exposure to Traffic-Related Air Pollutants During Exercise. Front Public Health 2020; 8:575137. [PMID: 33425832 PMCID: PMC7793908 DOI: 10.3389/fpubh.2020.575137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
Traffic-related air pollution (TRAP) is increasing worldwide. Habitual physical activity is known to prevent cardiorespiratory diseases and mortality, but whether exposure to TRAP during exercise affects respiratory health is still uncertain. Exercise causes inflammatory changes in the airways, and its interaction with the effects of TRAP or ozone might be detrimental, for both athletes exercising outdoor and urban active commuters. In this Mini-Review, we summarize the literature on the effects of exposure to TRAP and/or ozone during exercise on lung function, respiratory symptoms, performance, and biomarkers. Ozone negatively affected pulmonary function after exercise, especially after combined exposure to ozone and diesel exhaust (DE). Spirometric changes after exercise during exposure to particulate matter and ultrafine particles suggest a decrease in lung function, especially in patients with chronic obstructive pulmonary disease. Ozone frequently caused respiratory symptoms during exercise. Women showed decreased exercise performance and higher symptom prevalence than men during TRAP exposure. However, performance was analyzed in few studies. To date, research has not identified reliable biomarkers of TRAP-related lung damage useful for monitoring athletes' health, except in scarce studies on airway cells obtained by induced sputum or bronchoalveolar lavage. In conclusion, despite partly counteracted by the positive effects of habitual exercise, the negative effects of TRAP exposure to pollutants during exercise are hard to assess: outdoor exercise is a complex model, for multiple and variable exposures to air pollutants and pollutant concentrations. Further studies are needed to identify pollutant and/or time thresholds for performing safe outdoor exercise in cities.
Collapse
Affiliation(s)
- Giuseppe Morici
- Biomedicine, Neuroscience and Advanced Diagnostics Department, University of Palermo, Palermo, Italy.,Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy
| | - Annalisa Cogo
- Biomedical Sport Studies Center, University of Ferrara, Ferrara, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria R Bonsignore
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, Italy.,Department of Health Promotion Sciences Maternal and Infantile Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Acute effects of short-term exposure to air pollution while being physically active, the potential for modification: A review of the literature. Prev Med 2020; 139:106195. [PMID: 32652130 PMCID: PMC8043242 DOI: 10.1016/j.ypmed.2020.106195] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/29/2020] [Accepted: 07/05/2020] [Indexed: 02/03/2023]
Abstract
The science behind the combined effect of (and possible interaction between) physical activity and air pollution exposure on health endpoints is not well established, despite the fact that independent effects of physical activity and air pollution on health are well known. The objective of this review is to systematically assess the available literature pertaining to exposure to air pollution while being physically active, in order to assess statistical interaction. Articles published during 2000-2020 were identified by searching PubMed, Science Direct, and ProQuest Agricultural & Environmental Science Database for terms encompassing air pollution and exercise/physical activity. Articles were included if they examined the following four scenarios: at rest in clean air, physical activity in clean air, at rest in polluted air, and physical activity in polluted air. Risk of bias assessment was performed on all included articles. We identified 25 articles for inclusion and determined risk of bias was low to moderate. Nine articles identified evidence of statistical interaction between air pollution exposure and physical activity, while 16 identified no such interaction. However, pollutant levels, exercise intensity, and the population studied appeared to influence statistical interaction. Even in low levels of air pollution, low-intensity activities (i.e., walking), may intensify the negative impacts of air pollution, particularly among those with pre-existing conditions. However, among healthy adults, the review suggests that exercise is generally beneficial even in high air pollution environments. Particularly, the review indicates that moderate to high-intensity exercise may neutralize any short-term negative effects of air pollution.
Collapse
|
7
|
Pramitha E, Haryanto B. Effect of Exposure to 2.5 μm Indoor Particulate Matter on Adult Lung Function in Jakarta. Osong Public Health Res Perspect 2019; 10:51-55. [PMID: 31065530 PMCID: PMC6481574 DOI: 10.24171/j.phrp.2019.10.2.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Objectives Lung function impairment due to exposure to indoor air pollution of particulate matter size 2.5 micrometers (PM2.5) is not well documented in Jakarta. Methods To assess whether there is an association between indoor PM2.5 concentration and lung function impairment among the adult population, a cross-sectional design was implemented. There were 109 adults selected aged between 20 years and 65 years from the Pulo Gadung industrial area, East Jakarta. Association and logistic regression analysis were implemented for statistical analysis of the data. Results The average exposure to indoor PM2.5 was 308 μg/m3. There were 38.5% of participants that had lung function impairment. PM2.5 concentration was found to be associated with lung function impairment among the adult population living in Pulo Gadung industrial area after controlling for gender, duration of exposure, ventilation, smoking status, and humidity. Conclusion The results of this study suggest that PM2.5 concentrations in the Pulo Gadung industrial area may be the main contributor to the impairment of lung function for adults living in the surrounding residential area.
Collapse
Affiliation(s)
- Eky Pramitha
- Research Center for Climate Change, Universitas Indonesia, West Java, Indonesia
| | - Budi Haryanto
- Research Center for Climate Change, Universitas Indonesia, West Java, Indonesia.,Department of Environmental Health, Faculty of Public Health, Universitas Indonesia, West Java, Indonesia
| |
Collapse
|
8
|
Pun VC, Ho KF. Blood pressure and pulmonary health effects of ozone and black carbon exposure in young adult runners. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1-6. [PMID: 30530214 DOI: 10.1016/j.scitotenv.2018.11.465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Physical activity has been shown to promote health and well-being, however, exercising in environments with high level of air pollution might increase the risk of cardio-respiratory impairments. In this crossover study, we constructed linear mixed models to investigate the impact of short-term exposure to black carbon (BC) and ozone on blood pressure and pulmonary functions among 30 healthy adult runners after 30-minute run on a clean and polluted route on separate days in August 2015 in Hong Kong. Runners were on average 20.6 years old, with mean body mass index of 20.3 kg/m2. Air pollution concentrations were higher in the polluted route than in the clean route, with the highest difference in BC (5.4 μg/m3 versus 1.3 μg/m3). In single-pollutant models, no significant association was found between air pollution and changes in blood pressures, forced vital capacity, forced expiratory volume in 1 s, peak expiratory flow and fractional exhaled nitric oxide, after adjusting for gender, type of route, temperature and relative humidity. When further adjusting for both BC and ozone simultaneously, increment in BC became statistically significantly associated with increase in systolic blood pressure (relative risk = 3.18; 95% CI: 0.24, 6.13) after running exercise. Stratified analysis further shows that the significant adverse association between systolic blood pressure and BC was only observed in the polluted route (e.g., relative risk = 4.51, 95% CI: 0.75, 8.27 in two-pollutant). Our finding of BC is consistent with existing literature, while further studies with greater sample size and longer exposure time are needed to investigate the effects of ozone to cardio-respiratory functions in runners. Given that exercise has clear health benefits, one should consider ways to minimize the air pollution exposure.
Collapse
Affiliation(s)
- Vivian C Pun
- Jockey Club School of Public Health and Primary Medicine, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territory, Hong Kong.
| | - Kin-Fai Ho
- Jockey Club School of Public Health and Primary Medicine, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territory, Hong Kong
| |
Collapse
|
9
|
Qin F, Yang Y, Wang ST, Dong YN, Xu MX, Wang ZW, Zhao JX. Exercise and air pollutants exposure: A systematic review and meta-analysis. Life Sci 2018; 218:153-164. [PMID: 30582950 DOI: 10.1016/j.lfs.2018.12.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 11/17/2022]
Abstract
This review aims to systematically review and synthesize scientific evidence for the influence of air pollution exposure and outdoor exercise on health. We conducted a literature search in the PubMed, Cochrane, EMBASE, and Web of Science for articles that evaluated the combination effect of air pollution exposure and exercise on health. Questionnaires regarding exposure history, or studies examining indoor air pollution were excluded. Each included study needs to have clear exercise intervention plan. The pooled estimates of the combination effect of air pollution exposure and outdoor exercise on health were calculated in the meta-analysis. The quality of each included study was assessed and the quality of evidence for each outcome assessed in the meta-analysis was also measured. Twenty-five studies were identified. Six studies addressed ozone exposure, four diesel exhaust exposure, six traffic-related air pollution, ten particulate matter (PM) exposure. Only peak expiratory flow (effect size [ES] = -0.238, 95% confidence interval [CI] = -0.389, -0.088) was found to be significantly decreased after exercise intervention in a polluted environment in the meta-analysis. Seven studies reported exposure to air pollutant during exercise was associated with an increased risk of airway inflammation and decrements in pulmonary function. Six studies discovered that exposure of traffic pollution or high PM during exercise may contribute to changes in blood pressure, systemic conduit artery function and micro-vascular function. The combination effect of air pollution and exercise was found to be associated with the increased risk of potential health problems of cardiopulmonary function, immune function, and exercise performance.
Collapse
Affiliation(s)
- Fei Qin
- School of Physical Education, Jinan University, Guangzhou, China; Exercise Biological Center, China institute of sport science, Beijing, China
| | - Yan Yang
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, USA
| | - Song-Tao Wang
- School of Physical Education & Sport Science, South China Normal University, Guangzhou, China
| | - Ya-Nan Dong
- Exercise Biological Center, China institute of sport science, Beijing, China
| | - Min-Xiao Xu
- Exercise Biological Center, China institute of sport science, Beijing, China
| | - Zhong-Wei Wang
- Exercise Biological Center, China institute of sport science, Beijing, China
| | - Jie-Xiu Zhao
- Exercise Biological Center, China institute of sport science, Beijing, China.
| |
Collapse
|
10
|
Boukelia B, Fogarty MC, Davison RCR, Florida-James GD. Diurnal physiological and immunological responses to a 10-km run in highly trained athletes in an environmentally controlled condition of 6 °C. Eur J Appl Physiol 2016; 117:1-6. [PMID: 27830328 PMCID: PMC5306325 DOI: 10.1007/s00421-016-3489-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022]
Abstract
Purpose The Clara cell protein CC16, secreted from Clara cells in the lung, is discussed as a potential biomarker for toxic effects on the airways. An increased concentration of CC16 in serum may be caused by increased permeability of the lungs. To investigate the changes in P-CC16 in response to an intense exercise bout performed at different times of day (9 am and 4 pm) of highly trained individuals. Method Using a crossover randomized design, 8 runners (mean VO2max 71 ml kg−1 min−1, SD 6) performed a 10-km time trial run, at 9 am and 4 pm, in an environmental chamber set at 6 °C. Lung function tests and blood sampling occurred at baseline, immediately post and 1 h post time trial. Result Diurnal differences (P < 0.05) were found for blood neutrophil and lymphocyte counts; with higher values at 4 pm. P-CC16 was higher at the pre- and post-trial time point at 9 am compared to 4 pm. Lung function was not different between or within trials. Conclusion Morning trial in cold condition caused more physiological strain compared to the same trial in the evening. However, this extra stress caused by zeitgebers could be a useful strategy for athletes, coaches, and general population to improve their running performance and protect their health in cold conditions in the long-term plan.
Collapse
Affiliation(s)
- Boukhemis Boukelia
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK.
| | - M C Fogarty
- Department of Sport, Health and Exercise Science, University of Hull, Cottingham Road, Kingston-upon-Hull, UK
| | - R C R Davison
- Institute of Clinical Exercise and Health Science, University of the West of Scotland, Paisley, UK
| | - G D Florida-James
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh, EH11 4BN, UK
| |
Collapse
|
11
|
Kahle JJ, Neas LM, Devlin RB, Case MW, Schmitt MT, Madden MC, Diaz-Sanchez D. Interaction effects of temperature and ozone on lung function and markers of systemic inflammation, coagulation, and fibrinolysis: a crossover study of healthy young volunteers. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:310-6. [PMID: 25514459 PMCID: PMC4384199 DOI: 10.1289/ehp.1307986] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/12/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Trends in climate suggest that extreme weather events such as heat waves will become more common. High levels of the gaseous pollutant ozone are associated with elevated temperatures. Ozone has been associated with respiratory diseases as well as cardiovascular morbidity and mortality and can reduce lung function and alter systemic markers of fibrinolysis. The interaction between ozone and temperature is unclear. METHODS Sixteen healthy volunteers were exposed in a randomized crossover study to 0.3 ppm ozone and clean air for 2 hr at moderate (22°C) temperature and again at an elevated temperature (32.5°C). In each case lung function was performed and blood taken before and immediately after exposure and the next morning. RESULTS Ozone exposure at 22°C resulted in a decrease in markers of fibrinolysis the next day. There was a 51.8% net decrease in PAI-1 (plasminogen activator inhibitor-1), a 12.1% net decrease in plasminogen, and a 17.8% net increase in D-dimer. These significantly differed from the response at 32.5°C, where there was a 44.9% (p = 0.002) and a 27.9% (p = 0.001) increase in PAI-1 and plasminogen, respectively, and a 12.5% (p = 0.042) decrease in D-dimer. In contrast, decrements in lung function following ozone exposure were comparable at both moderate and elevated temperatures (forced expiratory volume in 1 sec, -12.4% vs. -7.5%, p > 0.05). No changes in systemic markers of inflammation were observed for either temperature. CONCLUSION Ozone-induced systemic but not respiratory effects varied according to temperature. Our study suggests that at moderate temperature ozone may activate the fibrinolytic pathway, while at elevated temperature ozone may impair it. These findings provide a biological basis for the interaction between temperature and ozone on mortality observed in some epidemiologic studies.
Collapse
Affiliation(s)
- Juliette J Kahle
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.
Collapse
Affiliation(s)
- Luisa V Giles
- School of Kinesiology, University of British Columbia, 210-6081 University Blvd, Vancouver, BC, V6T 1Z1, Canada,
| | | |
Collapse
|
13
|
Gomes EC, Allgrove JE, Florida-James G, Stone V. Effect of vitamin supplementation on lung injury and running performance in a hot, humid, and ozone-polluted environment. Scand J Med Sci Sports 2011; 21:e452-60. [PMID: 22092484 DOI: 10.1111/j.1600-0838.2011.01366.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2011] [Indexed: 11/29/2022]
Abstract
In this study, the effect of vitamin C and E supplementation on lung injury and performance of runners were analyzed. Using a randomized, double-blinded, crossover design, nine runners participated in two experimental trials: a 2-week Vitamin trial (vitamin C = 500 mg/day + vitamin E = 100 IU/day) and a 2-week Placebo trial. At the end of each supplementation period the runners performed an 8-km time-trial run in a hot (31°C), humid (70% rh), and ozone-polluted (0.10 ppm O(3)) environmental chamber. Nasal lavage and blood samples were collected pre-, post-, and 6-h post-exercise to assess antioxidant status and CC16 as lung injury marker. Higher plasma (pre- and post-exercise) and nasal lavage (post-exercise) antioxidant concentration were found for the Vitamin trial. Nevertheless, this did not result in performance differences (Vitamin trial: 31:05 min; Placebo trial: 31:54 min; P = 0.075) even though significant positive correlations were found between antioxidant concentration and improvement in time to complete the run. CC16 was higher post-exercise in the Placebo trial (P < 0.01) in both plasma and nasal lavage. These findings suggest that antioxidant supplementation might help to decrease the lung injury response of runners when exercising in adverse conditions, but has little effect on performance.
Collapse
Affiliation(s)
- E C Gomes
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
14
|
Impact of heat and pollution on oxidative stress and CC16 secretion after 8 km run. Eur J Appl Physiol 2011; 111:2089-97. [DOI: 10.1007/s00421-011-1839-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022]
|