1
|
Tang WJ, Gu B, Montalvo S, Dunaway Young S, Parker DM, de Monts C, Ataide P, Ni Ghiollagain N, Wheeler MT, Tesi Rocha C, Christle JW, He Z, Day JW, Duong T. Assessing the Assisted Six-Minute Cycling Test as a Measure of Endurance in Non-Ambulatory Patients with Spinal Muscular Atrophy (SMA). J Clin Med 2023; 12:7582. [PMID: 38137651 PMCID: PMC10743820 DOI: 10.3390/jcm12247582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Assessing endurance in non-ambulatory individuals with Spinal Muscular Atrophy (SMA) has been challenging due to limited evaluation tools. The Assisted 6-Minute Cycling Test (A6MCT) is an upper limb ergometer assessment used in other neurologic disorders to measure endurance. To study the performance of the A6MCT in the non-ambulatory SMA population, prospective data was collected on 38 individuals with SMA (13 sitters; 25 non-sitters), aged 5 to 74 years (mean = 30.3; SD = 14.1). The clinical measures used were A6MCT, Revised Upper Limb Module (RULM), Adapted Test of Neuromuscular Disorders (ATEND), and Egen Klassifikation Scale 2 (EK2). Perceived fatigue was assessed using the Fatigue Severity Scale (FSS), and effort was assessed using the Rate of Perceived Exertion (RPE). Data were analyzed for: (1) Feasibility, (2) Clinical discrimination, and (3) Associations between A6MCT with clinical characteristics and outcomes. Results showed the A6MCT was feasible for 95% of the tested subjects, discriminated between functional groups (p = 0.0086), and was significantly associated with results obtained from RULM, ATEND, EK2, and Brooke (p < 0.0001; p = 0.029; p < 0.001; p = 0.005). These findings indicate the A6MCT's potential to evaluate muscular endurance in non-ambulatory SMA individuals, complementing clinician-rated assessments. Nevertheless, further validation with a larger dataset is needed for broader application.
Collapse
Affiliation(s)
- Whitney J. Tang
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Bo Gu
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Samuel Montalvo
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Palo Alto, CA 94305, USA; (S.M.); (J.W.C.)
| | - Sally Dunaway Young
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Dana M. Parker
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Constance de Monts
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Paxton Ataide
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Noirin Ni Ghiollagain
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Matthew T. Wheeler
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Palo Alto, CA 94305, USA; (S.M.); (J.W.C.)
| | - Carolina Tesi Rocha
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Jeffrey W. Christle
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Palo Alto, CA 94305, USA; (S.M.); (J.W.C.)
| | - Zihuai He
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - John W. Day
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| | - Tina Duong
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA 94305, USA; (W.J.T.); (S.D.Y.); (C.T.R.); (Z.H.); (J.W.D.)
| |
Collapse
|
2
|
Zhan J, Yu C, Xiao S, Shen B, Zhang C, Zhou J, Fu W. Effects of high-definition transcranial direct current stimulation on the cortical-muscular functional coupling and muscular activities of ankle dorsi-plantarflexion under running-induced fatigue. Front Physiol 2023; 14:1263309. [PMID: 37841316 PMCID: PMC10570418 DOI: 10.3389/fphys.2023.1263309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve motor control performance under fatigue. However, the influences of tDCS on factors contributing to motor control (e.g., cortical-muscular functional coupling, CMFC) are unclear. This double-blinded and randomized study examined the effects of high-definition tDCS (HD-tDCS) on muscular activities of dorsiflexors and plantarflexors and CMFC when performing ankle dorsi-plantarflexion under fatigue. Twenty-four male adults were randomly assigned to receive five sessions of 20-min HD-tDCS targeting primary motor cortex (M1) or sham stimulation. Three days before and 1 day after the intervention, participants completed ankle dorsi-plantarflexion under fatigue induced by prolonged running exercise. During the task, electroencephalography (EEG) of M1 (e.g., C1, Cz) and surface electromyography (sEMG) of several muscles (e.g., tibialis anterior [TA]) were recorded synchronously. The corticomuscular coherence (CMC), root mean square (RMS) of sEMG, blood lactate, and maximal voluntary isometric contraction (MVC) of ankle dorsiflexors and plantarflexors were obtained. Before stimulation, greater beta- and gamma-band CMC between M1 and TA were significantly associated with greater RMS of TA (r = 0.460-0.619, p = 0.001-0.024). The beta- and gamma-band CMC of C1-TA and Cz-TA, and RMS of TA and MVC torque of dorsiflexors were significantly higher after HD-tDCS than those at pre-intervention in the HD-tDCS group and post-intervention in the control group (p = 0.002-0.046). However, the HD-tDCS-induced changes in CMC and muscle activities were not significantly associated (r = 0.050-0.128, p = 0.693-0.878). HD-tDCS applied over M1 can enhance the muscular activities of ankle dorsiflexion under fatigue and related CMFC.
Collapse
Affiliation(s)
- Jianglong Zhan
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bin Shen
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chuyi Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Prigent G, Apte S, Paraschiv-Ionescu A, Besson C, Gremeaux V, Aminian K. Concurrent Evolution of Biomechanical and Physiological Parameters With Running-Induced Acute Fatigue. Front Physiol 2022; 13:814172. [PMID: 35222081 PMCID: PMC8874325 DOI: 10.3389/fphys.2022.814172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
Understanding the influence of running-induced acute fatigue on the homeostasis of the body is essential to mitigate the adverse effects and optimize positive adaptations to training. Fatigue is a multifactorial phenomenon, which influences biomechanical, physiological, and psychological facets. This work aimed to assess the evolution of these three facets with acute fatigue during a half-marathon. 13 recreational runners were equipped with one inertial measurement unit (IMU) on each foot, one combined global navigation satellite system-IMU-electrocardiogram sensor on the chest, and an Android smartphone equipped with an audio recording application. Spatio-temporal parameters for the running gait, along with the heart rate, its variability and complexity were computed using validated algorithms. Perceived fatigability was assessed using the rating-of-fatigue (ROF) scale at every 10 min of the race. The data was split into eight equal segments, corresponding to at least one ROF value per segment, and only level running parts were retained for analysis. During the race, contact time, duty factor, and trunk anteroposterior acceleration increased, and the foot strike angle and vertical stiffness decreased significantly. Heart rate showed a progressive increase, while the metrics for heart rate variability and complexity decreased during the race. The biomechanical parameters showed a significant alteration even with a small change in perceived fatigue, whereas the heart rate dynamics altered at higher changes. When divided into two groups, the slower runners presented a higher change in heart rate dynamics throughout the race than the faster runners; they both showed similar trends for the gait parameters. When tested for linear and non-linear correlations, heart rate had the highest association with biomechanical parameters, while the trunk anteroposterior acceleration had the lowest association with heart rate dynamics. These results indicate the ability of faster runners to better judge their physiological limits and hint toward a higher sensitivity of perceived fatigue to neuromuscular changes in the running gait. This study highlights measurable influences of acute fatigue, which can be studied only through concurrent measurement of biomechanical, physiological, and psychological facets of running in real-world conditions.
Collapse
Affiliation(s)
- Gäelle Prigent
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Salil Apte
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anisoara Paraschiv-Ionescu
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cyril Besson
- Sport Medicine Unit, Division of Physical Medicine and Rehabilitation, Swiss Olympic Medical Center, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Vincent Gremeaux
- Sport Medicine Unit, Division of Physical Medicine and Rehabilitation, Swiss Olympic Medical Center, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kamiar Aminian
- Laboratory of Movement Analysis and Measurement, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Ueno H, Nakazawa S, Takeuchi Y, Sugita M. Relationship between Step Characteristics and Race Performance during 5000-m Race. Sports (Basel) 2021; 9:sports9090131. [PMID: 34564336 PMCID: PMC8473258 DOI: 10.3390/sports9090131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
This study examined the relationship between step characteristics and race time in a 5000-m race. Twenty-one male Japanese endurance runners performed a 5000-m race. Step length, step frequency, contact time, and flight time of two gait cycles (i.e., four consecutive ground contacts) were measured every 400-m by using high-speed video image. Moreover, step length was normalized to body height to minimize the effect of body size. In addition to step characteristics on each lap, the averages of all laps and the per cent change from the first half to the second half were calculated. The average step frequency and step length normalized to body height correlated significantly with the 5000-m race time (r = −0.611, r = −0.575, respectively, p < 0.05 for both). Per cent changes in contact time and step length correlated significantly with the 5000-m race time (r = 0.514, r = −0.486, respectively, p < 0.05 for both). These findings suggest that, in addition to higher step frequency and step length normalized to body height, smaller changes in step length during a given race may be an important step characteristic to achieving superior race performance in endurance runners.
Collapse
Affiliation(s)
- Hiromasa Ueno
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Tokyo 158-8508, Japan;
- Correspondence: ; Tel.: +81-3-5706-0900; Fax: +81-3-5706-0912
| | - Sho Nakazawa
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Tokyo 158-8508, Japan; (S.N.); (M.S.)
| | - Yohsuke Takeuchi
- Graduate School of Health and Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Tokyo 158-8508, Japan;
| | - Masaaki Sugita
- Faculty of Sport Science, Nippon Sport Science University, 7-1-1 Fukasawa, Tokyo 158-8508, Japan; (S.N.); (M.S.)
| |
Collapse
|
5
|
Willer J, Allen SJ, Burden RJ, Folland JP. Neuromechanics of Middle-Distance Running Fatigue: A Key Role of the Plantarflexors? Med Sci Sports Exerc 2021; 53:2119-2130. [PMID: 33935231 DOI: 10.1249/mss.0000000000002695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to investigate the changes in lower limb kinematics, kinetics, and muscle activation during a high-intensity run to fatigue (HIRF). METHODS Eighteen male and female competitive middle-distance runners performed a HIRF on an instrumented treadmill at a constant but unsustainable middle-distance speed (~3 min) based on a preceding maximum oxygen uptake (V˙O2max) test. Three-dimensional kinematics and kinetics were collected and compared between the start, 33%, 67%, and the end of the HIRF. In addition, the activation of eight lower limb muscles of each leg was measured with surface EMG (sEMG). RESULTS Time to exhaustion was 181 ± 42 s. By the end of the HIRF (i.e., vs the start), ground contact time increased (+4.0%), whereas flight time (-3.2%), peak vertical ground reaction force (-6.1%), and vertical impulse (-4.1%) decreased (all P < 0.05), and joint angles at initial contact became more (dorsi)flexed (ankle, +1.9°; knee, +2.1°; hip, +3.6°; all P < 0.05). During stance, by the end of the HIRF: peak ankle plantarflexion moment decreased by 0.4 N·m·kg-1 (-9.0%), whereas peak knee extension moment increased by 0.24 N·m·kg-1 (+10.3%); similarly, positive ankle plantarflexion work decreased by 0.19 J·kg-1 (-13.9%), whereas positive knee extension work increased by 0.09 J·kg-1 (+33.3%; both P < 0.05) with no change in positive hip extension work. Hip extensor surface EMG amplitude increased during the late swing phase (+20.9-37.3%; P < 0.05). CONCLUSION Running at a constant middle-distance pace led primarily to the fatigue of the plantarflexors with a compensatory increase in positive work done at the knee. Improving the fatigue resistance of the plantarflexors might be beneficial for middle-distance running performance.
Collapse
Affiliation(s)
| | - Sam J Allen
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UNITED KINGDOM
| | - Richard J Burden
- English Institute of Sport, EIS Performance Centre, Loughborough University, Loughborough, UNITED KINGDOM
| | - Jonathan P Folland
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UNITED KINGDOM
| |
Collapse
|
6
|
Hunter B, Greenhalgh A, Karsten B, Burnley M, Muniz-Pumares D. A non-linear analysis of running in the heavy and severe intensity domains. Eur J Appl Physiol 2021; 121:1297-1313. [PMID: 33580289 DOI: 10.1007/s00421-021-04615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/15/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Altered movement complexity, indicative of system dysfunction, has been demonstrated with increased running velocity and neuromuscular fatigue. The critical velocity (CV) denotes a metabolic and neuromuscular fatigue threshold. It remains unclear whether changes to complexity during running are coupled with the exercise intensity domain in which it is performed. The purpose of this study was to examine whether movement variability and complexity differ exclusively above the CV intensity during running. METHODS Ten endurance-trained participants ran at 95%, 100%, 105% and 115% CV for 20 min or to task failure, whichever occurred first. Movement at the hip, knee, and ankle were sampled throughout using 3D motion analysis. Complexity of kinematics in the first and last 30 s were quantified using sample entropy (SampEn) and detrended fluctuation analysis (DFA-α). Variability was determined using standard deviation (SD). RESULTS SampEn decreased during all trials in knee flexion/extension and it increased in hip internal/external rotation, whilst DFA-α increased in knee internal/external rotation. SD of ankle plantar/dorsiflexion and inversion/eversion, knee internal/external rotation, and hip flexion/extension and abduction/adduction increased during trials. Hip flexion/extension SampEn values were lowest below CV. DFA-α was lower at higher velocities compared to velocities below CV in ankle plantar/dorsiflexion, hip flexion/extension, hip adduction/abduction, hip internal/external rotation. In hip flexion/extension SD was highest at 115% CV. CONCLUSIONS Changes to kinematic complexity over time are consistent between heavy and severe intensity domains. The findings suggest running above CV results in increased movement complexity and variability, particularly at the hip, during treadmill running.
Collapse
Affiliation(s)
- Ben Hunter
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK.
| | - Andrew Greenhalgh
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Bettina Karsten
- European University of Applied Sciences (EUFH), Berlin, Germany
| | - Mark Burnley
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, Chatham Maritime, Chatham, UK
| | | |
Collapse
|
7
|
Froyd C, Beltrami FG, Millet GY, MacIntosh BR, Noakes TD. Greater Short-Time Recovery of Peripheral Fatigue After Short- Compared With Long-Duration Time Trial. Front Physiol 2020; 11:399. [PMID: 32477158 PMCID: PMC7240104 DOI: 10.3389/fphys.2020.00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/02/2020] [Indexed: 01/24/2023] Open
Abstract
The kinetics of recovery from neuromuscular fatigue resulting from exercise time trials (TTs) of different durations are not well-known. The aim of this study was to determine if TTs of three different durations would result in different short-term recovery in maximal voluntary contraction (MVC) and evoked peak forces. Twelve trained subjects performed repetitive concentric right knee extensions on an isokinetic dynamometer self-paced to last 3, 10, and 40 min (TTs). Neuromuscular function was assessed immediately (<2 s) and 1, 2, 4, and 8 min after completion of each TT using MVCs and electrical stimulation. Electrical stimulations consisted of single stimulus (SS), paired stimuli at 10 Hz (PS10), and paired stimuli at 100 Hz (PS100). Electrically evoked forces including the ratio of low- to high-frequency doublets were similar between trials at exercise cessation but subsequently increased more (P < 0.05) after the 3 min TT compared with either the 10 or 40 min TT when measured at 1 or 2 min of recovery. MVC force was not different between trials. The results demonstrate that recovery of peripheral fatigue including low-frequency fatigue depends on the duration and intensity of the preceding self-paced exercise. These differences in recovery probably indicate differences in the mechanisms of fatigue for these different TTs. Because recovery is faster after a 3 min TT than a 40 min TT, delayed assessment of fatigue will detect a difference in peripheral fatigue between trials that was not present at exercise cessation.
Collapse
Affiliation(s)
- Christian Froyd
- Faculty of Education, Arts and Sport, Western Norway University of Applied Sciences, Bergen, Norway.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Guillaume Y Millet
- Laboratoire Interuniversitaire de Biologie de la Motricité, University of Lyon, UJM Saint-Etienne, Saint Etienne, France
| | - Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Timothy D Noakes
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Hébert-Losier K, Murray L. Reliability of centre of pressure, plantar pressure, and plantar-flexion isometric strength measures: A systematic review. Gait Posture 2020; 75:46-62. [PMID: 31593873 DOI: 10.1016/j.gaitpost.2019.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Centre of pressure (COP), plantar pressure (PP), and plantar-flexion isometric strength (PFisom) are often examined in relation to postural control and gait. RESEARCH QUESTION Our aim was to systematically review and quality appraise articles addressing the reliability of COP and PP measures in static stance and PFisom measures. METHODS Three electronic databases (SCOPUS®, SportDISCUS™, and PubMed) were searched and supplemented by a manual search. Peer-reviewed original research on the reliability of COP, PP, and PFisom in healthy adults (≥18 years) was included. Quality appraisal was done according to the updated COnsensus-based Standards for the selection of health Measurement INstruments reliability checklist. Data regarding study characteristics, test protocols, outcome measures, and reliability metrics were extracted. RESULTS Forty articles met inclusion and were assessed for their methodological quality. Only four articles (10%) obtained uppermost quality scores. From the reviewed studies, the most reliable measures were: COP sway area and path length; PP mean pressure, percentage body weight distribution, and contact area; and PFisom peak torque and force. Although these measures generally exhibited good-to-excellent relative reliability based on correlation coefficients, absolute reliability based on typical errors were not always optimal (variation > 10%). Literature on PP reliability was scarce (n = 2). SIGNIFICANCE Our findings highlight the need for better quality methodological reliability studies to be undertaken to make stronger inferences about the reliability of COP, PP, and PFisom measures. The most reliable measures based on the current review are: COP sway area and path length; PP mean pressure, percentage of body weight distribution, and contact area; and PFisom peak torque and peak force. These measures are the ones that should be selected preferentially in clinical settings, bearing in mind that their typical errors might be suboptimal despite exhibiting strong relative reliability.
Collapse
Affiliation(s)
- Kim Hébert-Losier
- University of Waikato, Division of Health, Engineering, Computing and Science, School of Health, Adams Centre for High Performance, 52 Miro Street, Mount Maunganui, 3116, Tauranga, New Zealand.
| | - Lauralee Murray
- University of Waikato, Division of Health, Engineering, Computing and Science, School of Health, Adams Centre for High Performance, 52 Miro Street, Mount Maunganui, 3116, Tauranga, New Zealand.
| |
Collapse
|
9
|
Sanno M, Willwacher S, Epro G, Brüggemann GP. Positive Work Contribution Shifts from Distal to Proximal Joints during a Prolonged Run. Med Sci Sports Exerc 2019; 50:2507-2517. [PMID: 30169401 DOI: 10.1249/mss.0000000000001707] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To investigate the joint-specific contributions to the total lower-extremity joint work during a prolonged fatiguing run. METHODS Recreational long-distance runners (n = 13) and competitive long-distance runners (n = 12) performed a 10-km treadmill run with near-maximal effort. A three-dimensional motion capture system synchronized with a force-instrumented treadmill was used to calculate joint kinetics and kinematics of the lower extremity in the sagittal plane during the stance phase at 13 distance points over the 10-km run. RESULTS A significant (P < 0.05) decrease of positive ankle joint work as well as an increase of positive knee and hip joint work was found. These findings were associated with a redistribution of the individual contributions to total lower-extremity work away from the ankle toward the knee and hip joint which was more distinctive in the recreational runner group than in the competitive runner group. This redistribution was accomplished by significant (P < 0.05) reductions of the external ground-reaction force lever arm and joint torque at the ankle and by the significant (P < 0.05) increase of the external ground-reaction force lever arm and joint torque at the knee and hip. CONCLUSIONS The redistribution of joint work from the ankle to more proximal joints might be a biomechanical mechanism that could partly explain the decreased running economy in a prolonged fatiguing run. This might be because muscle-tendon units crossing proximal joints are less equipped for energy storage and return compared with ankle plantar flexors and require greater muscle volume activation for a given force. To improve running performance, long-distance runners may benefit from an exercise-induced enhancement of ankle plantar flexor muscle-tendon unit capacities.
Collapse
Affiliation(s)
- Maximilian Sanno
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, GERMANY.,German Research Center of Elite Sport, German Sport University Cologne, Cologne, GERMANY
| | - Steffen Willwacher
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, GERMANY.,Institute of Functional Diagnostics, Cologne, GERMANY
| | - Gaspar Epro
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, GERMANY.,Sport and Exercise Science Research Center, School of Applied Sciences, London South Bank University, UNITED KINGDOM
| | - Gert-Peter Brüggemann
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, GERMANY.,German Research Center of Elite Sport, German Sport University Cologne, Cologne, GERMANY.,Institute of Functional Diagnostics, Cologne, GERMANY
| |
Collapse
|
10
|
Garnier YM, Lepers R, Dubau Q, Pageaux B, Paizis C. Neuromuscular and perceptual responses to moderate-intensity incline, level and decline treadmill exercise. Eur J Appl Physiol 2018; 118:2039-2053. [DOI: 10.1007/s00421-018-3934-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/05/2018] [Indexed: 11/28/2022]
|
11
|
Cycling Versus Uphill Walking: Impact on Locomotor Muscle Fatigue and Running Exercise. Int J Sports Physiol Perform 2017; 12:1310-1318. [PMID: 28290716 DOI: 10.1123/ijspp.2016-0564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To describe the effects of uphill walking versus cycling exercises on knee-extensor (KE) neuromuscular properties and subsequent running exercise. METHODS Nine athletes performed 4 different sessions (1 familiarization and 3 experimental sessions, visit 2-4). Visit 2 (cycling +10-km condition) consisted of the completion of 1-h cycling followed by a 10-km running time trial. Visit 3 consisted of the completion of 1-h uphill walking followed by a 10-km running exercise (RE). During the fourth visit, athletes only ran 10 km. Visits 3 and 4 were randomized. The uphill walking and cycling exercises were performed at the same intensity, and pacing of the RE was similar between conditions. Neuromuscular function of the KE was assessed before warm-up, after first exercise, and after RE. Heart rate and rating of perceived exertion (RPE) were recorded during all exercises. RESULTS RPE during RE was greater following the 1-h cycling and uphill walking exercises than during RE alone. KE force (-21%), twitch torque (-20%), doublet torque (-16%), and twitch rate of force development (-13%) significantly decreased following cycling exercise and not after uphill walking exercise. Postactivation potentiation was observed after uphill walking and RE. KE force-production capacity partially recovered after running in the cycling +10-km condition. CONCLUSION Uphill walking and running induced postactivation potentiation, limiting the decrease in KE force postexercise. Despite different alterations in force-production capacity induced by cycling and uphill walking, both exercises increased perception of effort during the subsequent RE.
Collapse
|
12
|
Fisher J, Clark T, Newman-Judd K, Arnold J, Steele J. Intra-Subject Variability of 5 km Time Trial Performance Completed by Competitive Trained Runners. J Hum Kinet 2017; 57:139-146. [PMID: 28713466 PMCID: PMC5504586 DOI: 10.1515/hukin-2017-0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Time-trials represent an ecologically valid approach to assessment of endurance performance. Such information is useful in the application of testing protocols and estimation of sample sizes required for research/magnitude based inference methods. The present study aimed to investigate the intra-subject variability of 5 km time-trial running performance in trained runners. Six competitive trained male runners (age = 33.8 ± 10.1 years; stature = 1.78 ± 0.01 m; body mass = 69.0 ± 10.4 kg, V.O2max = 62.6 ± 11.0 ml·kg·min-1) completed an incremental exercise test to volitional exhaustion followed by 5 x 5 km time-trials (including a familiarisation trial), individually spaced by 48 hours. The time taken to complete each trial, heart rate, rating of perceived exertion and speed were all assessed. Intra-subject absolute standard error of measurement and the coefficient of variance were calculated for time-trial variables in addition to the intra-class correlation coefficient for time taken to complete the time-trial. For the primary measure time, results showed a coefficient of variation score across all participants of 1.5 ± 0.59% with an intra-class correlation coefficient score of 0.990. Heart rate, rating of perceived exertion and speed data showed a variance range between 0.8 and 3.05%. It was concluded that when compared with related research, there was observed low intra-subject variability in trained runners over a 5 km distance. This supports the use of this protocol for 5 km time-trial performance for assessment of nutritional strategies, ergogenic aids or training interventions on endurance running performance.
Collapse
Affiliation(s)
- James Fisher
- School of Sport, Health and Social Science, Southampton Solent University, Southampton, UK
| | - Thomas Clark
- School of Sport, Health and Social Science, Southampton Solent University, Southampton, UK
| | - Katherine Newman-Judd
- School of Sport, Health and Social Science, Southampton Solent University, Southampton, UK
| | - Josh Arnold
- School of Sport, Health and Social Science, Southampton Solent University, Southampton, UK
| | - James Steele
- School of Sport, Health and Social Science, Southampton Solent University, Southampton, UK
| |
Collapse
|
13
|
Pageaux B, Lepers R. Fatigue Induced by Physical and Mental Exertion Increases Perception of Effort and Impairs Subsequent Endurance Performance. Front Physiol 2016; 7:587. [PMID: 27965592 PMCID: PMC5126404 DOI: 10.3389/fphys.2016.00587] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022] Open
Abstract
Endurance performance involves the prolonged maintenance of constant or self-regulated power/velocity or torque/force. While the impact of numerous determinants of endurance performance has been previously reviewed, the impact of fatigue on subsequent endurance performance still needs to be documented. This review aims to present the impact of fatigue induced by physical or mental exertion on subsequent endurance performance. For the purpose of this review, endurance performance refers to performance during whole-body or single-joint endurance exercise soliciting mainly the aerobic energy system. First, the impact of physical and mental exertion on force production capacity is presented, with specific emphasize on the fact that solely physical exertion and not mental exertion induces a decrease in force production capacity of the working muscles. Then, the negative impact of fatigue induced by physical exertion and mental exertion on subsequent endurance performance is highlighted based on experimental data. Perception of effort being identified as the variable altered by both prior physical exertion and mental exertion, future studies should investigate the underlying mechanisms increasing perception of effort overtime and in presence of fatigue during endurance exercise. Perception of effort should be considered not only as marker of exercise intensity, but also as a factor limiting endurance performance. Therefore, using a psychophysiological approach to explain the regulation of endurance performance would allow a better understanding of the interaction between physiological and psychological phenomena known to impact endurance performance.
Collapse
Affiliation(s)
- Benjamin Pageaux
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté Dijon, France
| | - Romuald Lepers
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Bourgogne-Franche Comté Dijon, France
| |
Collapse
|
14
|
Wang D, De Vito G, Ditroilo M, Delahunt E. Effect of sex and fatigue on muscle stiffness and musculoarticular stiffness of the knee joint in a young active population. J Sports Sci 2016; 35:1582-1591. [PMID: 27590889 DOI: 10.1080/02640414.2016.1225973] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Girard O, Nybo L, Mohr M, Racinais S. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions. Scand J Med Sci Sports 2016; 25 Suppl 1:154-63. [PMID: 25943666 DOI: 10.1111/sms.12371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Abstract
We assessed neuromuscular fatigue and recovery of the plantar flexors after playing football with or without severe heat stress. Neuromuscular characteristics of the plantar flexors were assessed in 17 male players at baseline and ∼30 min, 24, and 48 h after two 90-min football matches in temperate (∼20 °C and 55% rH) and hot (∼43 °C and 20% rH) environments. Measurements included maximal voluntary strength, muscle activation, twitch contractile properties, and rate of torque development and soleus EMG (i.e., root mean square activity) rise from 0 to 30, -50, -100, and -200 ms during maximal isometric contractions for plantar flexors. Voluntary activation and peak twitch torque were equally reduced (-1.5% and -16.5%, respectively; P < 0.05) post-matches relative to baseline in both conditions, the latter persisting for at least 48 h, whereas strength losses (∼5%) were not significant. Absolute explosive force production declined (P < 0.05) 30 ms after contraction onset independently of condition, with no change at any other epochs. Globally, normalized rate of force development and soleus EMG activity rise values remained unchanged. In football, match-induced alterations in maximal and rapid torque production capacities of the plantar flexors are moderate and do not differ after competing in temperate and hot environments.
Collapse
Affiliation(s)
- O Girard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar; ISSUL, Institute of Sport Sciences, Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
16
|
Randall CA, Ross EZ, Maxwell NS. Effect of Practical Precooling on Neuromuscular Function and 5-km Time-Trial Performance in Hot, Humid Conditions Among Well-Trained Male Runners. J Strength Cond Res 2015; 29:1925-36. [DOI: 10.1519/jsc.0000000000000840] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Boullosa DA, Abreu L. Dr. Boullosa's forgotten pieces don't fit the puzzle: a response to Dr. Buchheit and Dr. Laursen. Sports Med 2015; 44:1625-8. [PMID: 25288508 DOI: 10.1007/s40279-014-0271-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel A Boullosa
- Post-Graduate Program in Physical Education, Catholic University of Brasilia, QS 07, LT1 S/N-Sala 111-Bloco G, 71966-700, Águas Claras, DF, Brazil,
| | | |
Collapse
|
18
|
Wüthrich TU, Eberle EC, Spengler CM. Locomotor and diaphragm muscle fatigue in endurance athletes performing time-trials of different durations. Eur J Appl Physiol 2014; 114:1619-33. [DOI: 10.1007/s00421-014-2889-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/06/2014] [Indexed: 01/19/2023]
|
19
|
Girard O, Racinais S. Combining heat stress and moderate hypoxia reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol 2014; 114:1521-32. [PMID: 24748530 PMCID: PMC4048668 DOI: 10.1007/s00421-014-2883-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 04/01/2014] [Indexed: 11/27/2022]
Abstract
Purpose This study investigated the isolated and combined effects of heat [temperate (22 °C/30 % rH) vs. hot (35 °C/40 % rH)] and hypoxia [sea level (FiO2 0.21) vs. moderate altitude (FiO2 0.15)] on exercise capacity and neuromuscular fatigue characteristics. Methods Eleven physically active subjects cycled to exhaustion at constant workload (66 % of the power output associated with their maximal oxygen uptake in temperate conditions) in four different environmental conditions [temperate/sea level (control), hot/sea level (hot), temperate/moderate altitude (hypoxia) and hot/moderate altitude (hot + hypoxia)]. Torque and electromyography (EMG) responses following electrical stimulation of the tibial nerve (plantar-flexion; soleus) were recorded before and 5 min after exercise. Results Time to exhaustion was reduced (P < 0.05) in hot (−35 ± 15 %) or hypoxia (−36 ± 14 %) compared to control (61 ± 28 min), while hot + hypoxia (−51 ± 20 %) further compromised exercise capacity (P < 0.05). However, the effect of temperature or altitude on end-exercise core temperature (P = 0.089 and P = 0.070, respectively) and rating of perceived exertion (P > 0.05) did not reach significance. Maximal voluntary contraction torque, voluntary activation (twitch interpolation) and peak twitch torque decreased from pre- to post-exercise (−9 ± 1, −4 ± 1 and −6 ± 1 % all trials compounded, respectively; P < 0.05), with no effect of the temperature or altitude. M-wave amplitude and root mean square activity were reduced (P < 0.05) in hot compared to temperate conditions, while normalized maximal EMG activity did not change. Altitude had no effect on any measured parameters. Conclusion Moderate hypoxia in combination with heat stress reduces cycling time to exhaustion without modifying neuromuscular fatigue characteristics. Impaired oxygen delivery or increased cardiovascular strain, increasing relative exercise intensity, may have also contributed to earlier exercise cessation.
Collapse
Affiliation(s)
- Olivier Girard
- Athlete Health and Performance Research Centre, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar,
| | | |
Collapse
|
20
|
Changes in spring-mass behavior and muscle activity during an exhaustive run at V̇O2max. J Biomech 2013; 46:2011-7. [DOI: 10.1016/j.jbiomech.2013.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022]
|
21
|
Lapole T, Ahmaidi S, Gaillien B, Leprêtre PM. Influence of Dorsiflexion Shoes on Neuromuscular Fatigue of the Plantar Flexors After Combined Tapping-Jumping Exercises in Volleyball Players. J Strength Cond Res 2013; 27:2025-33. [DOI: 10.1519/jsc.0b013e3182773271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|