1
|
Tsugaya S, Sasaki A, Arai S, Nomura T, Milosevic M. Frequency-dependent corticospinal facilitation following tibialis anterior neuromuscular electrical stimulation. Neuroscience 2024:S0306-4522(24)00737-1. [PMID: 39701273 DOI: 10.1016/j.neuroscience.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
The optimal stimulation frequency for inducing neuromodulatory effects remains unclear. The purpose of our study was to investigate the effect of neuromuscular electrical stimulation (NMES) with different frequencies on cortical and spinal excitability. Thirteen able-bodied individuals participated in the experiment involving NMES: (i) low-frequency at 25 Hz, (ii) high-frequency at 100 Hz, and (iii) mixed-frequency at 25 and 100 Hz switched every one second. All interventions were applied on the tibialis anterior muscle using a 10 sec ON / 10 sec OFF duty cycle for 10 min, using motor-level NMES at 120 % of the individual motor threshold for each stimulating frequency. Assessments were performed at baseline, immediately after, and 30 min after the interventions. Corticospinal excitability and intracortical inhibition were examined using transcranial magnetic stimulation by assessing the motor evoked potentials and cortical silent period, respectively. Spinal motoneuron excitability and neuromuscular propagation were assessed using peripheral nerve stimulation by evaluating F-wave and maximum motor (Mmax) responses, respectively. Maximal voluntary contraction (MVC) was evaluated during isometric dorsiflexion force exertion. Motor performance was also evaluated during the ankle dorsiflexion force-matching task. Our results showed that mixed frequency was most effective in modulating corticospinal excitability, although motor performance was not affected by any intervention. The cortical silent period was prolonged and Mmax was inhibited by all frequencies, while the F-wave and MVC were unaffected. Mixed-frequency stimulation could recruit a more diverse range of motor units, which are recruited in a stimulus frequency-specific manner, than single-frequency stimulation, and thus may have affected corticospinal facilitation.
Collapse
Affiliation(s)
- Shota Tsugaya
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Atsushi Sasaki
- Graduate School of Engineering Science, Osaka University, Osaka, Japan; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA
| | - Suzufumi Arai
- Graduate School of Engineering Science, Osaka University, Osaka, Japan; Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Osaka University, Osaka, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Osaka University, Osaka, Japan; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, FL, USA; Department of Biomedical Engineering, University of Miami, FL, USA.
| |
Collapse
|
2
|
Lee J, Lee SH, Kim H, Chung SW. Effect of electrical muscle stimulation on the improvement of deltoid muscle atrophy in a rat shoulder immobilization model. J Orthop Res 2024; 42:2634-2645. [PMID: 39097824 DOI: 10.1002/jor.25943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/24/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all p < 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all p < 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.
Collapse
Affiliation(s)
- Jeongkun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Su Hyun Lee
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Hyuntae Kim
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
3
|
Yoshioka Y, Oshima Y, Sato S, Tamaki A, Hamada R, Miyasaka J, Hata K, Ito T, Ikeguchi R, Hatano E, Matsuda S. Neuromuscular electrical stimulation, muscle mass, and physical function decline in the early phase after living donor liver transplantation. Liver Transpl 2024; 30:1264-1272. [PMID: 38937941 DOI: 10.1097/lvt.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/19/2024] [Indexed: 06/29/2024]
Abstract
This study aims to investigate the effects of neuromuscular electrical stimulation (NMES) in addition to conventional early mobilization in the early postoperative period after living donor liver transplantation (LTx) on body composition and physical function. This was a retrospective single-center cohort study. Adult subjects who were admitted for living donor LTx from 2018 to 2023 were included in the analysis. After April 2020, patients underwent 4 weeks of NMES in addition to conventional rehabilitation. The skeletal muscle mass index, body cell mass, and physical function, including the 6-minute walking distance, were assessed before surgery and at discharge, and changes in these outcomes were compared before and after the introduction of NMES. Sixty-one patients were in the NMES group, and 53 patients before the introduction of NMES were in the control group. ANCOVA with etiology, obstructive ventilatory impairment, Child-Pugh classification, and initial body composition value as covariates demonstrated that there was a significantly smaller decline of body cell mass (-2.9±2.7 kg vs. -4.4±2.7 kg, p = 0.01), as well as of the skeletal muscle mass index (-0.78±0.73 kg/m 2 vs. -1.29±1.21 kg/m 2 , p = 0.04), from baseline to discharge in the NMES group than in the control group; thus, the decline after surgery was suppressed in the NMES group. Four weeks of NMES, in addition to conventional rehabilitation in the early period after LTx, may attenuate the deterioration of muscle mass. It is suggested that NMES is an option for developing optimized rehabilitation programs in the acute postoperative period after LTx.
Collapse
Affiliation(s)
- Yuji Yoshioka
- Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | - Yohei Oshima
- Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | - Susumu Sato
- Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Tamaki
- Department of Physical Therapy, School of Rehabilitation, Hyogo Medical University, Hyogo, Japan
| | - Ryota Hamada
- Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| | | | - Koichiro Hata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Ito
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Rehabilitation Unit, Kyoto University Hospital, Kyoto, Japan
| |
Collapse
|
4
|
Ackermann PW, Juthberg R, Flodin J. Unlocking the potential of neuromuscular electrical stimulation: achieving physical activity benefits for all abilities. Front Sports Act Living 2024; 6:1507402. [PMID: 39712079 PMCID: PMC11660796 DOI: 10.3389/fspor.2024.1507402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/15/2024] [Indexed: 12/24/2024] Open
Abstract
Neuromuscular Electrical Stimulation (NMES) uses electrical impulses to induce muscle contractions, providing benefits in rehabilitation, muscle activation, and as an adjunct to exercise, particularly for individuals experiencing immobilization or physical disability. NMES technology has significantly progressed, with advancements in device development and a deeper understanding of treatment parameters, such as frequency, intensity, and pulse duration. These improvements have expanded NMES applications beyond rehabilitation to include enhanced post-exercise recovery, improved blood glucose uptake, and increased lower limb venous return, potentially reducing thrombotic risks. Despite its benefits, NMES faces challenges in user compliance, often due to improper electrode placement and discomfort during treatment. Research highlights the importance of optimizing stimulation parameters, including electrode positioning, to improve both comfort and treatment efficacy. Recent innovations, such as automated processes for locating optimal stimulation points and adaptable electrode sizes, aim to address these issues. When combined with wearable technologies, these innovations could improve NMES treatment adherence and deliver more consistent, long-term therapeutic outcomes for patients with various physical limitations. Together, these developments indicate a promising future for NMES, presenting a valuable tool to enhance the benefits of physical activity across diverse populations, from rehabilitative care to broader health and wellness applications.
Collapse
Affiliation(s)
- Paul W. Ackermann
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Robin Juthberg
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Flodin
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Centorbi M, Di Martino G, Della Valle C, Buonsenso A, Calcagno G, Fiorilli G, di Cagno A. Enhancing Physical and Cognitive Efficiency in Elderly Individuals at Risk for Dementia Using Whole-Body Electrostimulation: A Randomized Controlled Trial. J Funct Morphol Kinesiol 2024; 9:246. [PMID: 39584899 PMCID: PMC11586937 DOI: 10.3390/jfmk9040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024] Open
Abstract
Objective: The aim of this randomized controlled trial (RCT) was to assess the impact of a 12-week intervention of two 20-min sessions per week, combining aerobic exercise with whole-body electromyostimulation (WB-EMS), on physical and cognitive performance in the elderly. Methods: A total of 61 participants (age = 71 ± 5.64 years), healthy or at risk for dementia, were randomly assigned to an experimental training group (ETG, n = 33) and a control group (CON, n = 28). Participants underwent 20-min aerobic training sessions, with intensity increasing from 60% to 80% of heart rate reserve (HRR), with and without continuous WB-EMS stimulation (35 Hz, 350 μs). Results: Significant time/effects for both the ETG and CON were found in the physical performance tests, with significant time*group interactions favoring the ETG for the arm curl test (p < 0.001) and the sit-to-stand test, with significant differences between groups (p = 0.001), as well as for the hand grip test (p < 0.001) and the 6-min walking test (p < 0.001), with significant time*group interactions (p = 0.003). Both groups improved their performance on the soda pop test (p < 0.001). ETG outperformed CON in memory performance (PROSA, p = 0.046; RAVLT immediate recall, p < 0.001) and on selective attention and visuospatial processing (attention matrices, p = 0.014). Some cognitive tests showed no significant improvement, likely due to the short intervention period for cognitive function (MMSE, p = 0.628; TMT, p = 0.698; Stroop error, p = 0.188) or memory performance (PROSA, p = 0.338). Conclusion: The absence of decline suggests a protective effect of physical activity. WB-EMS, combined with aerobic training, enhances the benefits of physical activity and helps counteract cognitive decline in older adults.
Collapse
Affiliation(s)
- Marco Centorbi
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (M.C.); (G.D.M.); or (C.D.V.); (G.F.)
| | - Giulia Di Martino
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (M.C.); (G.D.M.); or (C.D.V.); (G.F.)
| | - Carlo Della Valle
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (M.C.); (G.D.M.); or (C.D.V.); (G.F.)
- Department of Neurosciences, Biomedicine and Movement, University of Verona, 37314 Verona, Italy
| | - Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (M.C.); (G.D.M.); or (C.D.V.); (G.F.)
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (M.C.); (G.D.M.); or (C.D.V.); (G.F.)
| | - Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy; (M.C.); (G.D.M.); or (C.D.V.); (G.F.)
| | - Alessandra di Cagno
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
- Department of Human Sciences, Guglielmo Marconi University, 00193 Rome, Italy
| |
Collapse
|
6
|
Borzuola R, Caricati V, Parrella M, Scalia M, Macaluso A. Frequency-dependent effects of superimposed NMES on spinal excitability in upper and lower limb muscles. Heliyon 2024; 10:e40145. [PMID: 39568857 PMCID: PMC11577215 DOI: 10.1016/j.heliyon.2024.e40145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Superimposing neuromuscular electrical stimulation (NMES) on voluntary contractions has proven to be highly effective for improving muscle strength and performance. These improvements might involve specific adaptations occurring at cortical and spinal level. The effects of NMES on corticospinal activation seem to be frequency dependent and differ between upper and lower limb muscles. The aim of this study was to investigate acute responses in spinal excitability, as measured by H-reflex amplitude of flexor carpi radialis (FCR) and soleus (SOL) muscles, after NMES superimposed on voluntary contractions (NMES + ISO) at two different pulse frequencies (40 and 80 Hz). Conditions involved fifteen intermittent contractions at submaximal level. Before and after each condition, H-reflexes were elicited in FCR and SOL muscles. H-reflex amplitudes increased in FCR and SOL following both NMES + ISO at 40 and 80 Hz. The potentiation of the H-reflex was greater following the 40 Hz condition compared to 80 Hz, although no differences between muscles emerged. These findings indicated that superimposing NMES has an excitatory effect on spinal motoneurons in both upper and lower limb muscles with an overall greater response after low frequency NMES. Such facilitation could be associated to enhanced somatosensory stimuli conjunctly with higher supraspinal downward commands.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Valerio Caricati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
7
|
Baker J, Efthimiou T, Gartus A, Elsenaar A, Mehu M, Korb S. Computer-controlled electrical stimulation of facial muscles by facial neuromuscular electrical stimulation (fNMES): Hardware and software solutions. J Neurosci Methods 2024; 411:110266. [PMID: 39187073 DOI: 10.1016/j.jneumeth.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Computer controlled electrical stimulation of facial muscles is a promising method to study facial feedback effects, though little guidance is available for new adopters. NEW METHOD Facial Neuromuscular Electrical Stimulation (fNMES) offers a spatially and temporally precise means of manipulating facial muscles during experiments, and can be combined with EEG to study the neurological basis of facial feedback effects. Precise delivery of stimulation requires hardware and software solutions to integrate stimulators and a stimulus-presenting computer. We provide open-source hardware schematics and relevant computer code in order to achieve this integration, so as to facilitate the use of fNMES in the laboratory. RESULTS Hardware schematics are provided for the building of a bespoke control module, which allows researchers to finely control stimulator output whilst participants complete computer tasks. In addition, we published code that new adopters of NMES can use within their experiments to control the module and send event triggers to another computer. These hard- and software solutions were successfully used to investigate the effects of facial muscle activation on felt and perceived emotion. We summarise these findings and discuss the integration of fNMES with EEG and peripheral physiological measures. COMPARISON WITH EXISTING METHODS Our inexpensive hardware solution allows fNMES parameters to be computer controlled, and thus allows to stimulate facial muscles with high precision. This opens up new possibilities to investigate, for example, facial feedback effects. CONCLUSIONS We provide tools and guidance to build a control module in order to precisely deliver electrical stimulation to facial muscles using a stimulus computer (while recording EEG or other peripheral physiology).
Collapse
Affiliation(s)
- J Baker
- Department of Psychology, University of Essex, Colchester, United Kingdom.
| | - T Efthimiou
- Department of Psychology, University of Essex, Colchester, United Kingdom
| | - A Gartus
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| | - A Elsenaar
- The Royal Academy of Art, The Hague, Netherlands
| | - M Mehu
- Department of Psychology, Webster Vienna Private University, Vienna, Austria
| | - S Korb
- Department of Psychology, University of Essex, Colchester, United Kingdom; Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Popesco T, Gardet Q, Bossard J, Maffiuletti NA, Place N. Centrally mediated responses to NMES are influenced by muscle group and stimulation parameters. Sci Rep 2024; 14:24918. [PMID: 39438501 PMCID: PMC11496505 DOI: 10.1038/s41598-024-75145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Wide-pulse high-frequency neuromuscular electrical stimulation (WPHF NMES) can generate a progressive increase in tetanic force through reflexive recruitment of motor units, called extra force. This phenomenon has previously been observed on different muscle groups, but little is known on potential inter-muscle differences. We compared extra force and sustained electromyographic (EMG) activity induced by NMES between plantar flexors, knee extensors, elbow flexors and within muscle groups using pulse durations of 0.2, 1 and 2 ms and stimulation frequencies of 20, 50, 100 and 147 Hz. Extra force production and sustained EMG activity were higher for plantar flexors compared to elbow flexors at all tested parameters (except 0.2 ms for extra force). When compared to elbow flexors, extra force of the knee extensors was only higher at 100 Hz and with 1 ms while sustained EMG activity was higher at all frequencies with pulse durations of 0.2 and 2 ms. Peripheral nerve architecture as well as muscle typology and function could influence the occurrence and magnitude of centrally-mediated responses to NMES. The present findings suggest that the use of wide-pulse high-frequency NMES to promote reflexive recruitment seems to be more pertinent for lower limb muscles, plantar flexors in particular.
Collapse
Affiliation(s)
- Timothée Popesco
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Quentin Gardet
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jonathan Bossard
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | | | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
9
|
Kaneko N, Sasaki A, Fok KL, Yokoyama H, Nakazawa K, Masani K. Motor point stimulation activates fewer Ia-sensory nerves than peripheral nerve stimulation in human soleus muscle. J Neurophysiol 2024; 132:1142-1155. [PMID: 39196676 DOI: 10.1152/jn.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/27/2024] [Accepted: 08/14/2024] [Indexed: 08/30/2024] Open
Abstract
Peripheral nerve stimulation (PNS) and motor point stimulation (MPS) are noninvasive techniques used to induce muscle contraction, aiding motor function restoration in individuals with neurological disorders. Understanding sensory inputs from PNS and MPS is crucial for facilitating neuroplasticity and restoring impaired motor function. Although previous studies suggest that MPS could induce Ia-sensory inputs less than PNS, experimental evidence supporting this claim is insufficient. Here, we implemented a conditioning paradigm combining transcutaneous spinal cord stimulation (tSCS) with PNS or MPS to investigate their Ia-sensory inputs. This paradigm induces postactivation depression of spinal reflexes associated with transient decreases in neurotransmitter release from Ia-afferent terminals, allowing us to examine the Ia-sensory input amount from PNS and MPS based on the depression degree. We hypothesized that MPS would induce less postactivation depression than PNS. Thirteen individuals underwent MPS and PNS on the soleus muscle as conditioning stimuli, with tSCS applied to the skin between the spinous processes (L1-L2) as test stimuli. PNS- and MPS-conditioned spinal reflexes were recorded at five interstimulus intervals (ISIs) and four intensities. Results revealed that all PNS conditioning showed significant decreases in spinal reflex amplitudes, indicating postactivation depression. Furthermore, PNS conditioning exhibited greater depression for shorter ISIs and higher conditioning intensities. In contrast, MPS conditioning demonstrated intensity-dependent depression, but without all-conditioning depression and clear ISI dependency as seen in PNS conditioning. In addition, PNS induced significantly greater depression than MPS across most conditions. Our findings provide experimental evidence supporting the conclusion that MPS activates Ia-sensory nerves less than PNS.NEW & NOTEWORTHY Peripheral nerve stimulation (PNS) and motor point stimulation (MPS) induce neuroplasticity, but differences in their effects on Ia-sensory inputs are unclear. We investigated their Ia-sensory inputs using a conditioning paradigm with spinal reflexes. Results showed that PNS conditioning significantly inhibited spinal reflexes than MPS conditioning, indicating greater postactivation depression due to Ia-sensory nerve activation. These findings provide experimental evidence that MPS activates Ia-sensory nerves to a lesser extent than PNS, enhancing our understanding of neuroplasticity.
Collapse
Affiliation(s)
- Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Sasaki
- Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Kai Lon Fok
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute-University Health Network, Toronto, Ontario, Canada
| | - Hikaru Yokoyama
- Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kei Masani
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- KITE Research Institute-University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Descollonges M, Chaney R, Garnier P, Prigent-Tessier A, Brugniaux JV, Deley G. Electrical stimulation: a potential alternative to positively impact cerebral health? Front Physiol 2024; 15:1464326. [PMID: 39371600 PMCID: PMC11450234 DOI: 10.3389/fphys.2024.1464326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
An increasing body of evidence confirms the effectiveness of physical exercise (PE) in promoting brain health by preventing age-related cognitive decline and reducing the risk of neurodegenerative diseases. The benefits of PE are attributed to neuroplasticity processes which have been reported to enhance cerebral health. However, moderate to high-intensity PE is necessary to induce these responses and these intensities cannot always be achieved especially by people with physical limitations. As a countermeasure, electrical stimulation (ES) offers several benefits, particularly for improving physical functions, for various neurological diseases. This review aims to provide an overview of key mechanisms that could contribute to the enhancement in brain health in response to ES-induced exercise, including increases in cerebral blood flow, neuronal activity, and humoral pathways. This narrative review also focuses on the effects of ES protocols, applied to both humans and animals, on cognition. Despite a certain paucity of research when compared to the more classical aerobic exercise, it seems that ES could be of interest for improving cerebral health, particularly in people who have difficulty engaging in voluntary exercise.
Collapse
Affiliation(s)
- Maël Descollonges
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
- Kurage, Lyon, France
| | - Rémi Chaney
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| | - Philippe Garnier
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
- Département Génie Biologique, IUT, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| | - Julien V. Brugniaux
- INSERM UMR 1300 – Laboratoire HP2, University Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Gaëlle Deley
- INSERM UMR 1093 – Laboratoire CAPS, « Cognition, Action et Plasticité Sensorimotrice », Université de Bourgogne, Dijon, France
| |
Collapse
|
11
|
Dowman LM, Holland AE. Pulmonary rehabilitation in idiopathic pulmonary fibrosis. Curr Opin Pulm Med 2024; 30:516-522. [PMID: 38958566 DOI: 10.1097/mcp.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW This review synthesizes the expanding evidence for pulmonary rehabilitation that has led to its recommended inclusion in the holistic care of people with idiopathic pulmonary fibrosis (IPF), as well as discussing strategies that may maximize and sustain benefits. RECENT FINDINGS Pulmonary rehabilitation is an effective intervention leading to significant improvements in exercise tolerance, symptoms, and quality of life for people with IPF. Improvements in symptoms and quality of life can persist longer term, whereas functional capacity does not; therefore, strategies to preserve functional capacity are an important area of research. Referral early in the disease course is encouraged to promote longer lasting effects. Evidence that high-intensity interval training may optimize benefits of exercise training is emerging. Supplemental oxygen is frequently used to manage exercise-induced desaturation, although its use as an adjunct therapy requires more evidence. SUMMARY Current evidence strongly supports the inclusion of pulmonary rehabilitation in the standard holistic care of IPF, with early participation encouraged. Further research is needed to establish the optimal exercise strategies, modalities and adjunct therapies that enhance outcomes of pulmonary rehabilitation and promote longer lasting effects.
Collapse
Affiliation(s)
- Leona M Dowman
- School of Translational Medicine, Monash University
- Departments of Physiotherapy and Respiratory and Sleep Medicine, Austin Health
- Institute for Breathing and Sleep
| | - Anne E Holland
- School of Translational Medicine, Monash University
- Institute for Breathing and Sleep
- Departments of Physiotherapy and Respiratory Medicine, Alfred Health, Melbourne, Australia
| |
Collapse
|
12
|
Ito R, Igawa T, Urata R, Ito S, Suzuki K, Takahashi H, Toda M, Fujita M, Kubo A. Effects of simultaneous short-term neuromuscular electrical stimulation and static stretching on calf muscles. J Phys Ther Sci 2024; 36:447-451. [PMID: 39092412 PMCID: PMC11290863 DOI: 10.1589/jpts.36.447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 08/04/2024] Open
Abstract
[Purpose] The simultaneous application of static stretching and neuromuscular electrical stimulation (NMES) to calf muscles may enhance physiological parameters in young and healthy individuals; however, the efficacy of this intervention and potential sex variation remain to be elucidated. The present study aimed to investigate these aspects. [Participants and Methods] Thirty healthy university students (15 males and 15 females) participated in this study. All participants simultaneously underwent static stretching and NMES of the calf muscles for 4 min while lying on an upright and tilted table. The mean differences in the dorsiflexion angle (DFA), finger-floor distance (FFD), and straight leg raising (SLR) angle before and after the intervention were calculated. Sex variations were assessed using a two-way analysis of variance (ANOVA). [Results] The DFA, FFD, and SLR angle exhibited significant effects on time. No significant sex variations were observed between the groups. [Conclusion] Simultaneous static stretching and NMES of the calf muscles potentially enhanced the DFA, FFD, and SLR angle in healthy university students, irrespective of sex.
Collapse
Affiliation(s)
- Riyaka Ito
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Tatsuya Igawa
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Ryunosuke Urata
- Innovative-Rehabilitation Center, New Spine Clinic Tokyo,
Japan
| | - Shomaru Ito
- Department of Rehabilitation, International University of
Health and Welfare Narita Hospital, Japan
| | - Kosuke Suzuki
- Department of Rehabilitation, Yamagata Saisei Hospital,
Japan
| | - Hiroto Takahashi
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
| | - Mika Toda
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Mio Fujita
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
- Department of Rehabilitation, International University of
Health and Welfare Hospital, Japan
| | - Akira Kubo
- Department of Physical Therapy, Graduate School of
International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi
323-8501, Japan
| |
Collapse
|
13
|
Genç A, Sonel Tur B. Rehabilitation in children with home invasive mechanical ventilation. Pediatr Pulmonol 2024; 59:2203-2209. [PMID: 38265147 DOI: 10.1002/ppul.26872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Children with home invasive mechanical ventilation need special health care and rehabilitation services due to complications caused by both the pulmonary system and physical inactivity. Children who are dependent on invasive mechanical ventilators due to breathing difficulties and lung problems can benefit from rehabilitation programs. Rehabilitation requires a close relationship between the child, parents and/or caregivers, and healthcare professionals. The main goal of rehabilitation is to improve breathing, lung function and overall quality of life. In this review, although full standard approaches have not been determined yet, rehabilitation approaches for children dependent on home-type invasive mechanical ventilator will be discussed.
Collapse
Affiliation(s)
- Aysun Genç
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Birkan Sonel Tur
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Figueiredo T, Frazão M, Werlang LA, Kunz A, Peltz M, Furtado VC, Júnior EB, Júnior JM, Silva RM, Sobral Filho DC. Safety and feasibility of a functional electrical stimulation cycling-based muscular dysfunction diagnostic method in mechanically ventilated patients. Artif Organs 2024; 48:713-722. [PMID: 38400618 DOI: 10.1111/aor.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND A nonvolitional diagnostic method based on FES-Cycling technology has recently been demonstrated for mechanically ventilated patients. This method presents good sensitivity and specificity for detecting muscle dysfunction and survival prognosis, even in unconscious patients. As the clinical relevance of this method has already been reported, we aimed to evaluate its safety and feasibility. METHODS An observational prospective study was carried out with 20 critically ill, mechanically ventilated patients. The FES-cycling equipment was set in a specific diagnostic mode. For safety determination, hemodynamic parameters and peripheral oxygen saturation were measured before and immediately after the diagnostic protocol, as well as venous oxygen saturation and blood lactate. The creatine phosphokinase level (CPK) was measured before and 24, 48, and 72 h after the test. The time taken to carry out the entire diagnostic protocol and the number of patients with visible muscle contraction (capacity of perceptive muscular recruitment) were recorded to assess feasibility. RESULTS Heart rate [91 ± 23 vs. 94 ± 23 bpm (p = 0.0837)], systolic [122 ± 19 vs. 124 ± 19 mm Hg (p = 0.4261)] and diastolic blood pressure [68 ± 13 vs. 70 ± 15 mm Hg (p = 0.3462)], and peripheral [98 (96-99) vs. 98 (95-99) % (p = 0.6353)] and venous oxygen saturation [71 ± 14 vs. 69 ± 14% (p = 0.1317)] did not change after the diagnostic protocol. Moreover, blood lactate [1.48 ± 0.65 vs. 1.53 ± 0.71 mmol/L (p = 0.2320)] did not change. CPK did not change up to 72 h after the test [99 (59-422) vs. 125 (66-674) (p = 0.2799) vs. 161 (66-352) (p > 0.999) vs. 100 (33-409) (p = 0.5901)]. The time taken to perform the diagnostic assessment was 11.3 ± 1.1 min. In addition, 75% of the patients presented very visible muscle contractions, and 25% of them presented barely visible muscle contractions. CONCLUSIONS The FES cycling-based muscular dysfunction diagnostic method is safe and feasible. Hemodynamic parameters, peripheral oxygen saturation, venous oxygen saturation, and blood lactate did not change after the diagnostic protocol. The muscle damage marker (CPK) did not increase up to 72 h after the diagnostic protocol.
Collapse
Affiliation(s)
- Thainá Figueiredo
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Murillo Frazão
- Lauro Wanderley University Hospital, Federal University of Paraíba, João Pessoa, Brazil
- CLINAR Exercise Physiology, João Pessoa, Brazil
| | - Luís A Werlang
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Adelar Kunz
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Maikel Peltz
- INBRAMED-Brazilian Medical Equipment Industry, Porto Alegre, Brazil
| | - Veridiana C Furtado
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Edgar B Júnior
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Júlio M Júnior
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | - Rosane M Silva
- Pernambuco University Heart Hospital/University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
15
|
Cavalcante JGT, Ribeiro VHDS, Marqueti RDC, Paz IDA, Bastos JAI, Vaz MA, Babault N, Durigan JLQ. Effect of muscle length on maximum evoked torque, discomfort, contraction fatigue, and strength adaptations during electrical stimulation in adult populations: A systematic review. PLoS One 2024; 19:e0304205. [PMID: 38857245 PMCID: PMC11164398 DOI: 10.1371/journal.pone.0304205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
Neuromuscular electrical stimulation (NMES) can improve physical function in different populations. NMES-related outcomes may be influenced by muscle length (i.e., joint angle), a modulator of the force generation capacity of muscle fibers. Nevertheless, to date, there is no comprehensive synthesis of the available scientific evidence regarding the optimal joint angle for maximizing the effectiveness of NMES. We performed a systematic review to investigate the effect of muscle length on NMES-induced torque, discomfort, contraction fatigue, and strength training adaptations in healthy and clinical adult populations (PROSPERO: CRD42022332965). We conducted searches across seven electronic databases: PUBMED, Web of Science, EMBASE, PEDro, BIREME, SCIELO, and Cochrane, over the period from June 2022 to October 2023, without restricting the publication year. We included cross-sectional and longitudinal studies that used NMES as an intervention or assessment tool for comparing muscle lengths in adult populations. We excluded studies on vocalization, respiratory, or pelvic floor muscles. Data extraction was performed via a standardized form to gather information on participants, interventions, and outcomes. Risk of bias was assessed using the Revised Cochrane risk-of-bias tool for cross-over trials and the Physiotherapy Evidence Database scale. Out of the 1185 articles retrieved through our search strategy, we included 36 studies in our analysis, that included 448 healthy young participants (age: 19-40 years) in order to investigate maximum evoked torque (n = 268), contraction fatigability (n = 87), discomfort (n = 82), and muscle strengthening (n = 22), as well as six participants with spinal cord injuries, and 15 healthy older participants. Meta-analyses were possible for comparing maximal evoked torque according to quadriceps muscle length through knee joint angle. At optimal muscle length 50° - 70° of knee flexion, where 0° is full extension), there was greater evoked torque during nerve stimulation compared to very short (0 - 30°) (p<0.001, CI 95%: -2.03, -1.15 for muscle belly stimulation, and -3.54, -1.16 for femoral nerve stimulation), short (31° - 49°) (p = 0.007, CI 95%: -1.58, -0.25), and long (71° - 90°) (p<0.001, CI 95%: 0.29, 1.02) muscle lengths. At long muscle lengths, NMES evoked greater torque than very short (p<0.001, CI 95%: -2.50, -0.67) and short (p = 0.04, CI 95%: -2.22, -0.06) lengths. The shortest quadriceps length generated the highest perceived discomfort for a given current amplitude. The amount of contraction fatigability was greater when muscle length allowed greater torque generation in the pre-fatigue condition. Strength gains were greater for a protocol at the optimal muscle length than for short muscle length. The quality of evidence was very high for most comparisons for evoked torque. However, further studies are necessary to achieve certainty for the other outcomes. Optimal muscle length should be considered the primary choice during NMES interventions, as it promotes higher levels of force production and may facilitate the preservation/gain in muscle force and mass, with reduced discomfort. However, a longer than optimal muscle length may also be used, due to possible muscle lengthening at high evoked tension. Thorough understanding of these physiological principles is imperative for the appropriate prescription of NMES for healthy and clinical populations.
Collapse
Affiliation(s)
- Jonathan Galvão Tenório Cavalcante
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Victor Hugo de Souza Ribeiro
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Rita de Cássia Marqueti
- Molecular Analysis Laboratory, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Isabel de Almeida Paz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Júlia Aguillar Ivo Bastos
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Marco Aurélio Vaz
- Exercise Research Laboratory, School of Physical Education, Physical Therapy and Dance, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Nicolas Babault
- Centre d’Expertise de la Performance, INSERM UMR1093-CAPS, UFR des Sciences du Sport, University of Burgundy Franche-Comté, Besançon, Dijon, France
| | - João Luiz Quagliotti Durigan
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Physical Education, University of Brasília, Brasília, Distrito Federal, Brazil
- Laboratory of Muscle and Tendon Plasticity, Graduate Program of Rehabilitation Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| |
Collapse
|
16
|
Flodin J, Reitzner SM, Emanuelsson EB, Sundberg CJ, Ackermann P. The effect of neuromuscular electrical stimulation on the human skeletal muscle transcriptome. Acta Physiol (Oxf) 2024; 240:e14129. [PMID: 38459757 DOI: 10.1111/apha.14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
AIM The influence on acute skeletal muscle transcriptomics of neuromuscular electrical stimulation (NMES), as compared to established exercises, is poorly understood. We aimed to investigate the effects on global mRNA-expression in the quadriceps muscle early after a single NMES-session, compared to the effects of voluntary knee extension exercise (EX), and to explore the discomfort level. METHODS Global vastus lateralis muscle gene expression was assessed (RNA-sequencing) in 30 healthy participants, before and 3 h after a 30-min session of NMES and/or EX. The NMES-treatment was applied using textile electrodes integrated in pants and set to 20% of each participant's pre-tested MVC mean (±SD) 200 (±80) Nm. Discomfort was assessed using Visual Analogue Scale (VAS, 0-10). The EX-protocol was performed at 80% of 1-repetition-maximum. RESULTS NMES at 20% of MVC resulted in VAS below 4 and induced 4448 differentially expressed genes (DEGs) with 80%-overlap of the 2571 DEGs of EX. Genes well-known to be up-regulated following exercise, for example, PPARGC1A, ABRA, VEGFA, and GDNF, were also up-regulated by NMES. Gene set enrichment analysis demonstrated many common pathways after EX and NMES. Also, some pathways were exclusive to either EX, for example, muscle tissue proliferation, or to NMES, for example, neurite outgrowth and connective tissue proliferation. CONCLUSION A 30-min NMES-session at 20% of MVC with NMES-pants, which can be applied with an acceptable level of discomfort, induces over 4000 DEGs, of which 80%-overlap with DEGs of EX. NMES can induce exercise-like molecular effects, that potentially can lead to health and performance benefits in individuals who are unable to perform resistance exercise.
Collapse
Affiliation(s)
- Johanna Flodin
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan M Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Eric B Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Huddinge, Sweden
| | - Paul Ackermann
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Chitlange NM, Ramteke SU. Effective Rehabilitation of a Lisfranc Fracture in a 25-Year-Old Male Patient: A Case Report. Cureus 2024; 16:e60722. [PMID: 38903267 PMCID: PMC11187784 DOI: 10.7759/cureus.60722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
A dislocation or break of the tarsometatarsal joint in the foot is referred to as a Lisfranc fracture, sometimes called a Lisfranc injury. It can be caused by less stressful mechanisms like a twisting fall as well as high-energy events like car crashes or falls from heights. Swelling, bruises, and midfoot pain that gets worse when standing or walking are some of the symptoms. The damage may only affect the ligaments or the foot's bony structures. Nonoperative or surgical treatment may be part of the management, depending on how severe the injury is. In order to realign and stabilize the bones, open reduction internal fixation with Kirschner wires (K-wires) is a common surgical procedure. In this case, a 25-year-old male patient complained of left foot pain and wound. He gave a history of a left leg stuck in the harvester. Immediately, he was taken to a local hospital, where a dressing of his left foot was done. He was referred to a super specialty hospital where an investigation, like an X-ray, was done, which revealed a Lisfranc fracture. K-wire was applied to fix the Lisfranc fracture. Further on, rehabilitation was started to restore mobility, regain full range of motion, and develop muscle strength. American Orthopedic Foot and Ankle Score (AOFAS) and Lower Extremity Functional Scale (LEFS) were used as outcome measures.
Collapse
Affiliation(s)
- Neha M Chitlange
- Department of Sports Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swapnil U Ramteke
- Department of Sports Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
18
|
Paim ÉD, Sugueno LA, Martins VB, Zanella VG, Macagnan FE. Electrical Stimulation for Treatment of Dysphagia Post Head Neck Cancer: A Systematic Review and Meta-Analysis. Int Arch Otorhinolaryngol 2024; 28:e339-e349. [PMID: 38618607 PMCID: PMC11008950 DOI: 10.1055/s-0043-1761175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/13/2022] [Indexed: 04/16/2024] Open
Abstract
Introduction Dysphagia induced by radiotherapy in the head and neck region comprises a challenging scenario and sometimes difficult rehabilitation due to the severity of the adverse effects. Some resources such as electrical stimulation have emerged as an alternative to complement the therapeutic process, but there is still no consensus on its use. Objective The purpose of the present study was to evaluate, through a meta-analysis, the effect of electrical stimulation on the rehabilitation of dysphagia generated after head and neck cancer treatment. Data Synthesis Four randomized controlled trials with a total of 146 participants were included. The age of the participants was 58.37 ± 1.8 years old and there was a predominance of males. The time to start the intervention ranged from 50.96 ± 40.12 months after cancer treatment. The intervention showed great heterogeneity regarding the positioning of the electrodes, parameters, duration of the stimulus, number of sessions, and intensity. No difference was identified in the following aspects: oral transit time, hyoid elevation, penetration and/or aspiration after electrostimulation. The quality of the evidence ranged from very low to moderate and high risk of bias. Conclusion In this meta-analysis, we found weak evidence for small and moderate swallowing benefits in patients after radiotherapy for head and neck cancer in short-term clinical trials.
Collapse
Affiliation(s)
- Émille Dalbem Paim
- Speech Therapy Department, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Lica Arakawa Sugueno
- Graduate Program in Human Communication, Faculdade de Ciências Médicas da Santa Casa de São Paulo, SP, Brazil
| | - Vera Beatris Martins
- Speech Therapy Department, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Virgilio Gonzales Zanella
- Head and Neck Surgery Department, Hospital Santa Rita, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabricio Edler Macagnan
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Physical Therapy Department, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Efthimiou TN, Hernandez MP, Elsenaar A, Mehu M, Korb S. Application of facial neuromuscular electrical stimulation (fNMES) in psychophysiological research: Practical recommendations based on a systematic review of the literature. Behav Res Methods 2024; 56:2941-2976. [PMID: 37864116 PMCID: PMC11133044 DOI: 10.3758/s13428-023-02262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Facial neuromuscular electrical stimulation (fNMES), which allows for the non-invasive and physiologically sound activation of facial muscles, has great potential for investigating fundamental questions in psychology and neuroscience, such as the role of proprioceptive facial feedback in emotion induction and emotion recognition, and may serve for clinical applications, such as alleviating symptoms of depression. However, despite illustrious origins in the 19th-century work of Duchenne de Boulogne, the practical application of fNMES remains largely unknown to today's researchers in psychology. In addition, published studies vary dramatically in the stimulation parameters used, such as stimulation frequency, amplitude, duration, and electrode size, and in the way they reported them. Because fNMES parameters impact the comfort and safety of volunteers, as well as its physiological (and psychological) effects, it is of paramount importance to establish recommendations of good practice and to ensure studies can be better compared and integrated. Here, we provide an introduction to fNMES, systematically review the existing literature focusing on the stimulation parameters used, and offer recommendations on how to safely and reliably deliver fNMES and on how to report the fNMES parameters to allow better cross-study comparison. In addition, we provide a free webpage, to easily visualise fNMES parameters and verify their safety based on current density. As an example of a potential application, we focus on the use of fNMES for the investigation of the facial feedback hypothesis.
Collapse
Affiliation(s)
| | | | - Arthur Elsenaar
- ArtScience Interfaculty, Royal Academy of Art, Royal Conservatory, The Hague, Netherlands
| | - Marc Mehu
- Department of Psychology, Webster Vienna Private University, Vienna, Austria
| | - Sebastian Korb
- Department of Psychology, University of Essex, Colchester, UK.
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Pineau A, Martin A, Lepers R, Papaiordanidou M. Effect of combined electrical stimulation and brief muscle lengthening on torque development. J Appl Physiol (1985) 2024; 136:844-852. [PMID: 38357725 DOI: 10.1152/japplphysiol.00671.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024] Open
Abstract
This study aimed to evaluate torque production in response to the application of a brief muscle lengthening during neuromuscular electrical stimulation (NMES) applied over the posterior tibial nerve. Fifteen participants took part in three experimental sessions, where wide-pulse NMES delivered at 20 and 100 Hz (pulse duration of 1 ms applied during 15 s at an intensity evoking 5-10% of maximal voluntary contraction) was either applied alone (NMES condition) or in combination with a muscle lengthening at three distinct speeds (60, 180, or 300°/s; NMES + LEN condition). The torque-time integral (TTI) and the muscle activity following the stimulation trains [sustained electromyography (EMG)] were calculated for each condition. Results show that TTI and sustained EMG activity were higher for the NMES + LEN condition only when using 100-Hz stimulation, regardless of the lengthening speed (P = 0.029 and P = 0.007 for the two parameters, respectively). This indicates that superimposing a muscle lengthening to high-frequency NMES can enhance the total torque production, partly due to neural mechanisms, as evidenced by the higher sustained EMG activity. This finding has potential clinical relevance, especially when it comes to finding ways to enhance torque production to optimize the effectiveness of NMES training programs.NEW & NOTEWORTHY This study showed, for the first time, that the combined application of a brief muscle lengthening and wide-pulse neuromuscular electrical stimulation (NMES) delivered over the posterior tibial nerve can entail increased torque production as compared with the sole application of NMES. This observation, present only for high stimulation frequencies (100 Hz) and independently of the lengthening speed, is attributed to neural mechanisms, most probably related to increased afferents' solicitation, although muscular phenomena cannot be excluded.
Collapse
Affiliation(s)
- Antoine Pineau
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, Université Bourgogne, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
21
|
Mochizuki Y, Jimba T, Yasukawa S, Katsura A, Fukuda A, Ando J. Case report of belt electrode-skeletal muscle electrical stimulation for acute heart failure with severe obesity: a novel therapeutic option for acute phase rehabilitation. Front Cardiovasc Med 2024; 11:1344137. [PMID: 38525190 PMCID: PMC10957539 DOI: 10.3389/fcvm.2024.1344137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Background Belt electrode skeletal muscle electrical stimulation (B-SES) is an emerging therapy anticipated to yield more favorable outcomes than conventional neuromuscular electrical stimulation (NMES), owing to its larger stimulation area. However, information on its efficacy and safety in patients with heart failure remains limited. Case presentation A 43-year-old man with a body mass index of 41 kg/m2 was admitted to our hospital for acute heart failure due to dilated cardiomyopathy. The patient required prolonged catecholamine support owing to poor cardiac function, and heart transplantation was considered. We initiated a mobilization program, but the patient's mobility was highly limited due to severe obesity and symptomatic orthostatic hypotension. B-SES was introduced to accomplish weight loss and early ambulation. We applied an intensive monitoring program for safe use and modulated the intensity of B-SES according to physical function. During the B-SES program, the patient's body weight decreased from 89.6 kg to 78.6 kg. Sequential evaluations of body composition and skeletal muscle ultrasonography revealed improved muscle mass, quality, and physical function. Furthermore, we explored the workload of B-SES using expiratory gas analysis. No adverse events were observed during B-SES. Discussion We successfully used B-SES to improve muscle function and morbidity in the treatment of acute heart failure. B-SES could be an option for patients with heart failure who have limited mobility and obesity.
Collapse
Affiliation(s)
- Yuto Mochizuki
- Department of Rehabilitation Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Takahiro Jimba
- Department of Cardiovascular Medicine, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cardiovascular Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Syota Yasukawa
- Department of Rehabilitation Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Aritomo Katsura
- Department of Cardiovascular Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Akira Fukuda
- Department of Rehabilitation Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| | - Jiro Ando
- Department of Cardiovascular Medicine, NTT Medical Center Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Fekih N, Zghal F, Machfer A, Ben Hadj Hassen H, Zarizissi S, Bouzid MA. Peripheral fatigue regulation during knee extensor exercise in type 1 diabetes and consequences on the force-duration relationship. Eur J Appl Physiol 2024; 124:897-908. [PMID: 37733138 DOI: 10.1007/s00421-023-05318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
PURPOSE This study aimed to examine if peripheral fatigue is adjusted during knee extensor (KE) exercise in order not to surpass a critical threshold patient with type 1 diabetes (T1D) and the consequences of this mechanism on the force-duration relationship. METHODS Eleven T1D individuals randomly performed two different sessions in which they performed 60 maximum voluntary contractions (MVC; 3 s contraction, 2 s relaxation). One trial was performed in the non-fatigued state (CTRL) and another after fatiguing neuromuscular stimulation of the KE (FNMES). Peripheral and central fatigue were quantified by the difference between pre and post exercise in quadriceps voluntary activation (ΔVA) and potentiated twitch (ΔPtw). Critical torque (CT) was determined as the average force of the last 12 contractions, whereas W' was calculated as the area above the CT. RESULTS Although FNMES led to a significant decrease in potentiated twitch (Ptw) before performing the 60-MVCs protocol (p < 0.05), ΔVA (∼ -7.5%), ΔPtw (∼ -39%), and CT (∼816 N) post-MVCs were similar between the two conditions. The difference in W' between CTRL and FNMES was correlated with the level of pre-fatigue induced in FNMES (r2 = 0.60). In addition, W' was correlated with ΔPtw (r2 = 0.62) in the CTRL session. CONCLUSION Correlative results in the present study indicate that regulating peripheral fatigue mechanisms at a critical threshold limit W'. Additionally, peripheral fatigue during KE exercise is limited to an individual threshold in T1D patients.
Collapse
Affiliation(s)
- Nadia Fekih
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Firas Zghal
- Faculté des Sciences du Sport, LAMHESS, Université Côte d'Azur, Nice, France
| | - Amal Machfer
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Hayfa Ben Hadj Hassen
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Slim Zarizissi
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia
| | - Mohamed Amine Bouzid
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education, University of Sfax, Road of the Aerodrome, Km 3.5, BP 1068, 3000, Sfax, Tunisia.
| |
Collapse
|
23
|
Moulodi N, Sarrafzadeh J, Azadinia F, Shakourirad A, Jalali M. Additional effect of neuromuscular electrical stimulation in a conservative intervention on morphology and strength of abductor hallucis muscle and correction of hallux valgus deformity: a randomized controlled trial. Physiother Theory Pract 2024:1-10. [PMID: 38391279 DOI: 10.1080/09593985.2024.2316309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In hallux valgus, morphological changes and functional weakness of intrinsic foot muscles occur, especially in the abductor hallucis muscle. OBJECTIVES This study aimed to investigate how a conservative treatment with the addition of neuromuscular electrical stimulation affects the volume and strength of the muscle, the correction of deformity, passive range of motion, pain, and disability. METHODS Twenty-eight female participants (48 feet) were randomly assigned to two groups. The interventions included orthoses and exercise (Ortho) in both groups. One group received additional neuromuscular electrical stimulation of abductor hallucis muscle to activate it. Each group received the treatments for one month and was assessed two times, at baseline before starting and after one month of treatment. Mixed within-between ANOVA, analysis of covariance, and nonparametric tests were used for data analysis. RESULTS The muscle volume, abduction strength, goniometric angle, and passive hallux dorsi/plantar flexion showed significant changes in both groups (p < .001). Subscales of the foot and ankle ability questionnaire, significantly changed (p ≤ .05). Pain decreased significantly in the two groups (p < .001 and p = .02). Intermetatarsal angle did not significantly differ between the two groups (p = .86, partial eta effect size = 0.001). But, the hallux valgus angle mean (on MRI) in the Ortho group was less than that of the orthoNMES group (p = .007, partial eta effect size = 0.15). CONCLUSION Both groups showed nearly identical treatment effects in the primary volume and hallux valgus correction outcome measures. In this study, adding neuromuscular electrical stimulation did not have an additional effect compared to conservative in the treatment of hallux valgus. TRIAL REGISTRATION NUMBER The RCT Code is IRCT20200915048725N1.
Collapse
Affiliation(s)
- Nasrin Moulodi
- Rehabilitation Research Center, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Sarrafzadeh
- Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azadinia
- Rehabilitation Research Center, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shakourirad
- Sina Hospital, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Jalali
- Rehabilitation Research Center, Department of Orthotics and Prosthetics, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Moezy A, Masoudi S, Nazari A, Abasi A. A controlled randomized trial with a 12-week follow-up investigating the effects of medium-frequency neuromuscular electrical stimulation on pain, VMO thickness, and functionality in patients with knee osteoarthritis. BMC Musculoskelet Disord 2024; 25:158. [PMID: 38378564 PMCID: PMC10877797 DOI: 10.1186/s12891-024-07266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND One of the major contributors to disability in Knee osteoarthritis (KOA) patients is weakness in the Quadriceps Femoris muscle. Neuromuscular electrical stimulation (NMES) has been used in rehabilitation for patients suffering from muscle weakness. Thus, the purpose of the study was to assess the effectiveness of NMES and exercise therapy, for improving pain, muscle weakness and function among patients with KOA. METHODS A randomized controlled trial was conducted with 75 female patients diagnosed with KOA. Participants were divided into three intervention groups: NMES-only, exercise therapy (Exs) alone, and a combination of NMES and exercise (NMES + Exs). All patients underwent 12 supervised treatment sessions, three times a week. Outcome measures included pain intensity measured by visual analog scale (VAS), knee flexion range of motion (FROM), thigh muscle girth (TG), thickness of the Vastus Medialis Oblique (VMO), timed up and go test (TUG), six-minute walk test (6MWT), and WOMAC scores. Statistical analyses (ANOVA and Kruskal-Wallis) methods were done to compare the amounts at the baseline, immediately after treatment and after 12 weeks. RESULTS The NMES group exhibited a significant reduction in pain at the 12-week follow-up compared to the other groups(p = 0.022). The NMES + Exs group showed better outcomes in terms of FROM, TG, and VMO thickness post-intervention (p < 0.0001, p < 0.004, p = 0.003, respectively) and at the 12-week follow-up (p < 0.0001, p < 0.0001, p < 0.0001, respectively). Additionally, NMES was superior in improving TUG and 6MWT post-intervention (p < 0.0001, p = 0.038, respectively) and during the follow-up assessments (p < 0.0001, p = 0.029, respectively). The NMES + Exs group achieved better WOMAC stiffness scores at both post-intervention and follow-up evaluations (p < 0.0001, p < 0.0001, respectively). Furthermore, at the 12-week follow-up, NMES + Exs group outperformed the others in WOMAC pain and function subscales (p = 0.003, p = 0.017, respectively), while the NMES group demonstrated better WOMAC total scores compared to the other groups (p = 0.007). CONCLUSION The combination of NMES and exercise seems to be an efficient approach for managing KOA, as it enhances knee flexion range and TG, increases VMO thickness, and improves WOMAC scores. On the other hand, NMES alone was found to be effective in improving the physical function of KOA patients. TRIAL REGISTRATION IRCT20101228005486N7 (06-02-2020).
Collapse
Affiliation(s)
- Azar Moezy
- Department of Sports and Exercise Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department, School of Medicine, Hazrate Rasoole Akram Hospital, Iran University of Medical Sciences, Sattarkhan Ave, Niayesh St, Tehran, 14455613131, Iran.
| | - Soheila Masoudi
- Department of Sports and Exercise Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nazari
- Department of Sports and Exercise Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Abasi
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Uçar N, Öner H, Kuş MA, Karaca H, Fırat T. The effect of neuromuscular electrical stimulation applied at different muscle lengths on muscle architecture and sarcomere morphology in rats. Anat Rec (Hoboken) 2024; 307:356-371. [PMID: 37194371 DOI: 10.1002/ar.25240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
Neuromuscular electrical stimulation (NMES) is often used to increase muscle strength and functionality. Muscle architecture is important for the skeletal muscle functionality. The aim of this study was to investigate the effects of NMES applied at different muscle lengths on skeletal muscle architecture. Twenty-four rats were randomly assigned to four groups (two NMES groups and two control groups). NMES was applied on the extensor digitorum longus muscle at long muscle length, which is the longest and stretched position of the muscle at 170° plantar flexion, and at medium muscle length, which is the length of the muscle at 90° plantar flexion. A control group was created for each NMES group. NMES was applied for 8 weeks, 10 min/day, 3 days/week. After 8 weeks, muscle samples were removed at the NMES intervention lengths and examined macroscopically, and microscopically using a transmission electron microscope and streo-microscope. Muscle damage, and architectural properties of the muscle including pennation angle, fibre length, muscle length, muscle mass, physiological cross-sectional area, fibre length/muscle length, sarcomere length, sarcomere number were then evaluated. There was an increase in fibre length and sarcomere number, and a decrease in pennation angle at both lengths. In the long muscle length group, muscle length was increased, but widespread muscle damage was observed. These results suggest that the intervention of NMES at long muscle length can increase the muscle length but also causes muscle damage. In addition, the greater longitudinal increase in muscle length may be a result of the continuous degeneration-regeneration cycle.
Collapse
Affiliation(s)
- Nehir Uçar
- Department of Therapy and Rehabilitation, Vocational School of Health Sciences, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Hakan Öner
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Murat Abdulgani Kuş
- Department of Emergency Aid and Disaster Management, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Harun Karaca
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Burdur Mehmet Akif Ersoy, Burdur, Turkey
| | - Tüzün Fırat
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| |
Collapse
|
26
|
Kourek C, Kanellopoulos M, Raidou V, Antonopoulos M, Karatzanos E, Patsaki I, Dimopoulos S. Safety and effectiveness of neuromuscular electrical stimulation in cardiac surgery: A systematic review. World J Cardiol 2024; 16:27-39. [PMID: 38313389 PMCID: PMC10835467 DOI: 10.4330/wjc.v16.i1.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit (ICU) are major factors resulting in the development of ICU-acquired muscle weakness (ICUAW). ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery, and may be a risk factor for prolonged duration of mechanical ventilation, associated with a higher risk of readmission and higher mortality. Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay. Neuromuscular electrical stimulation (NMES) is an alternative modality of exercise in patients with muscle weakness. A major advantage of NMES is that it can be applied even in sedated patients in the ICU, a fact that might enhance early mobilization in these patients. AIM To evaluate safety, feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery. METHODS We performed a search on Pubmed, Physiotherapy Evidence Database (PEDro), Embase and CINAHL databases, selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials (RCTs) that included implementation of NMES in patients before after cardiac surgery. RCTs were assessed for methodological rigor and risk of bias via the PEDro. The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function. RESULTS Ten studies were included in our systematic review, resulting in 703 participants. Almost half of them performed NMES and the other half were included in the control group, treated with usual care. Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery. Functional capacity was assessed in 8 studies via 6MWT or other indices, and improved only in 1 study before and in 1 after cardiac surgery. Nine studies explored the effects of NMES on muscle strength and function and, most of them, found increase of muscle strength and improvement in muscle function after NMES. NMES was safe in all studies without any significant complication. CONCLUSION NMES is safe, feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery, but has no significant effect on functional capacity.
Collapse
Affiliation(s)
- Christos Kourek
- Medical School of Athens, National and Kapodistrian University of Athens, Athens 15772, Greece
| | - Marios Kanellopoulos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
| | - Vasiliki Raidou
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
| | | | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
| | - Irini Patsaki
- Department of Physiotherapy, University of West Attica, Athens 12243, Greece
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise and Rehabilitation Laboratory, Evangelismos Hospital, Athens 10676, Greece
- Intensive Care Unit, Onassis Cardiac Surgery Center, Kallithea 17674, Greece.
| |
Collapse
|
27
|
Xu C, Yang F, Wang Q, Gao W. Effect of neuromuscular electrical stimulation in critically ill adults with mechanical ventilation: a systematic review and network meta-analysis. BMC Pulm Med 2024; 24:56. [PMID: 38273243 PMCID: PMC10811936 DOI: 10.1186/s12890-024-02854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) is widely used as a rehabilitation methods to restore muscle mass and function in prolonged immobilization individuals. However, its effect in mechanically ventilated patients to improve clinical outcomes remains unclear. METHODS A comprehensive search was conducted using PubMed, Embase, Web of Science, PEDro, and the Cochrane Library from their inception until December 24th, 2023. The search targeted randomized controlled trials (RCTs) comparing NMES with physical therapy (PT) or usual ICU care (CG), for improving clinical outcomes in mechanically ventilated patients. We performed a network meta-analysis utilizing Stata version 14.0 and R 4.3.1. RESULTS We included 23 RCTs comprising 1312 mechanically ventilated adults. The treatments analyzed were NMES, PT, NMES combined with PT (NMES+PT), and CG. Network meta-analyses revealed that NMES or NMES+PT significantly improved extubation success rate compared to CG, with ORs of 1.85 (95% CI: 1.11, 3.08) and 5.89 (95% CI: 1.77, 19.65), respectively. Additionally, NMES exhibited a slight decrease in extubation success rate compared with NMES+PT, with OR of 0.31 (95% CI: 0.11, 0.93). Nevertheless, neither NMES nor NMES+PT showed any significant improvement in ICU length of stay (LOS), ventilation duration, or mortality when compared with PT or CG. NMES+PT emerged as the most effective strategy for all considered clinical outcomes according to the ranking probabilities. The evidence quality ranged from "low" to "very low" in this network meta-analysis. CONCLUSIONS NMES appears to be a straightforward and safe modality for critically ill, mechanically ventilated patients. When combined with PT, it significantly improved the extubation success rate against standard ICU care and NMES alone, and showed a better ranking over PT or NMES alone for clinical outcomes. Therefore, NMES combined with PT may be a superior rehabilitation strategy for this patient group.
Collapse
Affiliation(s)
- Cuiping Xu
- Department of Respiratory and Critical Care Medicine, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China.
| | - Feng Yang
- Department of Respiratory and Critical Care Medicine, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China
| | - Qimin Wang
- Department of Respiratory and Critical Care Medicine, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China
| | - Wei Gao
- Department of Respiratory and Critical Care Medicine, China Rehabilitation Research Center, Rehabilitation School of Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Scalia M, Borzuola R, Parrella M, Borriello G, Sica F, Monteleone F, Maida E, Macaluso A. Neuromuscular Electrical Stimulation Does Not Influence Spinal Excitability in Multiple Sclerosis Patients. J Clin Med 2024; 13:704. [PMID: 38337396 PMCID: PMC10856365 DOI: 10.3390/jcm13030704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: Neuromuscular electrical stimulation (NMES) has beneficial effects on physical functions in Multiple sclerosis (MS) patients. However, the neurophysiological mechanisms underlying these functional improvements are still unclear. This study aims at comparing acute responses in spinal excitability, as measured by soleus Hoffmann reflex (H-reflex), between MS patients and healthy individuals, under three experimental conditions involving the ankle planta flexor muscles: (1) passive NMES (pNMES); (2) NMES superimposed onto isometric voluntary contraction (NMES+); and (3) isometric voluntary contraction (ISO). (2) Methods: In total, 20 MS patients (MS) and 20 healthy individuals as the control group (CG) took part in a single experimental session. Under each condition, participants performed 15 repetitions of 6 s at 20% of maximal voluntary isometric contraction, with 6 s of recovery between repetitions. Before and after each condition, H-reflex amplitudes were recorded. (3) Results: In MS, H-reflex amplitude did not change under any experimental condition (ISO: p = 0.506; pNMES: p = 0.068; NMES+: p = 0.126). In CG, H-reflex amplitude significantly increased under NMES+ (p = 0.01), decreased under pNMES (p < 0.000) and was unaltered under ISO (p = 0.829). (4) Conclusions: The different H-reflex responses between MS and CG might reflect a reduced ability of MS patients in modulating spinal excitability.
Collapse
Affiliation(s)
- Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| | - Giovanna Borriello
- Neurology Unit, San Pietro Fatebenefratelli Hospital, MS Centre, 00189 Rome, Italy
| | - Francesco Sica
- Santa Maria Goretti Hospital, 04100 Latina, Italy; (F.S.); (F.M.)
| | | | - Elisabetta Maida
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (M.S.); (R.B.); (M.P.); (A.M.)
| |
Collapse
|
29
|
Scalia M, Parrella M, Borzuola R, Macaluso A. Comparison of acute responses in spinal excitability between older and young people after neuromuscular electrical stimulation. Eur J Appl Physiol 2024; 124:353-363. [PMID: 37524980 DOI: 10.1007/s00421-023-05288-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE This study aims at comparing acute responses in spinal excitability, as measured by H-reflex, between older and young individuals, following a single session of NMES superimposed onto voluntary isometric contractions of the ankle plantar-flexor muscles (NMES+), with respect to passive NMES (pNMES) and voluntary isometric contractions only (ISO). METHODS Thirty-two volunteers, 16 older (OLDER) and 16 young (YOUNG), were asked to sustain a constant force at 20% of maximal voluntary isometric contraction (MVIC) of the ankle plantar-flexor muscles in the dominant limb during each of the 3 conditions (NMES+ , pNMES and ISO). Fifteen repetitions of 6 s were performed, with a resting interval of 6 s between repetitions. Before and after each condition, soleus H-reflexes were elicited by percutaneous electrical stimulation of the posterior tibial nerve and H-reflex amplitudes recorded by surface EMG. RESULTS In OLDER, H-reflex amplitude did not change following any experimental condition (ISO: p = 0.203; pNMES: p = 0.542; NMES+: p = 0.431) compared to baseline. On the contrary, in YOUNG, H-reflex amplitudes significantly increased (p < 0.000) and decreased (p = 0.001) following NMES+ and pNMES, respectively, while there was no significant change in reflex responses following ISO (p = 0.772). CONCLUSION The lack of change in H-reflex responses following either NMES+ or pNMES might reflect a reduced ability of older people in modulating spinal excitability after the conditions. Specifically, an age-related alteration in controlling mechanisms at presynaptic level was suggested.
Collapse
Affiliation(s)
- Martina Scalia
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Martina Parrella
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| |
Collapse
|
30
|
de Mongeot LB, Galofaro E, Ramadan F, D'Antonio E, Missiroli F, Lotti N, Casadio M, Masia L. Combining FES and Exoskeletons in a Hybrid Haptic System for Enhancing VR Experience. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4812-4820. [PMID: 37971913 DOI: 10.1109/tnsre.2023.3334190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Robotic technology and functional electrical stimulation (FES) have emerged as highly effective rehabilitative techniques for individuals with neuromuscular diseases, showcasting their ability to restore motor functions. Within the proposed study, we developed and tested a new hybrid controller combining an upper-limb exoskeleton with FES to enhance haptic feedback when performing task-oriented and bimanual movement, like pick-and-place, in a virtual environment. We investigated the performance of the proposed approach on eight unimpaired participants providing haptic feedback either only by the exoskeleton or by the hybrid system. The hybrid control presents two different modalities, assistive and resistive, to modulate the perception of the load. FES intensity is calibrated to the subjects' biomechanical properties and it is adjusted in real-time according to the real-time motion of the upper limbs. Experimental results highlighted the ability of the hybrid control to improve kinematic performance: in both hybrid modalities subjects reduced the target matching error(values between 0.048±0.007 m and 0.06±0.006 m) without affecting the normal motion smoothness (SPARC values in the hybrid conditions range from -2.58±0.12 to -3.30±0.13). Moreover, the resistive approach resulted in greater metabolic consumption (1.04±0.03 W/kg), indicating a more realistic experience of lifting a virtual object through FES that increased the perceived weight. The innovation in our hybrid control relies on the modulation of muscular activation during manipulation tasks, which could be a promising approach in the clinical treatment of neuromuscular diseases.
Collapse
|
31
|
Flodin J, Wallenius P, Guo L, Persson NK, Ackermann P. Wearable Neuromuscular Electrical Stimulation on Quadriceps Muscle Can Increase Venous Flow. Ann Biomed Eng 2023; 51:2873-2882. [PMID: 37598135 PMCID: PMC10632221 DOI: 10.1007/s10439-023-03349-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Neuromuscular electrical stimulation (NMES) of the quadriceps (Q) may increase venous blood flow to reduce the risk of venous thromboembolism. This study assessed whether Q-NMES pants could increase peak venous velocity (PVV) in the femoral vein using Doppler ultrasound and minimize discomfort. On 15 healthy subjects, Q-NMES using textile electrodes integrated in pants was applied with increasing intensity (mA) until the first visible muscle contraction [measurement level (ML)-I] and with an additional increase of six NMES levels (ML II). Discomfort using a numeric rating scale (NRS, 0-10) and PVV were used to assess different NMES parameters: frequency (1, 36, 66 Hz), ramp-up/-down time (RUD) (0, 1 s), plateau time (1.5, 4, and 6 s), and on:off duty cycle (1:1, 1:2, 1:3, 1:4). Q-NMES pants significantly increased PVV from baseline with 93% at ML I and 173% at ML II. Frequencies 36 Hz and 66 Hz and no RUD resulted in significantly higher PVV at both MLs compared to 1 Hz and 1 s RUD, respectively. Plateau time, and duty cycle did not significantly change PVV. Discomfort was only significantly higher with increasing intensity and frequency. Q-NMES pants produces intensity-dependent 2-3-fold increases of venous blood flow with minimal discomfort. The superior NMES parameters were a frequency of 36 Hz, 0 s RUD, and intensity at ML II. Textile-based NMES wearables are promising for non-episodic venous thromboembolism prevention.
Collapse
Affiliation(s)
- Johanna Flodin
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Trauma, Acute Surgery and Orthopaedics, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Philip Wallenius
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopaedics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Li Guo
- Polymeric E-textiles Research Group, Swedish School of Textiles, Smart Textiles, University of Borås, Borås, Sweden
| | - Nils-Krister Persson
- Polymeric E-textiles Research Group, Swedish School of Textiles, Smart Textiles, University of Borås, Borås, Sweden
| | - Paul Ackermann
- Integrative Orthopedic Laboratory, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Trauma, Acute Surgery and Orthopaedics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| |
Collapse
|
32
|
Cazenave L, Einenkel M, Yurkewich A, Endo S, Hirche S, Burdet E. Hybrid Robotic and Electrical Stimulation Assistance Can Enhance Performance and Reduce Mental Demand. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4063-4072. [PMID: 37815973 DOI: 10.1109/tnsre.2023.3323370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Combining functional electrical stimulation (FES) and robotics may enhance recovery after stroke, by providing neural feedback with the former while improving quality of motion and minimizing muscular fatigue with the latter. Here, we explored whether and how FES, robot assistance and their combination, affect users' performance, effort, fatigue and user experience. 15 healthy participants performed a wrist flexion/extension tracking task with FES and/or robotic assistance. Tracking performance improved during the hybrid FES-robot and the robot-only assistance conditions in comparison to no assistance, but no improvement is observed when only FES is used. Fatigue, muscular and voluntary effort are estimated from electromyographic recording. Total muscle contraction and volitional activity are lowest with robotic assistance, whereas fatigue level do not change between the conditions. The NASA-Task Load Index answers indicate that participants found the task less mentally demanding during the hybrid and robot conditions than the FES condition. The addition of robotic assistance to FES training might thus facilitate an increased user engagement compared to robot training and allow longer motor training session than with FES assistance.
Collapse
|
33
|
Osborne JO, Tallent J, Girard O, Marshall PW, Kidgell D, Buhmann R. Neuromuscular electrical stimulation during maximal voluntary contraction: a Delphi survey with expert consensus. Eur J Appl Physiol 2023; 123:2203-2212. [PMID: 37247005 PMCID: PMC10492693 DOI: 10.1007/s00421-023-05232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE The use of electrical stimulation to assess voluntary activation of muscle/s is a popular method employed in numerous exercise science and health research settings. This Delphi study aimed to collate expert opinion and provide recommendations for best practice when using electrical stimulation during maximal voluntary contractions. METHODS A two-round Delphi study was undertaken with 30 experts who completed a 62-item questionnaire (Round 1) comprising of open- and closed-ended questions. Consensus was assumed if ≥ 70% of experts selected the same response; such questions were removed from the subsequent Round 2 questionnaire. Responses were also removed if they failed to meet a 15% threshold. Open-ended questions were analysed and converted into closed-ended questions for Round 2. It was assumed there was no clear consensus if a question failed to achieve a ≥ 70% response in Round 2. RESULTS A total of 16 out of 62 (25.8%) items reached consensus. Experts agreed that electrical stimulation provides a valid assessment of voluntary activation in specific circumstances, such as during maximal contraction, and this stimulation can be applied at either the muscle or the nerve. Experts recommended using doublet stimuli, self-adhesive electrodes, a familiarisation session, real-time visual or verbal feedback during the contraction, a minimum current increase of + 20% to ensure supramaximal stimulation, and manually triggering stimuli. CONCLUSION The results of this Delphi consensus study can help researchers make informed decisions when considering technical parameters when designing studies involving electrical stimulation for the assessment of voluntary activation.
Collapse
Affiliation(s)
- J O Osborne
- School of Sport Sciences, UiT The Arctic University of Norway, Medisin- Og Helsebygget, UiT, 9037, Tromsø, Norway.
| | - J Tallent
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, UK
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VA, Australia
| | - O Girard
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, WA, Australia
| | - P W Marshall
- School of Health Sciences, Western Sydney University, Penrith, NSW, Australia
- Department of Exercise Science, University of Auckland, Auckland, New Zealand
| | - D Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VA, Australia
| | - R Buhmann
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
34
|
Silva G, Goethel M, Machado L, Sousa F, Costa MJ, Magalhães P, Silva C, Midão M, Leite A, Couto S, Silva R, Vilas-Boas JP, Fernandes RJ. Acute Recovery after a Fatigue Protocol Using a Recovery Sports Legging: An Experimental Study. SENSORS (BASEL, SWITZERLAND) 2023; 23:7634. [PMID: 37688089 PMCID: PMC10490679 DOI: 10.3390/s23177634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Enhancing recovery is a fundamental component of high-performance sports training since it enables practitioners to potentiate physical performance and minimise the risk of injuries. Using a new sports legging embedded with an intelligent system for electrostimulation, localised heating and compression (completely embodied into the textile structures), we aimed to analyse acute recovery following a fatigue protocol. Surface electromyography- and torque-related variables were recorded on eight recreational athletes. A fatigue protocol conducted in an isokinetic dynamometer allowed us to examine isometric torque and consequent post-exercise acute recovery after using the sports legging. Regarding peak torque, no differences were found between post-fatigue and post-recovery assessments in any variable; however, pre-fatigue registered a 16% greater peak torque when compared with post-fatigue for localised heating and compression recovery methods. Our data are supported by recent meta-analyses indicating that individual recovery methods, such as localised heating, electrostimulation and compression, are not effective to recover from a fatiguing exercise. In fact, none of the recovery methods available through the sports legging tested was effective in acutely recovering the torque values produced isometrically.
Collapse
Affiliation(s)
- Gonçalo Silva
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Márcio Goethel
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Leandro Machado
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Filipa Sousa
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Mário Jorge Costa
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Pedro Magalhães
- Tintex Textiles S.A., 4924-909 Viana do Castelo, Portugal; (P.M.); (C.S.)
| | - Carlos Silva
- Tintex Textiles S.A., 4924-909 Viana do Castelo, Portugal; (P.M.); (C.S.)
| | - Marta Midão
- Centre of Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal
| | - André Leite
- Centre of Nanotechnology and Smart Materials, 4760-034 Vila Nova de Famalicão, Portugal
| | | | | | - João Paulo Vilas-Boas
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| | - Ricardo Jorge Fernandes
- Porto Biomechanics Laboratory (LABIOMEP-UP), University of Porto, 4200-450 Porto, Portugal; (G.S.)
- Faculty of Sport (CIFI2D), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
35
|
Sundström C, Juthberg R, Flodin J, Guo L, Persson NK, Ackermann PW. Effects on hemodynamic enhancement and discomfort of a new textile electrode integrated in a sock during calf neuromuscular electrical stimulation. Eur J Appl Physiol 2023; 123:2013-2022. [PMID: 37145130 PMCID: PMC10460736 DOI: 10.1007/s00421-023-05212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
PURPOSE To compare fixed transverse textile electrodes (TTE) knitted into a sock versus motor point placed standard gel electrodes (MPE) on peak venous velocity (PVV) and discomfort, during calf neuromuscular electrical stimulation (calf-NMES). METHODS Ten healthy participants received calf-NMES with increasing intensity until plantar flexion (measurement level I = ML I), and an additional mean 4 mA intensity (ML II), utilizing TTE and MPE. PVV was measured with Doppler ultrasound in the popliteal and femoral veins at baseline, ML I and II. Discomfort was assessed with a numerical rating scale (NRS, 0-10). Significance was set to p < 0.05. RESULTS TTE and MPE both induced significant increases in PVV from baseline to ML I and significantly higher increases to ML II, in both the popliteal and femoral veins (all p < 0.001). The popliteal increases of PVV from baseline to both ML I and II were significantly higher with TTE versus MPE (p < 0.05). The femoral increases of PVV from baseline to both ML I and II were not significantly different between TTE and MPE. TTE versus MPE resulted at ML I in higher mA and NRS (p < 0.001), and at ML II in higher mA (p = 0.005) while NRS was not significantly different. CONCLUSION TTE integrated in a sock produces intensity-dependent increases of popliteal and femoral hemodynamics comparable to MPE, but results in more discomfort at plantar flexion due to higher current required. TTE exhibits in the popliteal vein higher increases of PVV compared to MPE. TRIAL REGISTRATION Trial_ID: ISRCTN49260430. Date: 11/01/2022. Retrospectively registered.
Collapse
Affiliation(s)
- C Sundström
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - R Juthberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - J Flodin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - L Guo
- Polymeric E- Textiles and Smart Textiles University of Borås, Borås, Sweden
| | - N-K Persson
- Polymeric E- Textiles and Smart Textiles University of Borås, Borås, Sweden
| | - P W Ackermann
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Department of Trauma, Acute Surgery and Orthopaedics, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
36
|
Liu Y, Gong Y, Zhang C, Meng P, Gai Y, Han X, Yuan Z, Xing J, Dong Z. Effect of neuromuscular electrical stimulation combined with early rehabilitation therapy on mechanically ventilated patients: a prospective randomized controlled study. BMC Pulm Med 2023; 23:272. [PMID: 37480065 PMCID: PMC10362773 DOI: 10.1186/s12890-023-02481-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/16/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND This study aimed to investigate the effectiveness of neuromuscular electrical stimulation (NMES) blended with early rehabilitation on the diaphragm and skeletal muscle in sufferers on mechanical ventilation (MV). METHOD This is a prospective randomized controlled study. Eighty patients on MV for respiratory failure were divided into a study group (40 cases) and a control group (40 cases) randomly. The study group adopted a treatment method of NMES combined with early rehabilitation and the control group adopted the method of early rehabilitation only. The diaphragmatic excursion (DE), diaphragmatic thickening fraction (DTF), variation of thickness of intercostal muscles (TIM), variation of thickness of rectus abdominis (TRA), and variation of the cross-sectional area of rectus femoris (CSA-RF) were measured to evaluate the therapeutic effect by ultrasound before and after intervention at the first day of MV, the 3rd and 7th day of intervention and the day discharged from ICU. RESULTS No significant difference was found in the general demographic information and ultrasound indicators between the two groups before treatment (all P > 0.05). After treatment, the variation of DTF (0.15 ± 0.05% vs. 0.12 ± 0.04%, P = 0.034) was significantly higher in the study group than that in the control group on the day discharged from ICU. The variation of TRA (0.05 ± 0.09% vs. 0.10 ± 0.11%, P = 0.029) and variation of CSA-RF (0.13 ± 0.07% vs. 0.19 ± 0.08%, P < 0.001) in the study group were significantly lower than that in the control group. The duration of MV in the study group was significantly shorter than that in the control group [109.5 (88.0, 213.0) hours vs. 189.5 (131.5, 343.5) hours, P = 0.023]. The study group had better muscle strength score than the control group at discharge (52.20 ± 11.70 vs. 44.10 ± 15.70, P = 0.011). CONCLUSION NMES combined with early rehabilitation therapy is beneficial in reducing muscle atrophy and improving muscle strength in mechanically ventilated patients. This treatment approach may provide a new option for patients to choose a rehabilitation program; however, more research is needed to fully evaluate the effectiveness of this treatment option.
Collapse
Affiliation(s)
- Ying Liu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Yangyang Gong
- Department of Rehabilitation Medicine, The affiliated hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Chaofan Zhang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Pingping Meng
- Department of Rehabilitation Medicine, The affiliated hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Yubiao Gai
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Xiaoning Han
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Zhiyong Yuan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong, 266000, China
| | - Jinyan Xing
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong, 266000, China.
| | - Zehua Dong
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Qingdao, Shandong, 266000, China.
| |
Collapse
|
37
|
Arai K, Sugi M, Yokoi H, Wang L, Jiang Y. Comparison of Bipolar and Monopolar Electrode Configurations for FES on Biceps Brachii. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083178 DOI: 10.1109/embc40787.2023.10340018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Function electrical stimulation (FES) is recommended as one of the effective methods for rehabilitation of motor function after stroke. There are two forms to deliver electrical stimulation to induce muscle contraction: Bipolar electrode configuration with two electrodes of the same size, and monopolar electrode configuration with a bigger electrode as an indifferent electrode and a smaller one as an active electrode. The purpose of this study is to compare the two kinds of configuration on biceps brachii in terms of induced muscle contraction force and muscle fatigue. In the experiment, electrical stimulation was applied on biceps brachii muscles of the right arm. Isometric contraction was induced by fixing the elbow joint during the stimulation. The experimental results showed that the induced contraction force was bigger using monopolar electrode configuration with the indifferent electrode on the antagonist muscle, and there was no significant difference in muscle fatigue between the configurations. Monopolar electrode configuration with the indifferent electrode on the antagonist muscle was suggested as the most effective method for FES on biceps brachii.Clinical Relevance- This study establishes an effective electrode configuration for FES on biceps brachii.
Collapse
|
38
|
Persiane AS, Negrão DMG, Alves RDP, Freitas DGDE, Cazarini C, Alves VLDS. EXERCISES AND NEUROMUSCULAR ELECTRIC STIMULATION FOR MEDIAL LONGITUDINAL ARCH: CLINICAL TRIAL. ACTA ORTOPEDICA BRASILEIRA 2023; 31:e259598. [PMID: 37323154 PMCID: PMC10263438 DOI: 10.1590/1413-785220233102e259598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/09/2022] [Indexed: 06/17/2023]
Abstract
Objective The extrinsic muscles, such as the posterior tibialis and long flexor of the hallux and the intrinsic of the foot, are part of the active subsystem of the central system of the foot and play an essential role in the control of the medial longitudinal arch resulting from difficulty in contracting the muscle, neuromuscular electrostimulation (NMES) becomes a resource combined with strengthening and recommended for rehabilitation. T this work aims to evaluate the effectiveness of NMES associated with exercise in deforming the medial longitudinal arch. Methods This is a randomized blind clinical trial. 60 asymptomatic participants were divided into three groups: NMES, exercise and control. The NMES and exercise group performed seven exercises for the intrinsic and extrinsic muscles twice a week for 6 weeks, and the NMES group used an NMES associated with five exercises. Navicular height and medial longitudinal arch angle were taken before and after the intervention period. Results No statistically significant differences existed between groups for navicular height and medial longitudinal arch angle. Conclusion NMES associated with exercise does not change the characteristics of the medial longitudinal arch in association with asymptomatic. Level of Evidence I; Randomized clinical trial.
Collapse
Affiliation(s)
- André Setti Persiane
- . Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
- . Centro Universitário Faculdade de Medicina do ABC (FMABC), Santo André, SP, Brazil
| | - Daiane Magalhães Gomes Negrão
- . Irmandade da Santa Casa de Misericórdia de São Paulo, Department of Musculoskeletal Physical Therapy, São Paulo, SP, Brazil
| | - Raone Daltro Paraguassu Alves
- . Irmandade da Santa Casa de Misericórdia de São Paulo, Department of Musculoskeletal Physical Therapy, São Paulo, SP, Brazil
| | - Diego Galace DE Freitas
- . Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
- . Irmandade da Santa Casa de Misericórdia de São Paulo, Department of Musculoskeletal Physical Therapy, São Paulo, SP, Brazil
| | - Cláudio Cazarini
- . Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
- . Irmandade da Santa Casa de Misericórdia de São Paulo, Department of Musculoskeletal Physical Therapy, São Paulo, SP, Brazil
| | - Vera Lúcia Dos Santos Alves
- . Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
- . Irmandade da Santa Casa de Misericórdia de São Paulo, Department of Musculoskeletal Physical Therapy, São Paulo, SP, Brazil
| |
Collapse
|
39
|
Borzuola R, Nuccio S, Scalia M, Parrella M, Del Vecchio A, Bazzucchi I, Felici F, Macaluso A. Adjustments in the motor unit discharge behavior following neuromuscular electrical stimulation compared to voluntary contractions. Front Physiol 2023; 14:1212453. [PMID: 37324379 PMCID: PMC10267458 DOI: 10.3389/fphys.2023.1212453] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: The application of neuromuscular electrical stimulation superimposed on voluntary muscle contractions (NMES+) has demonstrated a considerable potential to enhance or restore muscle function in both healthy and individuals with neurological or orthopedic disorders. Improvements in muscle strength and power have been commonly associated with specific neural adaptations. In this study, we investigated changes in the discharge characteristics of the tibialis anterior motor units, following three acute exercises consisting of NMES+, passive NMES and voluntary isometric contractions alone. Methods: Seventeen young participants participated in the study. High-density surface electromyography was used to record myoelectric activity in the tibialis anterior muscle during trapezoidal force trajectories involving isometric contractions of ankle dorsi flexors with target forces set at 35, 50% and 70% of maximal voluntary isometric contraction (MVIC). From decomposition of the electromyographic signal, motor unit discharge rate, recruitment and derecruitment thresholds were extracted and the input-output gain of the motoneuron pool was estimated. Results: Global discharge rate increased following the isometric condition compared to baseline at 35% MVIC while it increased after all experimental conditions at 50% MVIC target force. Interestingly, at 70% MVIC target force, only NMES + led to greater discharge rate compared to baseline. Recruitment threshold decreased after the isometric condition, although only at 50% MVIC. Input-output gain of the motoneurons of the tibialis anterior muscle was unaltered after the experimental conditions. Discussion: These results indicated that acute exercise involving NMES + induces an increase in motor unit discharge rate, particularly when higher forces are required. This reflects an enhanced neural drive to the muscle and might be strongly related to the distinctive motor fiber recruitment characterizing NMES+.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Stefano Nuccio
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Martina Scalia
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Martina Parrella
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Faculty of Engineering, Zentralinstitut für Medizintechnik (ZIMT), Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Ilenia Bazzucchi
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Francesco Felici
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human, and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
40
|
Błaszczyszyn M, Szczęsna A, Konieczny M, Pakosz P, Balko S, Borysiuk Z. Quantitative Assessment of Upper Limb Movement in Post-Stroke Adults for Identification of Sensitive Measures in Reaching and Lifting Activities. J Clin Med 2023; 12:jcm12093333. [PMID: 37176773 PMCID: PMC10179564 DOI: 10.3390/jcm12093333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/27/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The assumption of this work is the achievement of objective results of the movement structure, which forms the basis for in-depth analysis and, consequently, for determining the upper limb movements that are most affected by stroke compared to healthy people. METHODS An analysis of relevant and systematically identified features of upper limb movement in post-stroke adults is presented based on scalable hypothesis tests. The basic features were calculated using movements defined by the x, y, and z coordinates (i.e., 3D trajectory time series) and compared to the results of post-stroke patients with healthy controls of similar age. RESULTS After automatic feature selection, out of the 1004 common features of upper limb movement, the most differentiated were the upper arm movements in reaching kinematics. In terms of movement type, movements in the frontal plane (shoulder abduction and adduction) were the most sensitive to changes. The largest number of discriminating features was determined on the basis of acceleration time series. CONCLUSIONS In the 3D assessment of functional activities of the upper limb, the upper arm turned out to be the most differentiated body segment, especially during abduction and adduction movements. The results indicate a special need to pay attention to abduction and adduction movements to improve the activities of daily living of the upper limbs after a stroke.
Collapse
Affiliation(s)
- Monika Błaszczyszyn
- Department of Physical Education and Sport, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
| | - Agnieszka Szczęsna
- Department of Computer Graphics, Vision and Digital Systems, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mariusz Konieczny
- Department of Physical Education and Sport, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
| | - Paweł Pakosz
- Department of Physical Education and Sport, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
| | - Stefan Balko
- Department of Physical Education and Sport, Faculty of Education, J.E. Purkyne University, 400 96 Usti nad Labem, Czech Republic
| | - Zbigniew Borysiuk
- Department of Physical Education and Sport, Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland
| |
Collapse
|
41
|
Newsham KR. Intrinsic Foot Muscle Exercises With and Without Electric Stimulation. J Sport Rehabil 2023:1-9. [PMID: 37142409 DOI: 10.1123/jsr.2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/19/2023] [Accepted: 02/24/2023] [Indexed: 05/06/2023]
Abstract
CONTEXT Exercising intrinsic foot muscles (IFMs) can improve dynamic balance and foot posture. The exercises are not intuitive and electrotherapy (neuromuscular electrical stimulation [NMES]) has been suggested to help individuals execute the exercises. The aim of this study was to evaluate the effects of training IFM program on dynamic balance and foot posture and compare traditional training methods (TRAIN) with traditional training plus NMES on the perceived workload of the exercises, balance, and foot posture. DESIGN Randomized controlled trial. METHODS Thirty-nine participants were randomized to control, TRAIN, or NMES. TRAIN and NMES performed IFM exercises daily for 4 weeks; NMES received electrotherapy during the first 2 weeks of training. The Y-Balance test and arch height index were measured in all participants at baseline. The training groups were measured again at 2 weeks; all participants were measured at 4 weeks and 8 weeks, after 4 weeks of no training. Perceived workload (National Aeronautics and Space Administration Task Load Index) of exercises was assessed throughout the first 2 weeks and at 4 weeks. RESULTS A 4-week IFM training program demonstrated increases in Y-Balance (P = .01) for TRAIN and in arch height index (seated P = .03; standing P = .02) for NMES, relative to baseline. NMES demonstrated improvement in Y-Balance (P = .02) and arch height index standing (P = .01) at 2 weeks. There were no significant differences between the training groups. Groups were similar in the number responding to exercises in excess of minimal detectable change on all clinical measures. Perceived workload of the exercises decreased during the first 2 weeks of training (P = .02), and more notably at 4 weeks (P < .001). The groups did not differ in how they perceived the workload. CONCLUSIONS A 4-week IFM training program improved dynamic balance and foot posture. Adding NMES in early phases of training provided early improvement in dynamic balance and foot posture, but did not affect perceived workload.
Collapse
Affiliation(s)
- Katherine R Newsham
- Department of Physical Therapy & Athletic Training, Saint Louis University, St Louis, MO,USA
| |
Collapse
|
42
|
Karaaslan Y, Sahbaz Y, Dogan DD, Ziroglu N, Altun S, Mutlu EK. The Effectiveness of Neuromuscular Electrical Stimulation in Patients With Subacromial Impingement Syndrome: A Randomized Controlled Study. Am J Phys Med Rehabil 2023; 102:396-403. [PMID: 36095157 DOI: 10.1097/phm.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The aim of the study is to compare the effects of exercise training plus neuromuscular electrical stimulation with exercise training alone on shoulder function, pain, range of motion, and muscle strength in patients with subacromial impingement syndrome. DESIGN Patients were randomly divided into groups of exercise training ( n = 24) and exercise training + neuromuscular electrical stimulation ( n = 24). Shoulder function was evaluated with the Disabilities of the Arm, Shoulder and Hand Questionnaire, pain level was assessed with a visual analog scale, range of motion was measured with a goniometer, and muscle strength was assessed with a handheld dynamometer baseline and at the end of treatment (week 8). RESULTS In both groups, shoulder function, range of motion, and muscle strength (except flexion muscle strength in the exercise training group) increased, while pain decreased ( P < 0.05). Compared with the exercise training group, visual analog scale-activity and visual analog scale-night decreased more, and external-rotation range of motion and whole muscle strength increased more in the exercise training + neuromuscular electrical stimulation group ( P < 0.05). On the other hand, the effect sizes were medium to large for both groups. CONCLUSIONS The addition of neuromuscular electrical stimulation treatment to exercise training did not improve shoulder function, which is the primary outcome, more than exercise training alone, but increased muscle strength and range of motion (external-rotation only) and decreased pain (activity-night), which are the secondary outcomes.
Collapse
Affiliation(s)
- Yasemin Karaaslan
- From the Department of Physiotherapy and Rehabilitation, Health Sciences Faculty, Hatay Mustafa Kemal University, Hatay, Turkey (YK); Department of Physiotherapy and Rehabilitation, Health Sciences Faculty, Beykent University, Istanbul, Turkey (YS); Department of Orthopedics and Traumatology, Istanbul Sile State Hospital, Istanbul, Turkey (DDD); Department of Orthopedics and Traumatology, Beylikduzu State Hospital, Istanbul, Turkey (NZ); Department of Orthopaedics and Traumatology, Bakırkoy Dr Sadi Konuk Training and Research Hospital, Istanbul, Turkey (SA); and Department of Physical Therapy and Rehabilitation, Health Sciences Faculty, Bandirma Onyedi Eylul University, Bandirma, Turkey (EKM)
| | | | | | | | | | | |
Collapse
|
43
|
Immediate Effects of Whole-Body versus Local Dynamic Electrostimulation of the Abdominal Muscles in Healthy People Assessed by Ultrasound: A Randomized Controlled Trial. BIOLOGY 2023; 12:biology12030454. [PMID: 36979147 PMCID: PMC10044981 DOI: 10.3390/biology12030454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Dynamic electrostimulation consists of the application of local or global electrostimulation together with physical exercise. This study aimed to investigate the immediate effects of a dynamic electrostimulation session on the thickness of the abdominal musculature, inter-rectus distance, heart rate, blood pressure, and body temperature, and to identify possible differences in its form of application. A total of 120 healthy participants were divided into three groups: the whole-body electrostimulation group, the local electrostimulation group, and the control group without electrical stimulation. All groups performed a single session with the same dynamic exercise protocol. Muscle thickness and inter-rectus distance were evaluated ultrasonographically using the Rehabilitative Ultrasound Imaging technique both at rest and in muscle contraction (the active straight leg raise test) to find the post-intervention differences. The results showed significant differences in immediate post-intervention heart rate, with a smaller increase in the local electrostimulation group compared to the control and whole-body electrostimulation groups. No significant differences were identified between the groups after the interventions in the rest of the variables analyzed. Therefore, a local application, with the same effects as a global application on the abdominal musculature, has fewer contraindications, which makes its use more advisable, especially in populations with cardiorespiratory disorders, for which more research is needed.
Collapse
|
44
|
Stephan H, Wehmeier UF, Förster T, Tomschi F, Hilberg T. Additional Active Movements Are Not Required for Strength Gains in the Untrained during Short-Term Whole-Body Electromyostimulation Training. Healthcare (Basel) 2023; 11:741. [PMID: 36900747 PMCID: PMC10000632 DOI: 10.3390/healthcare11050741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Recommendations for conventional strength training are well described, and the volume of research on whole-body electromyostimulation training (WB-EMS) is growing. The aim of the present study was to investigate whether active exercise movements during stimulation have a positive effect on strength gains. A total of 30 inactive subjects (28 completed the study) were randomly allocated into two training groups, the upper body group (UBG) and the lower body group (LBG). In the UBG (n = 15; age: 32 (25-36); body mass: 78.3 kg (53.1-114.3 kg)), WB-EMS was accompanied by exercise movements of the upper body and in the LBG (n = 13; age: 26 (20-35); body mass: 67.2 kg (47.4-100.3 kg)) by exercise movements of the lower body. Therefore, UBG served as a control when lower body strength was considered, and LBG served as a control when upper body strength was considered. Trunk exercises were performed under the same conditions in both groups. During the 20-min sessions, 12 repetitions were performed per exercise. In both groups, stimulation was performed with 350 μs wide square pulses at 85 Hz in biphasic mode, and stimulation intensity was 6-8 (scale 1-10). Isometric maximum strength was measured before and after the training (6 weeks set; one session/week) on 6 exercises for the upper body and 4 for the lower body. Isometric maximum strength was significantly higher after the EMS training in both groups in most test positions (UBG p < 0.001-0.031, r = 0.88-0.56; LBG p = 0.001-0.039, r = 0.88-0.57). Only for the left leg extension in the UBG (p = 0.100, r = 0.43) and for the biceps curl in the LBG (p = 0.221, r = 0.34) no changes were observed. Both groups showed similar absolute strength changes after EMS training. Body mass adjusted strength for the left arm pull increased more in the LBG group (p = 0.040, r = 0.39). Based on our results we conclude that concurring exercise movements during a short-term WB-EMS training period have no substantial influence on strength gains. People with health restrictions, beginners with no experience in strength training and people returning to training might be particularly suitable target groups, due to the low training effort. Supposedly, exercise movements become more relevant when initial adaptations to training are exhausted.
Collapse
Affiliation(s)
- Holger Stephan
- Department of Sports Medicine, University of Wuppertal, Moritzstraße 14, 42117 Wuppertal, Germany
| | | | | | | | - Thomas Hilberg
- Department of Sports Medicine, University of Wuppertal, Moritzstraße 14, 42117 Wuppertal, Germany
| |
Collapse
|
45
|
Kurtys K, Gonera B, Zielinska N, Podgórski M, Karauda P, Olewnik Ł. Localization of the gracilis muscle motor points - key considerations for botulinum neurotoxin injection and electrical stimulation. Ann Anat 2023; 248:152072. [PMID: 36863619 DOI: 10.1016/j.aanat.2023.152072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Muscle motor points are considered the best sites for electrode positioning in electrical stimulation and, by some researchers, for botulinum neurotoxin injections. The aim of this study is to locate the motor points in the gracilis muscle to improve muscle function maintenance and treatment of spasticity. MATERIAL AND METHODS Ninety-three gracilis muscles (49 right, 44 left), fixed in 10% formalin solution, were subjected to the research. All nerve branches running towards the muscle were precisely traced to each motor point. Specific measurements were collected. RESULTS The gracilis muscle presents multiple motor points (median of 12), all of which were localized on the deep (lateral) side of the muscle belly. Generally, motor points of this muscle were spread between 15% and 40% of the reference line length. CONCLUSION Our findings may help clinicians identify appropriate locations for electrode placement during electrical stimulation of the gracilis muscle; they also deepen our understanding of the correlation between motor points and motor end plates and improve the application of botulinum neurotoxin injections.
Collapse
Affiliation(s)
- Konrad Kurtys
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland
| | - Bartosz Gonera
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland
| | - Nicol Zielinska
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland
| | - Michał Podgórski
- Department of Diagnostic Imaging and Interventional Radiology, Veteran's Memorial Hospital, Medical University of Lodz, Poland
| | - Piotr Karauda
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland
| | - Łukasz Olewnik
- Department of Anatomical Dissection and Donation, Medical University of Lodz, Poland.
| |
Collapse
|
46
|
Papavasileiou A, Xenofondos A, Baudry S, Lapole T, Amiridis IG, Metaxiotis D, Tsatalas T, Patikas DA. Protocols Targeting Afferent Pathways via Neuromuscular Electrical Stimulation for the Plantar Flexors: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2347. [PMID: 36850945 PMCID: PMC9967278 DOI: 10.3390/s23042347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was registered to PROSPERO (ID: CRD42022345194) and was funded by the Greek General Secretariat for Research and Technology (ERA-NET NEURON JTC 2020). Included were original research articles on healthy adults, with NMES interventions applied on TN or TS or both. Four databases (Cochrane Library, PubMed, Scopus, and Web of Science) were systematically searched, in addition to a manual search using the citations of included studies. Quality assessment was conducted on 32 eligible studies by estimating the risk of bias with the checklist of the Effective Public Health Practice Project Quality Assessment Tool. Eighty-seven protocols were analyzed, with descriptive statistics. Compared to TS, TN stimulation has been reported in a wider range of frequencies (5-100, vs. 20-200 Hz) and normalization methods for the contraction intensity. The pulse duration ranged from 0.2 to 1 ms for both TS and TN protocols. It is concluded that with increasing popularity of NMES protocols in intervention and rehabilitation, future studies may use a wider range of stimulation attributes, to stimulate motor neurons via afferent pathways, but, on the other hand, additional studies may explore new protocols, targeting for more optimal effectiveness. Furthermore, future studies should consider methodological issues, such as stimulation efficacy (e.g., positioning over the motor point) and reporting of level of discomfort during the application of NMES protocols to reduce the inherent variability of the results.
Collapse
Affiliation(s)
- Anastasia Papavasileiou
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Anthi Xenofondos
- Physical Education and Sports Sciences, Frederick University, 1036 Nicosia, Cyprus
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Ioannis G. Amiridis
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | | | - Themistoklis Tsatalas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Dimitrios A. Patikas
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| |
Collapse
|
47
|
Ye X, Vala D, Walker H, Gaza V, Umali V, Brodoff P, Gockel N, Nakamura M. Effects of Unilateral Neuromuscular Electrical Stimulation with Illusionary Mirror Visual Feedback on the Contralateral Muscle: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3755. [PMID: 36834447 PMCID: PMC9962941 DOI: 10.3390/ijerph20043755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
We aim to examine the cross-education effects of unilateral muscle neuromuscular electrical stimulation (NMES) training combined with illusionary mirror visual feedback (MVF). Fifteen adults (NMES + MVF: 5; NMES: 5, Control: 5) completed this study. The experimental groups completed a 3-week NMES training on their dominant elbow flexor muscle. The NMES + MVF group had a mirror placed in the midsagittal plane between their upper arms, so a visual illusion was created in which their non-dominant arms appeared to be stimulated. Baseline and post-training measurements included both arms' isometric strength, voluntary activation level, and resting twitch. Cross-education effects were not observed from all dependent variables. For the unilateral muscle, both experimental groups showed greater strength increases when compared to the control (isometric strength % changes: NMES + MVF vs. NMES vs. Control = 6.31 ± 4.56% vs. 4.72 ± 8.97% vs. -4.04 ± 3.85%, p < 0.05). Throughout the training, even with the maximally tolerated NMES, the NMES + MVF group had greater perceived exertion and discomfort than the NMES. Additionally, the NMES-evoked force increased throughout the training for both groups. Our data does not support that NMES combined with or without MVF induces cross-education. However, the stimulated muscle becomes more responsive to the NMES and can become stronger following the training.
Collapse
Affiliation(s)
- Xin Ye
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Daniel Vala
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Hayden Walker
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Victor Gaza
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Vinz Umali
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Patrick Brodoff
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Nathan Gockel
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT 06117, USA
| | - Masatoshi Nakamura
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-ku, Niigata 950-3198, Japan
| |
Collapse
|
48
|
di Cagno A, Buonsenso A, Centorbi M, Manni L, Di Costanzo A, Casazza G, Parisi A, Guerra G, Calcagno G, Iuliano E, Soligo M, Fiorilli G. Whole body-electromyostimulation effects on serum biomarkers, physical performances and fatigue in Parkinson's patients: A randomized controlled trial. Front Aging Neurosci 2023; 15:1086487. [PMID: 36845654 PMCID: PMC9949720 DOI: 10.3389/fnagi.2023.1086487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Background Whole-body electromyostimulation (WB-EMS) was never previously applied to Parkinson's disease (PD) patients. This randomized controlled study aimed to find the most effective and safe WB-EMS training protocol for this population. Methods Twenty-four subjects (age: 72.13 ± 6.20 years), were randomly assigned to three groups: a high-frequency WB-EMS strength training group (HFG) (rectangular stimulation at 85 Hz, 350 μs, 4 s stimulation/4 s rest), a low-frequency WB-EMS aerobic training group (LFG) (rectangular stimulation 7 Hz, 350 μs, with a continuous pulse duration), and an inactive control group (CG). Participants of the two experimental groups underwent 24 controlled WB-EMS training sessions, with a duration of 20 min each, during 12-week intervention. Serum growth factors (BDNF, FGF-21, NGF and proNGF), α-synuclein, physical performance and Parkinson's Disease Fatigue Scale (PFS-16) responses were analyzed to evaluate the pre-post variation and differences among groups. Results Significant interactions of Time*Groups were detected for BDNF (Time*Groups p = 0.024; Time*CG, b = -628, IC95% = -1,082/-174, p = 0.008), FGF-21 (Time*Groups p = 0.009; Time*LFG b = 1,346, IC95% = 423/2268, p = 0.005), and α-synuclein (Time*Groups p = 0.019; Time*LFG b = -1,572, IC95% = -2,952/-192, p = 0.026). Post hoc analyses and comparisons of ΔS (post-pre), performed independently for each group, showed that LFG increased serum BDNF levels (+ 203 pg/ml) and decreased α-synuclein levels (-1,703 pg/ml), while HFG showed the opposite effects (BDNF: -500 pg/ml; α-synuclein: + 1,413 pg/ml). CG showed a significant BDNF reduction over time. Both LFG and HFG showed significant improvements in several physical performance outcomes and the LFG showed better results than HFG. Concerning PFS-16, significant differences over time (b = -0.4, IC95% = -0.8/-0.0, p = 0.046) and among groups (among all groups p < 0.001) were found, and the LFG exhibited better results than the HFG (b = -1.0, IC95% = -1.3/-0.7, p < 0.001), and CG (b = -1.7, IC95% = -2.0/-1.4, p < 0.001) with this last one that worsened over time. Conclusion LFG training was the best choice for improving or maintaining physical performance, fatigue perception and variation in serum biomarkers. Clinical trial registration https://www.clinicaltrials.gov/ct2/show/NCT04878679, identifier NCT04878679.
Collapse
Affiliation(s)
- Alessandra di Cagno
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Andrea Buonsenso
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Marco Centorbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology and Cellular Biology and Neurobiology Institute (CNR), National Research Council (CNR), Rome, Italy
| | - Alfonso Di Costanzo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giusy Casazza
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Attilio Parisi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Calcagno
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Enzo Iuliano
- Faculty of Psychology, eCampus University, Novedrate, Italy,*Correspondence: Enzo Iuliano,
| | - Marzia Soligo
- Institute of Translational Pharmacology and Cellular Biology and Neurobiology Institute (CNR), National Research Council (CNR), Rome, Italy,Marzia Soligo,
| | - Giovanni Fiorilli
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | |
Collapse
|
49
|
Wide-pulse electrical stimulation of the quadriceps allows greater maximal evocable torque than conventional stimulation. Eur J Appl Physiol 2023; 123:1209-1214. [PMID: 36753001 DOI: 10.1007/s00421-023-05145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE The effectiveness of a neuromuscular electrical stimulation (NMES) program has been shown to be proportional to the maximal evocable torque (MET), which is potentially influenced by pulse characteristics such as duration and frequency. The aim of this study was to compare MET between conventional and wide-pulse NMES at two different frequencies. METHODS MET-expressed as a percentage of maximal voluntary contraction (MVC) torque-and maximal tolerable current intensity were quantified on 71 healthy subjects. The right quadriceps was stimulated with three NMES protocols using different pulse duration/frequency combinations: conventional NMES (0.2 ms/50 Hz; CONV), wide-pulse NMES at 50 Hz (1 ms/50 Hz; WP50) and wide-pulse NMES at 100 Hz (1 ms/100 Hz; WP100). The proportion of subjects reaching the maximal stimulator output (100 mA) before attaining maximal tolerable current intensity was also quantified. RESULTS The proportion of subjects attaining maximal stimulator output was higher for CONV than WP50 and WP100 (p < 0.001). In subjects who did not attain maximal stimulator output in any protocol, MET was higher for both WP50 and WP100 than for CONV (p < 0.001). Maximal tolerable current intensity was lower for both WP50 and WP100 than for CONV and was also lower for WP100 than for WP50 (p < 0.001). CONCLUSION When compared to conventional NMES, wide-pulse protocols resulted in greater MET and lower maximal tolerable current intensity. Overall, this may lead to better NMES training/rehabilitation effectiveness and less practical issues associated with maximal stimulator output limitations.
Collapse
|
50
|
Klaiber LR, Schlechtweg S, Wiedemann R, Alt W, Stutzig N. Local displacement within the Achilles tendon induced by electrical stimulation of the single gastrocnemius muscles. Clin Biomech (Bristol, Avon) 2023; 102:105901. [PMID: 36791484 DOI: 10.1016/j.clinbiomech.2023.105901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND The Achilles tendon consists of three subtendons, but their functional meaning is still unknown. There are several approaches for the examination in-vivo using sonographic imaging, however, there is no approach for in-vivo examination with respect to the single subtendons of the m. triceps surae. The study's aim was to reveal the single subtendons of the m. triceps surae. METHODS The Achilles tendon of 17 subjects was analysed. The muscles (m. gastrocnemius lateralis and medialis) were stimulated separately using neuromuscular electrical stimulation. The intensity of muscle contraction was controlled using electromyographic data. Sonographic videos of the Achilles tendon were recorded during muscle contraction. A speckle tracking algorithm was used to analyse the moving areas within the Achilles tendon during the initial phase of contraction. FINDINGS The muscles were activated at 10-20% of the maximal M-wave. Isolated contraction of m. gastrocnemius lateralis led to local displacement in the lateral part of the Achilles tendon's cross-section whereas isolated contraction of m. gastrocnemius medialis led to displacement in the medial part and to a larger size of the area where initial displacement took place (m. gastrocnemius lateralis to medialis approximately 1:2). INTERPRETATION The results demonstrate that isolated contractions of m. gastrocnemius lateralis and medialis lead to individual displacements which significantly differ. The differences in position and size of the area of the local displacement indicate an independent individual function. Unlike other studies generally investigating the AT in-vivo using muscle stimulation and ultrasonic imaging, this study investigated the AT's cross-section which had never been investigated before.
Collapse
Affiliation(s)
| | - Sascha Schlechtweg
- Institute of Sport and Movement Science, University of Stuttgart, Germany
| | - Rika Wiedemann
- Institute of Sport and Movement Science, University of Stuttgart, Germany
| | - Wilfried Alt
- Institute of Sport and Movement Science, University of Stuttgart, Germany
| | - Norman Stutzig
- Institute of Sport and Movement Science, University of Stuttgart, Germany
| |
Collapse
|