1
|
Wang Y, Liu D, Wang S, Li Y, Liu G. IBS008738, a TAZ activator, facilitates muscle repair and inhibits muscle injury in a mouse model of sport-induced injury. Cytotechnology 2025; 77:2. [PMID: 39575322 PMCID: PMC11576750 DOI: 10.1007/s10616-024-00667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/01/2024] [Indexed: 11/24/2024] Open
Abstract
High-intensity exercise can cause excessive generation of ROS and induce oxidative stress injury in the body, which is a major reason accounting for muscle damage following exercise. The previous study demonstrated that IBS008738, the activator of TZA, was able to enhance myogenesis in mouse myogenic C2C12 cells, prevent dexamethasone-induced muscle atrophy, and facilitate muscle repair in cardiotoxin-induced muscle injury. Accordingly, our study was designed to probe into the potential role of IBS008738 in muscle damage in mouse models induced by high-intensity exercise. Mice were first administrated with IBS008738, and then subjected to high-intensity eccentric exercise to induce muscle damage after 24 h. During the experiment, mouse weight change and food take were recorded. At the end of the experiment, blood samples were collected through cardiac puncture and centrifugated. Serum levels of blood urea nitrogen (BUN), creatinine, glucose, lactate dehydrogenase (LDH), creatinine kinase (CK), and C-related protein were evaluated using an autoanalyzer. After mice were sacrificed, the gastrocnemius muscles were dissected for DCFH-DA assay of ROS generation, thiobarbituric acid-reactive substances (TBARS) assay of MDA content, hematoxylin-eosin (H&E) staining of histological examination, and western blotting analysis of Akt/mTOR/S6K1 signaling expression. IBS008738 and/or exercise exert significant effects on mouse weight and food take. High-intensity exercise markedly increased ROS generation and lipid peroxidation, upregulated serum levels of CK, LDH, and C-related protein, ameliorated muscle histological damage, and reduced TAZ, phosphorylated (p)-Akt, p-mTOR, and p-S6K1 protein levels in mice. However, IBS008738 administration reversed the above changes induced by high-intensity exercise in mice. IBS008738 alleviates oxidative stress and muscle damage in mice after high-intensity exercise by activating TAZ and the Akt/mTOR/S6K1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-024-00667-6.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| | - Datian Liu
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| | - Sining Wang
- General Department, Huanggu District People’s Government Office, Shenyang, 110033 China
| | - Yiliang Li
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| | - Guanming Liu
- Department of Sports, Northeastern University, Lane 3, Wenhua Road, Heping District, Shenyang, 110819 China
| |
Collapse
|
2
|
Tung YT, Liao YC, Yeh TH, Tsao SP, Chang CC, Shih WT, Huang HY. 10 weeks low intensity treadmill exercise intervention ameliorates motor deficits and sustains muscle mass via decreasing oxidative damage and increasing mitochondria function in a rat model of Parkinson's disease. Life Sci 2024; 350:122733. [PMID: 38763432 DOI: 10.1016/j.lfs.2024.122733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
AIMS Parkinson's disease (PD) is characterized by loss of dopamine neurons in the brain, which leads to motor dysfunction; excessive inflammation induces neuronal death. This study aimed to determine the most effective exercise modality to improve motor dysfunction in PD by comparing three different exercise regimens (low-intensity treadmill, high-intensity treadmill, and swimming). MATERIALS AND METHODS The rat model for PD was established through stereotaxic surgery, inducing unilateral 6-OHDA (6-hydroxydopamine) lesions. The low-intensity treadmill regimen exerted better protective effects on neurological and motor functions in a rat model of unilateral 6-OHDA-induced PD compared to high-intensity treadmill and swimming. The most suitable exercise regimen and the optimal duration of daily exercise (15 or 30 min) on motor activity and oxidative stress parameters were evaluated. KEY FINDINGS Comparison of 15 and 30 min low-intensity treadmill regimens (10 m/min) revealed 30 min daily exercise was the optimal duration and had more favorable impacts on neurological and motor function. Furthermore, we assessed the neuroprotective effects of exercising for 15 and 30 min per day for either four or ten weeks; 30 min of daily exercise for ten weeks improved mitochondrial function, the antioxidant defense system, neurotrophic factors, and muscle mass, and thereby provided protection against dopaminergic neuron loss, and motor dysfunction in rats with 6-OHDA-induced PD. SIGNIFICANCE 30 min of daily low-intensity treadmill exercise over 10 weeks resulted in heightened mitochondrial function in both muscle and brain tissues, therefore, yielded a neuroprotective effect against the loss of dopaminergic neurons and motor dysfunction in PD rats.
Collapse
Affiliation(s)
- Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yi-Chi Liao
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan.
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei 110, Taiwan; Department of Neurology, College of Medicine and Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan.
| | - Shu-Ping Tsao
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine 110, Taipei Medical University Hospital, Taipei, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Wei-Ting Shih
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan.
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
3
|
Exercise Affects the Formation and Recovery of Alcoholic Liver Disease through the IL-6-p47 phox Oxidative-Stress Axis. Cells 2022; 11:cells11081305. [PMID: 35455983 PMCID: PMC9026480 DOI: 10.3390/cells11081305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
(1) Background: To explore the effect of exercise on the formation and recovery of alcoholic liver disease (ALD) and whether the IL-6−p47phox oxidative−stress axis is involved in that process. (2) Methods: Firstly, 23 six-week-old male C57BL/6J mice were randomly divided into the Con group, ALD group, ALD + NOXI group, ALD + Ex group, and ALD + Ex + NOXI group. The Liber−DeCarli alcoholic liquid diet was used for 6 weeks to establish the ALD mice model, and the Con group was given the TP4030C control diet. The remaining groups were fed with the TP4030B alcoholic diet, and exercise intervention was started after the ALD model establishment and lasted for another 6 weeks, with or without administration of the NOX inhibitor apocynin by intraperitoneal injection on every exercise training day. Secondly, 28 mice were randomly divided into the Sed group, Eth group, Eth + Ex group and Eth + Ex + NOXI group. The Sed group was given the TP4030C control diet. The remaining groups were fed with the TP4030B alcoholic diet and exercise intervention was started synchronously combined with or without administration of intraperitoneal apocynin injections on every exercise training day for 5 weeks. After each individual experiment was accomplished, physiological assessment and biochemical analysis of blood and tissue samples were examined. (3) Results: The levels of TG in serum and IL-6 protein content in liver tissue in the ALD group were significantly increased compared to the Con group (p < 0.05); compared with ALD, p47phox expression in muscle was increased significantly in the ALD + NOXI group (p < 0.05), and TG in serum decreased in the ALD + Ex group (p < 0.05). TG in serum, AST/ALT ratio, and IL-6 content in both liver and muscle decreased (p < 0.05) in the ALD + Ex + NOXI group with MDA in muscle significantly increased (p < 0.01). The AST/ALT ratio, TG in serum, SOD in liver, and p47phox in both liver and muscle in the ALD + Ex + NOXI group were significantly decreased compared with the ALD + NOXI group (p < 0.01). Compared with the ALD + Ex group, the liver index and HDL-C levels in serum were decreased (p < 0.05) in the ALD + Ex + NOXI group. The degree of hepatocyte steatosis and inflammatory infiltration were ameliorated after exercise intervention. In the Eth group, the relative epididymal fat content, HDL-C level, and AST/ALT ratio were significantly decreased, and TG and gp91phox in liver were significantly higher than in the Sed group (p < 0.05, p < 0.01). Compared with the Eth group, the AST/ALT ratio, MDA in the liver, and NOX4 and p47phox protein expression in the liver were significantly increased, and body weight decreased significantly in the Eth + Ex group (p < 0.05, p < 0.01), as did TG in the liver and MDA in muscle. In the th + Ex + NOXI group, gp91phox expression in the liver and body weight were significantly decreased (p < 0.05, p < 0.01). In the Eth + Ex + NOXI group, the ratio of AST/ALT and MDA in muscle were increased when compared with the Eth + Ex group, and the protein expression of gp91phox and p47phox were much lower (p < 0.01). (4) Conclusions: 6 weeks of exercise intervention during the recovery phase of ALD ameliorates hepatocyte damage and dyslipidemia through the IL-6−p47phox oxidative−stress axis, and applying a NOX inhibitor in combination could optimize this. However, drinking alcohol during exercise exacerbates dyslipidemia and oxidative stress, with hepatocyte IL-6−p47phox downregulated.
Collapse
|
4
|
Correia TML, Almeida AA, da Silva DA, Coqueiro RDS, Pires RA, de Magalhães ACM, Queiroz RF, Brito LL, Marques LM, Machado M, Pereira R. Interaction between cigarette smoke exposure and physical training on inflammatory and oxidative profile in mice muscle. Chem Biol Interact 2022; 358:109913. [PMID: 35339431 DOI: 10.1016/j.cbi.2022.109913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
Regular physical training and cigarette smoke exposure (CSE) have opposite effects on physical performance, antioxidant, and inflammatory profile. However, the interaction between these events is not well studied. We aimed to investigate how regular physical training and CSE interact, and in what is the outcome of this interaction on the physical performance, skeletal muscle antioxidant defense and molecular profile response of pro and anti-inflammatory cytokines. Male C57BL/6 mice were randomly divided into 4 groups (n = 8/group): 1) Sedentary group (SED); 2) 4 weeks of control, followed by 4 weeks of CSE (SED + CSEG); 3) Physically active (PA) along 8 weeks (forced swim training, 5 times a week); 4) Physically active and exposed to the cigarette smoke (PA + CSEG), group submitted to forced swim training for 4 weeks, followed by 4 weeks of concomitant training and CSE. Physical performance was evaluated before and after the experimental period (8 weeks), total peroxidase and glutathione peroxidase (GPx) activities, expression of genes encoding TNF-α, MCP-1, IL1β, IL-6, IL-10, TGF-β, HO-1 and the TNF-α/IL-10 ratio were determined from gastrocnemius muscle at the end of experimental period. The CSE attenuated the aerobic capacity adaptation (time to exhaustion in swimming forced test) promoted by physical training and inhibit the improvement in local muscle resistance (inverted screen test). The regular physical training enhanced the antioxidant defense, but the CSE abrogated this benefit. The CSE induced a harmful pro-inflammatory profile in skeletal muscle from sedentary animals whereas the regular physical training induced an opposite adaptation. Likewise, the CSE abolished the protective effect of physical training. Together, these results suggest a negative effect of CSE including, at least in part, the inhibition/attenuation of beneficial adaptations from regular physical training.
Collapse
Affiliation(s)
- Thiago Macêdo Lopes Correia
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Amanda Alves Almeida
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Danielba Almeida da Silva
- Postgraduate Program in Biosciences, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Brazil
| | - Raildo da Silva Coqueiro
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil
| | - Ramon Alves Pires
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Biochemistry and Molecular Biology (Brazilian Society of Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Bahia, Brazil
| | - Amelia Cristina Mendes de Magalhães
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Raphael Ferreira Queiroz
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology (Brazilian Society of Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Bahia, Brazil; Postgraduate Program in Biosciences, Universidade Federal da Bahia, Campus Anísio Teixeira, Vitória da Conquista, Brazil
| | - Lorena Lôbo Brito
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Lucas Miranda Marques
- Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil
| | - Marco Machado
- Universitary Foundation of Itaperuna (FUNITA), Itaperuna, RJ, Brazil; Laboratory of Physiology and Biokinetic, Faculty of Biological Sciences and Health, Iguaçu University, Campus V, Itaperuna, RJ, Brazil
| | - Rafael Pereira
- Integrative Physiology Research Center, Department of Biological Sciences, State Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil; Multicentric Postgraduate Program in Physiological Sciences (Brazilian Society of Physiology), Universidade Federal da Bahia (UFBA), Vitoria da Conquista, Bahia, Brazil; Multicentric Postgraduate Program in Biochemistry and Molecular Biology (Brazilian Society of Biochemistry and Molecular Biology), Universidade Estadual do Sudoeste da Bahia (UESB), Vitoria da Conquista, Bahia, Brazil; Postgraduate Program in Nursing and Health, Universidade Estadual do Sudoeste da Bahia (UESB), Jequie, 45210-506, Bahia, Brazil.
| |
Collapse
|
5
|
Costa KB, Leite HR, Garcia BCC, Ottone VO, Mendonça GDR, Cordeiro PJ, Chaves PR, Deus FA, Tossige-Gomes R, Coimbra CC, Rocha-Vieira E. Storage Duration Affects the Quantification of Oxidative Stress Markers in the Gastrocnemius, Heart, and Brain of Mice Submitted to a Maximum Exercise. Biopreserv Biobank 2021; 20:3-11. [PMID: 34252291 DOI: 10.1089/bio.2020.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of sample storage duration on the quantification of oxidative stress markers in the gastrocnemius, heart, and brain of mice submitted to a maximum swimming exercise. Thiobarbituric acid reactive substances (TBARSs), protein carbonyl derivatives, total antioxidant capacity (TAC), and the activity of superoxide dismutase (SOD) and catalase (CAT) were quantified in fresh tissues and in samples stored at -80°C for 1, 3, or 6 months, from exercised (n = 13) and nonexercised mice (n = 13). Except for protein carbonyl derivatives in the heart, the exercise resulted in the modification of all markers in all fresh-evaluated samples (p < 0.001). The storage duration did not modify the effect of exercise on protein carbonyl derivatives and TAC. TBARS was stable for 3 months in the gastrocnemius and for 1 month in frozen heart and brain. Accordingly, the exercise effect on TBARS levels observed in fresh samples was absent in the gastrocnemius frozen for 6 months (p = 0.98) and in the heart and brain frozen for 3 months (p = 0.07 and 0.28, respectively) or more (p = 0.21 for heart and p > 0.99 for brain). In addition, CAT and SOD activities were reduced by storage duration in all tissues evaluated (p < 0.05). Our findings show that sample storage duration alters the quantification of oxidative stress markers in mice submitted to maximum exercise, and its effect is tissue and marker dependent. Some recommendations to achieve more accurate and reproducible data in the exercise physiology and oxidative stress markers field are presented.
Collapse
Affiliation(s)
- Karine B Costa
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Hercules R Leite
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna C C Garcia
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Vinicius O Ottone
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Gabriela D R Mendonça
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrício J Cordeiro
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Patrícia R Chaves
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Franciele A Deus
- Departamento de Fisioterapia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Rosalina Tossige-Gomes
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Candido C Coimbra
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Programa de Pós-graduação em Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Etel Rocha-Vieira
- Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Exercise Biology and Immunometabolism Laboratory, Centro Integrado de Pós-graduacão e Pesquisa em Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil.,Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
6
|
Cardioprotective effects of severe calorie restriction from birth in adult ovariectomized rats. Life Sci 2021; 275:119411. [PMID: 33774029 DOI: 10.1016/j.lfs.2021.119411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/08/2023]
Abstract
AIMS Menopause is a female condition induced by a reduction of ovarian hormone and is related to an increase in cardiovascular diseases in women. We have shown that severe calorie restriction (SCR) from birth reduces the cardiometabolic risk in adult male Wistar rats. In this study, we investigated the effects of SCR from birth to adulthood on cardiovascular function of ovariectomized rats. MAIN METHODS From birth to adulthood, rats were daily fed ad libitum (control group - C) or with 50% of the amount consumed by the control group (calorie-restricted group - R). At 90 days, half of the rats in each group underwent bilateral ovariectomy (OVX), totaling 4 groups: C-Sham, C-OVX, R-Sham, R-OVX. Systolic blood pressure (SBP), heart rate (HR) and, double product (DP) index were recorded by tail-cuff plethysmography. Cardiac function was analyzed by the Langendorff technique and cardiomyocyte diameter was accessed by histologic analysis. Additionally, cardiac SERCA2 content and redox status were evaluated. KEY FINDINGS C-OVX rats exhibited reduced cardiac function and cardiac non-enzymatic total antioxidant capacity (TAC). R-Sham animals showed reduced SBP, DP, HR, improved cardiac function, reduced cardiac protein carbonyl derivatives and increased TAC, catalase, and superoxide dismutase activities. R-OVX rats maintained reduced SBP, DP, HR, and increased contractility and relaxation indexes. R-Sham and R-OVX rats exhibited preserved heart mass and reduced cardiomyocyte diameter. Cardiac SERCA2 content did not differ between the groups. SIGNIFICANCE Taken together, our findings show cardioprotective effects of SCR from birth in adult ovariectomized rats.
Collapse
|
7
|
Cho E, Jeong DY, Kim JG, Lee S. The Acute Effects of Swimming Exercise on PGC-1α-FNDC5/Irisin-UCP1 Expression in Male C57BL/6J Mice. Metabolites 2021; 11:metabo11020111. [PMID: 33669194 PMCID: PMC7919784 DOI: 10.3390/metabo11020111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 01/02/2023] Open
Abstract
Irisin is a myokine primarily secreted by skeletal muscles and is known as an exercise-induced hormone. The purpose of this study was to determine whether the PGC-1α -FNDC5 /Irisin-UCP1 expression which is an irisin-related signaling pathway, is activated by an acute swimming exercise. Fourteen to sixteen weeks old male C57BL/6J mice (n = 20) were divided into control (CON, n = 10) and swimming exercise groups (SEG, n = 10). The SEG mice performed 90 min of acute swimming exercise, while control (non-exercised) mice were exposed to shallow water (2 cm of depth) for 90 min. The mRNA and protein expression of PGC-1α, FNDC5 and browning markers including UCP1 were evaluated by quantitative real-time PCR and western blotting. Serum irisin concentration was measured by enzyme-linked immunosorbent assay. An acute swimming exercise did not lead to alterations in the mRNA and protein expression of PGC-1α in both soleus and gastrocnemius muscles, the mRNA and protein expression of UCP1 in brown adipose tissue, mRNA browning markers in visceral adipose tissue and circulating irisin when compared with the control group. On the other hand, an acute swimming exercise led to increases in the mRNA and protein expressions of FNDC5 in the soleus muscle, the protein expression of FNDC5 in the gastrocnemius muscles and the protein expression of UCP1 in subcutaneous adipose tissue.
Collapse
Affiliation(s)
- Eunhee Cho
- Department of Human Movement Science, Graduate School, Incheon National University, Incheon 22012, Korea;
| | - Da Yeon Jeong
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (D.Y.J.); (J.G.K.)
| | - Jae Geun Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea; (D.Y.J.); (J.G.K.)
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Korea
| | - Sewon Lee
- Division of Sport Science, College of Arts & Physical Education, Incheon National University, Incheon 22012, Korea
- Sport Science Institute, College of Arts & Physical Education, Incheon National University, Incheon 22012, Korea
- Health Promotion Center, College of Arts & Physical Education, Incheon National University, Incheon 22012, Korea
- Correspondence: ; Tel.:+82-32-835-8572
| |
Collapse
|
8
|
Souza DS, Barreto TDO, Menezes-Filho JERD, Heimfarth L, Rhana P, Rabelo TK, Santana MNS, Durço AO, Conceição MRDL, Quintans-Júnior LJ, Guimarães AG, Cruz JS, Vasconcelos CMLD. Myocardial hypertrophy is prevented by farnesol through oxidative stress and ERK1/2 signaling pathways. Eur J Pharmacol 2020; 887:173583. [DOI: 10.1016/j.ejphar.2020.173583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/23/2022]
|
9
|
Melo CS, Rocha-Vieira E, Freitas DA, Soares BA, Rocha-Gomes A, Riul TR, Mendonça VA, Lacerda ACR, Camargos ACR, Carvalho LED, De Sousa RAL, Leite HR. A single session of high-intensity interval exercise increases antioxidants defenses in the hippocampus of Wistar rats. Physiol Behav 2019; 211:112675. [DOI: 10.1016/j.physbeh.2019.112675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022]
|
10
|
Fernandes DC, Cardoso-Nascimento JJA, Garcia BCC, Costa KB, Rocha-Vieira E, Oliveira MX, Machado ASD, Santos AP, Gaiad TP. Low intensity training improves redox status and reduces collagen fibers on dystrophic muscle. J Exerc Rehabil 2019; 15:213-223. [PMID: 31111003 PMCID: PMC6509444 DOI: 10.12965/jer.1938060.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023] Open
Abstract
Exercise therapy on skeletal muscle of muscular dystrophies has no defined parameters. The effect of low-intensity treadmill training on the oxidative stress markers and fibrosis on hindlimb muscles was investigated. Sixteen dystrophic male mdx animals were separated in trained (mdxT/n=8) and untrained (mdxNT/n=8) groups. Wild type animals (WT/n=8) were used as healthy control. The mdxT group runned at a horizontal treadmill (9 m/min, 30 min/day, 3 times/wk, 8 weeks). Gastrocnemius and tibial anterior muscles were collected for analysis of enzymatic/non-enzymatic oxidant activity, oxidative damage concentration, collagen fibers area morphometry. The mdxT group presented a lower collagen fiber area compared to mdxNT for gastrocnemius (P=0.025) and tibial anterior (P=0.000). Oxidative damage activity was higher in the mdxT group for both muscles compared to mdxNT. Catalase presented similar activity for tibial anterior (P=0.527) or gastrocnemius (P=0.323). Superoxide dismutase (P=0.003) and total antioxidant capacity (P=0.024) showed increased activity in the mdxT group at tibial anterior with no difference for gastrocnemius. Low-intensity training is considered therapeutic as it reduces collagen deposition while improving tissue redox status.
Collapse
Affiliation(s)
- Danielle Cristina Fernandes
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Jessica Junia A Cardoso-Nascimento
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Bruna Caroline C Garcia
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Karine Beatriz Costa
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Etel Rocha-Vieira
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Murilo Xavier Oliveira
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Alex Sander D Machado
- Post Graduate Program in Physiological Science, Brazilian Society of Physiology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Ana Paula Santos
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Thaís Peixoto Gaiad
- Department of Physical Therapy, Post Graduate Program of Rehabilitation and Functional Performance, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
11
|
White SH, Johnson SE, Bobel JM, Warren LK. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle. J Anim Sci 2017; 94:2867-78. [PMID: 27482673 DOI: 10.2527/jas.2016-0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Untrained Thoroughbred horses (6 mares and 6 geldings; 11 yr [SE 1] and 565 kg [SE 11]) were used to evaluate antioxidant gene expression and enzyme activity in blood and skeletal muscle in response to prolonged exercise after receiving 2 levels of dietary selenium for 36 d: 0.1 (CON; = 6) or 0.3 mg/kg DM (SEL; = 6). Horses were individually fed 1.6% BW coastal bermudagrass hay, 0.4% BW whole oats, and a mineral/vitamin premix containing no Se. Sodium selenite was added to achieve either 0.1 or 0.3 mg Se/kg DM in the total diet. On d 35, horses underwent 2 h of submaximal exercise in a free-stall exerciser. Blood samples were obtained before (d 0) and after 34 d of Se supplementation and on d 35 to 36 immediately after exercise and at 6 and 24 h after exercise. Biopsies of the middle gluteal muscle were obtained on d 0, before exercise on d 34, and at 6 and 24 h after exercise. Supplementation with Se above the NRC requirement (SEL) increased serum Se ( = 0.011) and muscle thioredoxin reductase (TrxR) activity ( = 0.051) but had no effect on glutathione peroxidase (GPx) activity in plasma, red blood cell (RBC) lysate, or muscle in horses at rest. Serum creatine kinase activity increased ( < 0.0001) in response to prolonged exercise but was not affected by dietary treatment. Serum lipid hydroperoxides were affected by treatment ( = 0.052) and were higher ( = 0.012) in horses receiving CON than SEL immediately following exercise. Muscle expression of was unchanged at 6 h but increased ( = 0.005) 2.8-fold 24 h after exercise, whereas muscle TrxR activity remained unchanged. Glutathione peroxidase activity increased in plasma (P < 0.0001) and decreased in RBC lysate ( = 0.010) after prolonged exercise. A Se treatment × time interaction was observed for RBC GPx activity (P = 0.048). Muscle and expression and GPx activity did not change during the 24-h period after exercise. Level of dietary Se had no overall effect on expression of , , , , , , or in muscle following exercise. The impact of prolonged exercise on the activities of antioxidant enzymes varied. Furthermore, changes in enzyme activity did not necessarily align with enzyme gene expression following exercise. A higher level of Se intake elevated Se status of untrained horses, increased GPx activity, and lessened lipid peroxidation following exercise, suggesting that Se may be beneficial for mitigating oxidative muscle damage and aiding in postexercise recovery.
Collapse
|
12
|
Song J, Wang Y, Liu C, Huang Y, He L, Cai X, Lu J, Liu Y, Wang D. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway. Food Funct 2016; 7:2006-15. [PMID: 27008597 DOI: 10.1039/c5fo01017a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Membranous glomerulonephritis (MGN) is a common pathogenesis of nephritic syndrome in adult patients. Nuclear factor kappa B (NF-κB) serves as the main transcription factor for the inflammatory response mediated nephropathy. Cordyceps militaris, containing various pharmacological components, has been used as a kind of crude drug and folk tonic food for improving immunity and reducing inflammation. The current study aims to investigate the renoprotective activity of Cordyceps militaris aqueous extract (CM) in the cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis. Significant renal dysfunction was observed in MGN rats; comparatively, 4-week CM administration strongly decreased the levels of 24 h urine protein, total cholesterol, triglyceride, blood urea nitrogen and serum creatinine, and increased the levels of serum albumin and total serum protein. Strikingly, recovery of the kidney histological architecture was noted in CM-treated MGN rats. A significant improvement in the glutathione peroxidase and superoxide dismutase levels, and a reduced malondialdehyde concentration were observed in the serum and kidney of CM-treated rats. Altered levels of inflammatory cytokines including interleukins, monocyte chemoattractant protein-1, intercellular adhesion molecule 1, vascular adhesion molecule 1, tumor necrosis factor-α, 6-keto-prostaglandin F1α, and nuclear transcriptional factor subunit NF-κB p65 reverted to normal levels upon treatment with CM. The present data suggest that CM protects rats against membranous glomerulonephritis via the normalization of NF-κB activity, thereby inhibiting oxidative damage and reducing inflammatory cytokine levels, which further provide experimental evidence in support of the clinical use of CM as an effective renoprotective agent.
Collapse
Affiliation(s)
- Jingjing Song
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Yingwu Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Chungang Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Yan Huang
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110015, China
| | - Liying He
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110015, China
| | - Xueying Cai
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Yan Liu
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
13
|
Wang J, Teng L, Liu Y, Hu W, Chen W, Hu X, Wang Y, Wang D. Studies on the Antidiabetic and Antinephritic Activities of Paecilomyces hepiali Water Extract in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. J Diabetes Res 2016; 2016:4368380. [PMID: 27034961 PMCID: PMC4789475 DOI: 10.1155/2016/4368380] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 12/25/2022] Open
Abstract
Paecilomyces hepiali is a fungus widely used in Asian countries for various potential pharmacological activities. The present study aims to evaluate the antidiabetic and antinephritic effects of the Paecilomyces hepiali mycelium water extract (PHC) in diabetic rat, which is established by eight-week high-fat diet administration followed by one-week tail intravenous injection of 25 mg/kg streptozotocin (STZ). After four-week 0.12 g/kg metformin and PHC at doses of 0.08, 0.4, and 2.0 g/kg treatment, an increment of body weight, a decrement of plasma glucose, low levels of total cholesterol, and low density lipoprotein cholesterol in diabetic rats were observed. PHC promotes glucose metabolism by enhancing insulin, pyruvate kinase activity, and increasing the synthesis of glycogen. PHC normalized the disturbed levels of superoxide dismutase, methane dicarboxylic aldehyde, and glutathione peroxidase in kidney. The inhibitory effects on the levels of interleukin-2, interleukin-6, interleukin-10, and tumor necrosis factor-α in serum and kidney revealed the protection of PHC against diabetic nephropathy. Compared with nontreated diabetic rats, four-week PHC treatment resulted in a decrement on nuclear factor kappa B expression in kidney. These results show that Paecilomyces hepiali possesses antidiabetic and antinephritic effects which are related to the modulation of nuclear factor kappa B activity.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yange Liu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenji Hu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Xi Hu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yingwu Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
- *Di Wang:
| |
Collapse
|
14
|
Studies on the Antifatigue Activities of Cordyceps militaris Fruit Body Extract in Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:174616. [PMID: 26351509 PMCID: PMC4553310 DOI: 10.1155/2015/174616] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023]
Abstract
Cordyceps militaris has been used extensively as a crude drug and a folk tonic food in East Asia due to its various pharmacological activities. Our study aims to investigate the effect of Cordyceps militaris fruit body extract (CM) on antifatigue in mouse model. Two week CM administration significantly delayed fatigue phenomenon which is confirmed via rotating rod test, forced swimming test and forced running test. Compared to nontreated mouse, CM administration increased ATP levels and antioxidative enzymes activity and reduced the levels of lactic acid, lactic dehydrogenase, malondialdehyde, and reactive oxygen species. Further data suggests that CM-induced fatigue recovery is mainly through activating 5′-AMP-activated protein kinase (AMPK) and protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways and regulating serum hormone level. Moreover, CM-enhanced the phosphorylation of AMPK contributes to its antioxidant effect. Our data provides experimental evidence in supporting clinical use of CM as an effective agent against fatigue.
Collapse
|
15
|
Increased Migratory and Activation Cell Markers of Peripheral Blood Lymphocytes in an Experimental Model of Nephrotic Syndrome. Mediators Inflamm 2015; 2015:209764. [PMID: 26063968 PMCID: PMC4439504 DOI: 10.1155/2015/209764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to evaluate the expression of CD80 and CD18 in subpopulations of peripheral blood leukocytes and oxidative kidney damage in rats with nephrotic syndrome (NS) induced by doxorubicin (Dox) in comparison to control animals at different time points. Male adult Wistar rats were submitted to 24-hour urine and blood collection for biochemical and immunological analysis at 7, 14, 21, and 28 days after Dox injection. After euthanasia, the kidneys were removed for histological analysis and the evaluation of oxidative stress. The phenotypic characterization of leukocytes was performed using flow cytometry. Dox-injected animals exhibited increased CD18 expression in cytotoxic T lymphocytes, NK cells, and monocytes and high CD80 expression in monocytes. Kidney oxidative damage was positively correlated with CD80 expression in monocytes and serum levels of creatinine. These results suggest that phagocytic and cytotoxic cells are preferentially recruited to the tissue injury site, which may contribute to kidney dysfunction in this animal model of NS. The blockade of integrin and costimulatory molecules may provide new therapeutic opportunities for NS.
Collapse
|
16
|
Hsu YJ, Chiu CC, Li YP, Huang WC, Huang YT, Huang CC, Chuang HL. Effect of Intestinal Microbiota on Exercise Performance in Mice. J Strength Cond Res 2015; 29:552-8. [DOI: 10.1519/jsc.0000000000000644] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Horng CT, Huang JK, Wang HY, Huang CC, Chen FA. Antioxidant and antifatigue activities of Polygonatum Alte-lobatum Hayata rhizomes in rats. Nutrients 2014; 6:5327-37. [PMID: 25421533 PMCID: PMC4245592 DOI: 10.3390/nu6115327] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 12/28/2022] Open
Abstract
Polygonatum alte-lobatum Hayata, a rhizomatous perennial herb, belongs to the Liliaceae family and is endemic to Taiwan. We investigated the antioxidant and anti-fatigue activities of P. alte-lobatum in exercised rats. Levels of polyphenols, flavonoids and polysaccharides and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging activity were measured in extracts of P. alte-lobatum (EPA). Sprague-Dawley rats were randomly divided into four groups for 8-week treatment with vehicle (control) and low-, medium-, and high-dose EPA (LEPA, MEPA, HEPA; 0, 75, 150, and 375 mg/kg/day, respectively). Exercise performance was evaluated by exhaustive treadmill exercise time and by changes in body composition and biochemical variables at the end of the experiment. EPA contained polyphenols, flavonoids and polysaccharides, with polysaccharide content at least 26 times greater than that of polyphenols and flavonoids. Trend analysis revealed that EPA dose-dependently scavenged DPPH free radicals. EPA treatment dose-dependently increased endurance running time to exhaustion and superoxide dismutase activity and total antioxidant ability of blood. EPA dose-dependently decreased serum urea nitrogen and malondialdehyde levels after exercise. Hepatic glycogen content, an important energy source for exercise, was significantly increased with EPA treatment. EPA could be a potential agent with an anti-fatigue pharmacological function.
Collapse
Affiliation(s)
- Chi-Ting Horng
- Department of Ophthalmology and Medical Education Center, Kaohsiung Armed Force General Hospital, Kaohsiung 80284, Taiwan.
| | - Jon-Kway Huang
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan.
| | - Hui-Yun Wang
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan.
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan.
| | - Fu-An Chen
- Department of Pharmacy & Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung 90741, Taiwan.
| |
Collapse
|
18
|
Ramos D, Martins EG, Viana-Gomes D, Casimiro-Lopes G, Salerno VP. Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise. Appl Physiol Nutr Metab 2013; 38:507-11. [DOI: 10.1139/apnm-2012-0302] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both acute exercise and excessive training can cause oxidative stress. The resulting increase in free radicals and the inadequate response from antioxidant systems can lead to a framework of cellular damage. An association between affected tissue and the biomarkers of oxidative stress that appear in plasma has not been clearly established. The aim of this study was to evaluate the source of oxidative stress biomarkers found in the plasma of untrained rats after a single bout of swimming exercise at 2 different intensities: low intensity (SBLIE) or high intensity (SBHIE). Immediately after the exercise, aspartate transaminase (AST), alanine transaminase (ALT), γ-glutamyltransferase (GGT), and lactate dehydrogenase (LDH) were measured in plasma to characterize cell damage. Oxidative stress was assessed using protein carbonylation (PC), total antioxidant capacity (TAC), and thiobarbituric acid reactive substances (TBARS) quantified by malondialdehyde concentration. SBHIE raised levels of plasma AST (93%) and ALT (17%), and both exercise regimens produced an increase in GGT (7%) and LDH (∼55%). Plasma levels of PC and TBARS were greater in the SBHIE group; there were no changes in TAC. SBLIE caused only a modest increase in TBARS. In muscle, there were no changes in TAC, PC, or TBARS, regardless of exercise intensity, In the liver, TAC and TBARS increased significantly in both the SBLIE and SBHIE groups. This indicates that the oxidative stress biomarkers measured in the plasma immediately after a single bout of swimming exercise were generated primarily in the liver, not in muscle.
Collapse
Affiliation(s)
- Dionizio Ramos
- Laboratório de Bioquímica do Exercício e Motores Moleculares, Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brasil
| | - Eduarda Gabrielle Martins
- Laboratório de Bioquímica do Exercício e Motores Moleculares, Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brasil
| | - Diego Viana-Gomes
- Laboratório de Bioquímica do Exercício e Motores Moleculares, Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brasil
| | - Gustavo Casimiro-Lopes
- Laboratório de Química Fisiológica da Contração Muscular, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brasil
| | - Verônica P. Salerno
- Laboratório de Bioquímica do Exercício e Motores Moleculares, Departamento de Biociências da Atividade Física, Escola de Educação Física e Desportos, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brasil
| |
Collapse
|