1
|
Sun M, Liu X, Liu Z, Zhang W, Li G, Ren J, Qu X. Single-Atom Catalysts Mediated Bioorthogonal Modulation of N 6-Methyladenosine Methylation for Boosting Cancer Immunotherapy. J Am Chem Soc 2024; 146:8216-8227. [PMID: 38486429 DOI: 10.1021/jacs.3c12726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Bioorthogonal reactions provide a powerful tool to manipulate biological processes in their native environment. However, the transition-metal catalysts (TMCs) for bioorthogonal catalysis are limited to low atomic utilization and moderate catalytic efficiency, resulting in unsatisfactory performance in a complex physiological environment. Herein, sulfur-doped Fe single-atom catalysts with atomically dispersed and uniform active sites are fabricated to serve as potent bioorthogonal catalysts (denoted as Fe-SA), which provide a powerful tool for in situ manipulation of cellular biological processes. As a proof of concept, the N6-methyladensoine (m6A) methylation in macrophages is selectively regulated by the mannose-modified Fe-SA nanocatalysts (denoted as Fe-SA@Man NCs) for potent cancer immunotherapy. Particularly, the agonist prodrug of m6A writer METTL3/14 complex protein (pro-MPCH) can be activated in situ by tumor-associated macrophage (TAM)-targeting Fe-SA@Man, which can upregulate METTL3/14 complex protein expression and then reprogram TAMs for tumor killing by hypermethylation of m6A modification. Additionally, we find the NCs exhibit an oxidase (OXD)-like activity that further boosts the upregulation of m6A methylation and the polarization of macrophages via producing reactive oxygen species (ROS). Ultimately, the reprogrammed M1 macrophages can elicit immune responses and inhibit tumor proliferation. Our study not only sheds light on the design of single-atom catalysts for potent bioorthogonal catalysis but also provides new insights into the spatiotemporal modulation of m6A RNA methylation for the treatment of various diseases.
Collapse
Affiliation(s)
- Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xuemeng Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Guangming Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
2
|
Sang Y, Deng Q, Cao F, Liu Z, You Y, Liu H, Ren J, Qu X. Remodeling Macrophages by an Iron Nanotrap for Tumor Growth Suppression. ACS NANO 2021; 15:19298-19309. [PMID: 34783526 DOI: 10.1021/acsnano.1c05392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tumor-associated macrophages (TAMs) that infiltrate in most tumor tissues are closely correlated with proliferation and metastasis of tumor cells. Immunomodulation of TAMs from pro-tumorigenic M2 phenotype to anti-tumorigenic M1 phenotype is crucial for oncotherapy. Herein, an iron nanotrap was utilized to remodel TAMs for tumor growth inhibition. In the formulation, the ultrasmall nanotrap could capture and targetedly transport endogenous iron into TAMs even inside the tumor. Upon exposing to the lysosomal acidic conditions and intracellular H2O2, iron was released from the nanotrap and produced the generation of oxidative stress, which could reprogram TAMs. The activated M1 macrophages could induce immune responses and suppress tumor growth ultimately. Meanwhile, this metal-free nanotrap with degradability by H2O2 possessed favorable biocompatibility. Our work would present potential opportunities of utilizing endogenous substances for secure treatment of various diseases.
Collapse
Affiliation(s)
- Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Yawen You
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hao Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| |
Collapse
|
3
|
Winn NC, Cottam MA, Wasserman DH, Hasty AH. Exercise and Adipose Tissue Immunity: Outrunning Inflammation. Obesity (Silver Spring) 2021; 29:790-801. [PMID: 33899336 DOI: 10.1002/oby.23147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Chronic inflammation is considered a precipitating factor and possibly an underlying cause of many noncommunicable diseases, including cardiovascular disease, metabolic diseases, and some cancers. Obesity, which manifests in more than 650 million people worldwide, is the most common chronic inflammatory condition, with visceral adiposity thought to be the major inflammatory hub that links obesity and chronic disease. Adipose tissue (AT) inflammation is triggered or heightened in large part by (1) accelerated immune cell recruitment, (2) reshaping of the AT stromal-immuno landscape (e.g., immune cells, endothelial cells, fibroblasts, adipocyte progenitors), and (3) perturbed AT immune cell function. Exercise, along with diet management, is a cornerstone in promoting weight loss and preventing weight regain. This review focuses on evidence that increased physical activity reduces AT inflammation caused by hypercaloric diets or genetic obesity. The precise cell types and mechanisms responsible for the therapeutic effects of exercise on AT inflammation remain poorly understood. This review summarizes what is known about obesity-induced AT inflammation and immunomodulation and highlights mechanisms by which aerobic exercise combats inflammation by remodeling the AT immune landscape. Furthermore, key areas are highlighted that require future exploration and novel discoveries into the burgeoning field of how the biology of exercise affects AT immunity.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew A Cottam
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Mouse Metabolic Phenotyping Center, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Effect of different muscle contraction mode on the expression of Myostatin, IGF-1, and PGC-1 alpha family members in human Vastus Lateralis muscle. Mol Biol Rep 2020; 47:9251-9258. [PMID: 33222041 DOI: 10.1007/s11033-020-06017-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/16/2020] [Indexed: 01/15/2023]
Abstract
Muscle contraction stimulates a transient change of myogenic factors, partly related to the mode of contractions. Here, we assessed the response of IGF-1Ea, IGF-1Eb, IGF-1Ec, PGC1α-1, PGC1α-4, and myostatin to the eccentric Vs. the concentric contraction in human skeletal muscle. Ten healthy males were performed an acute eccentric and concentric exercise bout (n = 5 per group). For each contraction type, participants performed 12 sets of 10 repetitions knee extension by the dominant leg. Baseline and post-exercise muscle biopsy were taken 4 weeks before and immediately after experimental sessions from Vastus Lateralis muscle. Genes expression was measured by real-time PCR technique. There was a significant increase in PGC1α-1, PGC1α-4, IGF-1Ea and, IGF-1Eb mRNA after concentric contraction (p ≤ 0.05), while the PGC1α-4 and IGF-1Ec significantly increased after eccentric contraction (p ≤ 0.05). It is intriguing to highlight that; no significant differences between groups were evident for changes in any variables following exercise bouts (p ≥ 0.05). Our results found that concentric and eccentric contractions presented different responses in PGC1α-1, IGF-1Ea, IGF-1Eb, and IGF-1Ec mRNA. However, a similar significant increase in mRNA content was observed in PGC1α-4. Further, no apparent differences could be found between the response of genes to eccentric and concentric contraction.
Collapse
|
5
|
Mu M, Gao P, Yang Q, He J, Wu F, Han X, Guo S, Qian Z, Song C. Alveolar Epithelial Cells Promote IGF-1 Production by Alveolar Macrophages Through TGF-β to Suppress Endogenous Inflammatory Signals. Front Immunol 2020; 11:1585. [PMID: 32793225 PMCID: PMC7385185 DOI: 10.3389/fimmu.2020.01585] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-β were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-β in AECs and addition of TGF-β neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-β synthesis or treatment with TGF-β neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-β induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1β in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-β to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Peiyu Gao
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Qian Yang
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Jing He
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Fengjiao Wu
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Xue Han
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Shujun Guo
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Zhongqing Qian
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| | - Chuanwang Song
- Department of Immunology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China.,Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, China.,Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci Rep 2020; 10:967. [PMID: 31969634 PMCID: PMC6976645 DOI: 10.1038/s41598-020-57783-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
It is known that intensive physical activity alters the immune system's functionality. However, the influence of the intensity and duration of exercise needs to be studied in more depth. We aimed to establish the changes in the innate immune response induced by two programmes of intensive training in rats compared to sedentary rats. A short training programme included 2 weeks of intensive training, ending with an exhaustion test (short training with exhaustion, S-TE). A second training programme comprised 5-week training including two exhaustion tests and three trainings per week. In this case, immune status was assessed before (T), immediately after (TE) and 24 h after (TE24) an additional final exhaustion test. Biomarkers such as phagocytic activity, macrophage cytokine and reactive oxygen species (ROS) production, and natural killer (NK) cell activity were quantified. S-TE was not enough to induce changes in the assessed innate immunity biomarkers. However, the second training was accompanied by a decrease in the phagocytic activity, changes in the pattern of cytokine secretion and ROS production by macrophages and reduced NK cell proportion but increased NK cytotoxic activity. In conclusion, a 5-week intense training programme, but not a shorter training, induced alterations in the innate immune system functionality.
Collapse
|
7
|
Mu M, Wu F, He J, Tang X, Ma H, Guo S, Song C. Insulin‑like growth factor 1 inhibits phagocytosis of alveolar epithelial cells in asthmatic mice. Mol Med Rep 2019; 20:2381-2388. [PMID: 31322198 DOI: 10.3892/mmr.2019.10456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/04/2019] [Indexed: 11/06/2022] Open
Abstract
The phagocytosis of apoptotic cells by alveolar epithelial cells helps to eliminate airway inflammation. Insulin‑like growth factor 1 (IGF‑1) regulates cell metabolism and proliferation, and promotes cell survival, while it may also promote the proliferation and differentiation of alveolar epithelial cells during the repair of lung injury. The present study investigated the effect of IGF‑1 on the phagocytic activity of alveolar epithelial cells, a nonprofessional phagocyte. IGF‑1 was elevated in lung tissue and bronchoalveolar lavage fluid obtained from mice with ovalbumin‑induced asthma. IGF‑1 was reduced by 50% in the lung tissue and by nearly 100% in the bronchoalveolar lavage fluid in asthmatic mice established by depletion of alveolar macrophages using 2‑chloroadenosine. In addition, interleukin‑33 induced IGF‑1 production in primary alveolar macrophages. It was also observed that IGF‑1 inhibited the phagocytosis of fluorescent microspheres and apoptotic cells by MLE‑12 alveolar epithelial cells. Antibody blocking of IGF‑1 enhanced the phagocytosis of fluorescent microspheres and apoptotic cells, and significantly reduced inflammatory cell infiltration in airway and perivascular tissues. The elevated IGF‑1 level in the lungs of asthma model mice was mainly produced in alveolar macrophages. Taken together, the current study demonstrated that IGF‑1 inhibited phagocytosis by alveolar epithelial cells, and that IGF‑1 blockade enhanced the phagocytic activity and alleviated airway inflammation. These results support the potential use of IGF‑1 as a target in the treatment of asthma.
Collapse
Affiliation(s)
- Mimi Mu
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Fengjiao Wu
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jing He
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xu Tang
- Department of Clinical Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Hua Ma
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shujun Guo
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Chuanwang Song
- Department of Immunology, Anhui Provincial Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
8
|
Liu X, Zeng Z, Zhao L, Chen P, Xiao W. Impaired Skeletal Muscle Regeneration Induced by Macrophage Depletion Could Be Partly Ameliorated by MGF Injection. Front Physiol 2019; 10:601. [PMID: 31164836 PMCID: PMC6534059 DOI: 10.3389/fphys.2019.00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/26/2019] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle injury is one of the most common injuries in sports medicine. Our previous study found that macrophage depletion impairs muscle regeneration and that mechano growth factor (MGF) may play an important role in this process. However, whether injection of MGF protects against impaired muscle regeneration after macrophage depletion has not been explored. Therefore, we generated a muscle contusion and macrophage depletion mouse model and injected MGF into the damaged muscle. Comprehensive morphological and genetic analyses were performed on the injured skeletal muscle after macrophage depletion and MGF injection. The results showed that injection of MGF did not exert a protective effect on muscle fiber regeneration; however, it did decrease fibrosis in the contused skeletal muscle after macrophage depletion. Moreover, MGF injection decreased the expression of muscle inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and TGF-β), chemokines (CCL2, CCL5, and CXCR4), oxidative stress factors (gp91phox) and matrix metalloproteinases (MMP-1, MMP-2, MMP-9, MMP-10, and MMP-14). These results suggest that the impairment of skeletal muscle regeneration induced by macrophage depletion could be partly ameliorated by MGF injection and that inflammatory cytokines, oxidative stress factors, chemokines, and MMP may be involved in this process.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,College of Physical Education, Jinggangshan University, Jiangxi, China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Qu S, Dai C, Yang F, Huang T, Hao Z, Tang Q, Wang H, Zhang Y. Cefquinome-Loaded Microsphere Formulations in Protection against Pneumonia with Klebsiella pneumonia Infection and Inflammatory Response in Rats. Pharm Res 2019; 36:74. [PMID: 30923922 DOI: 10.1007/s11095-019-2614-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE This study aimed to compare in vivo activity between cefquinome (CEQ)-loaded poly lactic-co-glycolic acid (PLGA) microspheres (CEQ-PLGA-MS) and CEQ injection (CEQ-INJ) against Klebsiella pneumonia in a rat lung infection model. METHODS Forty-eight rats were divided into control group (sham operated without infection and drug treatment), Klebsiella pneumonia model group (KPD + Saline), CEQ-PLGA-MS and CEQ-INJ therapy groups (KPD + CEQ-PLGA-MS and KPD + INJ, respectively). In the KPD + Saline group, rats were infected with Klebsiella pneumonia ATCC 10031. In the KPD + CEQ-PLGA-MS and KPD + INJ groups, infected rats were intravenously injected with 12.5 mg/kg body weight CEQ-PLGA-MS and CEQ-INJ, respectively. RESULTS Compared to CEQ-INJ treatment group, CEQ-PLGA-MS treatment further decreased the number of bacteria colonies (decreased to 1.94 lg CFU/g) in lung tissues and the levels of inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-4 (p < 0.05 or p < 0.01) in bronchoalveolar lavage fluid at 48 h. Consistently, a significant decreases of scores of inflammation severity were showed at 48 h in the KPD + CEQ-PLGA-MS treatment group, compared to the KPD + CEQ-INJ treatment group. CONCLUSION Our results reveal that CEQ-PLGA-MS has the better therapeutic effect than CEQ-INJ for Klebsiella pneumonia lung infections in rats. The vehicle of CEQ-PLGA-MS as the promising alternatives to control the lung infections with the important pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Cunchun Dai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Fenfang Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Tingting Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Zhihui Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China. .,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China.
| | - Qihe Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Haixia Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| | - Yanping Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,National-Local Joint Engineering Laboratory of Agricultural Bio-pharmaceutical Technology, Qingdao, 266109, China
| |
Collapse
|
10
|
Liu X, Zheng L, Zhou Y, Chen Y, Chen P, Xiao W. BMSC Transplantation Aggravates Inflammation, Oxidative Stress, and Fibrosis and Impairs Skeletal Muscle Regeneration. Front Physiol 2019; 10:87. [PMID: 30814953 PMCID: PMC6382023 DOI: 10.3389/fphys.2019.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/24/2019] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle contusion is one of the most common muscle injuries in sports medicine and traumatology. Bone marrow mesenchymal stem cell (BMSC) transplantation has been proposed as a promising strategy to promote skeletal muscle regeneration. However, the roles and underlying mechanisms of BMSCs in the regulation of skeletal muscle regeneration are still not completely clear. Here, we investigated the role of BMSC transplantation after muscle contusion. BMSCs were immediately transplanted into gastrocnemius muscles (GMs) following direct contusion. Comprehensive morphological and genetic analyses were performed after BMSC transplantation. BMSC transplantation exacerbated muscle fibrosis and inflammation, as evidenced by increased leukocyte and macrophage infiltration, increased inflammatory cytokines and chemokines, and increased matrix metalloproteinases. BMSC transplantation also increased muscle oxidative stress. Overall, BMSC transplantation aggravated inflammation, oxidative stress and fibrosis and impaired skeletal muscle regeneration. These results, shed new light on the role of BMSCs in regenerative medicine and indicate that caution is needed in the application of BMSCs for muscle injury.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lifang Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yongzhan Zhou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yingjie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Qu S, Dai C, Zhu J, Zhao L, Li Y, Hao Z. Cefquinome-loaded microsphere formulations against Klebsiella pneumonia infection during experimental infections. Drug Deliv 2018; 25:909-915. [PMID: 29649952 PMCID: PMC6058672 DOI: 10.1080/10717544.2018.1461958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to prepare cefquinome-loaded polylactic acid microspheres and to evaluate their in vitro and in vivo characteristics and pharmacodynamics for the therapy of pneumonia in a rat model. Microspheres were prepared using a 0.7 mm two-fluid nozzle spray drier in one step resulting in spherical and smooth microspheres of uniform size (9.8 ± 3.6 μm). The encapsulation efficiency and drug loading of cefquinome were 91.6 ± 2.6% and 18.7 ± 1.2%, respectively. In vitro release of cefquinome from the microspheres was sustained for 36 h. Cefquinome-loaded polylactic acid microspheres as a drug delivery system was successful for clearing experimental Klebsiella pneumonia lung infections. A decrease in inflammatory cells and an inhibition of inflammatory cytokines TNF-α, IL-1β and IL-8 after microspheres treatment was found. Changes in cytokine levels and types are secondary manifestations of drug bactericidal effects. Rats were considered to be microbiologically cured because the bacterial load was less than 100 CFU/g. These results also indicated that the spray-drying method of loading therapeutic drug into polylactic acid microspheres is a straightforward and safe method for lung-targeting therapy in animals.
Collapse
Affiliation(s)
- Shaoqi Qu
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Cunchun Dai
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Jiajia Zhu
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Li Zhao
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Yuwen Li
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| | - Zhihui Hao
- Agricultural Bio-pharmaceutical Laboratory, Qingdao Agricultural University, Qingdao, China
- National-Local Joint Engineering Laboratory, Agricultural Bio-pharmaceutical Technology, Qingdao, China
| |
Collapse
|
12
|
Liu X, Zeng Z, Zhao L, Xiao W, Chen P. Changes in inflammatory and oxidative stress factors and the protein synthesis pathway in injured skeletal muscle after contusion. Exp Ther Med 2017; 15:2196-2202. [PMID: 29434825 DOI: 10.3892/etm.2017.5625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Injury of skeletal muscle, and particularly mechanically-induced damage, including contusion injury, frequently occurs in contact sports as well as in sports with accidental contact. Although the mechanisms of skeletal muscle regeneration are well understood, those involved in muscle contusion are not. A total of 40 male mice were randomly divided into control (n=8) and muscle contusion (n=32) groups. A muscle contusion model was established by weight-drop injury. Subsequently, the gastrocnemius muscles in the two groups were harvested at different times (1, 3, 7 and 14 days) post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (H&E) stains. Furthermore, quantitative polymerase chain reaction and western blotting were used to analyze inflammatory cytokines, oxidative stress factors and the Akt/mechanistic target of rapamycin (mTOR) pathway. The results revealed that pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interferon-γ (IFN-γ)] increased significantly at day 1 and 3 and still exhibited high levels of expression at days 7 and 14 (except IL-6) post-injury. Additionally, the anti-inflammatory cytokine IL-10 increased significantly at 1, 3 and 7 days and reached its peak levels at 7 days post-injury. It was revealed that gp91phox mRNA increased significantly at all time points and gp91phox protein increased significantly at day 3 post-injury. Furthermore, it was observed that p-Akt/Akt increased significantly at 1 day post-injury. P-mTOR/mTOR increased significantly at day 1 and 7, and p-p70s6k/p70s6k and P-4EBP1/4EBP1 increased significantly at 1, 3, 7 and 14 days post-injury. These results indicate that inflammatory and oxidative stress factors and the Akt/mTOR pathway may serve important roles in the regeneration of muscle contusion. In addition, certain inflammatory factors and oxidative stress factors maintained high levels of expression at 14 days after injury, indicating that the healing process of muscle was still not fully achieved at this time.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,College of Physical Education, Jinggangshan University, Ji'an, Jiangxi 343009, P.R. China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
13
|
Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress. Inflammation 2017; 39:2016-2028. [PMID: 27605219 DOI: 10.1007/s10753-016-0438-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.
Collapse
|
14
|
Liu X, Liu Y, Zhao L, Zeng Z, Xiao W, Chen P. Macrophage depletion impairs skeletal muscle regeneration: The roles of regulatory factors for muscle regeneration. Cell Biol Int 2017; 41:228-238. [PMID: 27888539 DOI: 10.1002/cbin.10705] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023]
Abstract
Though macrophages are essential for skeletal muscle regeneration, which is a complex process, the roles and mechanisms of the macrophages in the process of muscle regeneration are still not fully understood. The objective of this study is to explore the roles of macrophages and the mechanisms involved in the regeneration of injured skeletal muscle. One hundred and twelve C57BL/6 mice were randomly divided into muscle contusion and macrophages depleted groups. Their gastrocnemius muscles were harvested at the time points of 12 h, 1, 3, 5, 7, 14 d post-injury. The changes in skeletal muscle morphology were assessed by hematoxylin and eosin (HE) stain. The gene expression was analyzed by real-time polymerase chain reaction. The data showed that CL-liposomes treatment did affect the expression of myogenic regulatory factors (MyoD, myogenin) after injury. In addition, CL-liposomes treatment decreased the expression of regulatory factors of muscle regeneration (HGF, uPA, COX-2, IGF-1, MGF, FGF6) and increased the expression of inflammatory cytokines (TGF-β1, TNF-α, IL-1β, RANTES) in the late stage of regeneration. Moreover, there were significant correlations between macrophages and some regulatory factors (such as HGF, uPA) for muscle regeneration. These results suggested that macrophages depletion impairs skeletal muscle regeneration and that the regulatory factors for muscle regeneration may play important roles in this process.
Collapse
Affiliation(s)
- Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China.,Department of Exercise Science, Shenyang Sport University, Shenyang, 110001, China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
15
|
Xuan NT, Hoang NH, Nhung VP, Duong NT, Ha NH, Hai NV. Regulation of dendritic cell function by insulin/IGF-1/PI3K/Akt signaling through klotho expression. J Recept Signal Transduct Res 2016; 37:297-303. [PMID: 27808000 DOI: 10.1080/10799893.2016.1247862] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insulin or insulin-like growth factor 1 (IGF-1) promotes the activation of phosphoinositide 3 kinase (PI3K)/Akt signaling in immune cells including dendritic cells (DCs), the most potent professional antigen-presenting cells for naive T cells. Klotho, an anti-aging protein, participates in the regulation of the PI3K/Akt signaling, thus the Ca2+-dependent migration is reduced in klotho-deficient DCs. The present study explored the effects of insulin/IGF-1 on DC function through klotho expression. To this end, the mouse bone marrow cells were isolated and cultured with GM-CSF to attain bone marrow-derived DCs (BMDCs). Cells were treated with insulin or IGF-1 and followed by stimulating with lipopolysaccharides (LPS). Tumor necrosis factor (TNF)-α formation was examined by enzyme-linked immunosorbent assay (ELISA). Phagocytosis was analyzed by FITC-dextran uptake assay. The expression of klotho was determined by quantitative PCR, immunoprecipitation and western blotting. As a result, treatment of the cells with insulin/IGF-1 resulted in reducing the klotho expression as well as LPS-stimulated TNF-α release and increasing the FITC-dextran uptake but unaltering reactive oxygen species (ROS) production in BMDCs. The effects were abolished by using pharmacological inhibition of PI3K/Akt with LY294002 and paralleled by transfecting DCs with klotho siRNA. In conclusion, the regulation of klotho sensitive DC function by IGF-1 or insulin is mediated through PI3K/Akt signaling pathway in BMDCs.
Collapse
Affiliation(s)
- Nguyen Thi Xuan
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Huy Hoang
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Vu Phuong Nhung
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Thuy Duong
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nguyen Hai Ha
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| | - Nong Van Hai
- a Institute of Genome Research, Vietnam Academy of Science and Technology , Cau Giay , Ha Noi , Vietnam
| |
Collapse
|
16
|
Yin L, Wang Q, Wang X, Song LN. Effects of Tribulus terrestris saponins on exercise performance in overtraining rats and the underlying mechanisms. Can J Physiol Pharmacol 2016; 94:1193-1201. [PMID: 27482746 DOI: 10.1139/cjpp-2016-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the effects of Tribulus terrestris L. (TT) saponins on exercise performance and the underlying mechanisms. A rat overtraining model was established and animals were treated with TT extracts (120 mg/kg body mass) 30 min before each training session. Serum levels of testosterone and corticosterone and levels of androgen receptor (AR) and insulin growth factor-1 receptor (IGF-1R) in the liver, gastrocnemius, and soleus were determined by ELISA and Western blot. Treatment of rats with TT saponins significantly improved the performance of the overtraining rats, reflected by the extension of time to exhaustion, with a concomitant increase in body mass, relative mass, and protein levels of gastrocnemius. Overtraining alone induced a significant decrease in the serum level of testosterone. In contrast, treatment with TT saponins dramatically increased the serum level of testosterone in overtraining rats to about 150% of control and 216% of overtraining groups, respectively. In addition, TT saponins resulted in a further significant increase in AR in gastrocnemius and significantly suppressed the overtraining-induced increase in IGF-1R in the liver. These results indicated that TT saponins increased performance, body mass, and gastrocnemius mass of rats undergoing overtraining, which might be attributed to the changes in androgen-AR axis and IGF-1R signaling.
Collapse
Affiliation(s)
- Liang Yin
- a Department of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Qian Wang
- a Department of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaohui Wang
- a Department of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Liang-Nian Song
- b Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
17
|
Xiao W, Liu Y, Luo B, Zhao L, Liu X, Zeng Z, Chen P. Time-dependent gene expression analysis after mouse skeletal muscle contusion. JOURNAL OF SPORT AND HEALTH SCIENCE 2016; 5:101-108. [PMID: 30356928 PMCID: PMC6191981 DOI: 10.1016/j.jshs.2016.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/06/2015] [Accepted: 10/16/2015] [Indexed: 06/08/2023]
Abstract
BACKGROUND Though the mechanisms of skeletal muscle regeneration are deeply understood, those involved in muscle contusion, one of the most common muscle injuries in sports medicine clinics, are not. The objective of this study is to explore the mechanisms involved in muscle regeneration after contusion injury. METHODS In this study, a total of 72 mice were used. Eight of them were randomly chosen for the control group, while the rest were subjected to muscle contusion. Subsequently, their gastrocnemius muscles were harvested at different time points. The changes in muscle morphology were assessed by hematoxylin and eosin (HE) stain. In addition, the gene expression was analyzed by real-time polymerase chain reaction. RESULTS The data showed that the expression of many genes, i.e., specific markers of immune cells and satellite cells, regulatory factors for muscle regeneration, cytokines, and chemokines, increased in the early stages of recovery, especially in the first 3 days. Furthermore, there were strict rules in the expression of these genes. However, almost all the genes returned to normal at 14 days post-injury. CONCLUSION The sequence of immune cells invaded after muscle contusion was neutrophils, M1 macrophages and M2 macrophages. Some CC (CCL2, CCL3, and CCL4) and CXC (CXCL10) chemokines may be involved in the chemotaxis of these immune cells. HGF may be the primary factor to activate the satellite cells after muscle contusion. Moreover, 2 weeks are needed to recover when acute contusion happens as used in this study.
Collapse
Affiliation(s)
- Weihua Xiao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yu Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
- Department of Exercise Science, Shenyang Sport University, Shenyang 110001, China
| | - Beibei Luo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Linlin Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoguang Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Zhigang Zeng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Peijie Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
18
|
Xiao W, Chen P, Liu X, Zhao L. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation. Nutrients 2015; 7:8645-56. [PMID: 26506374 PMCID: PMC4632445 DOI: 10.3390/nu7105425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.
Collapse
Affiliation(s)
- Weihua Xiao
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| | - Peijie Chen
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaoguang Liu
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| | - Linlin Zhao
- Department of Sports Science, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
19
|
Generation and evaluation of antibodies against human MGF E-peptide by reverse phase protein microarray and reverse competitive ELISA. Bioanalysis 2014; 5:2269-75. [PMID: 24053242 DOI: 10.4155/bio.13.195] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Since 2005, as one of prohibited substances on the Prohibited List of the World Anti-Doping Agency (WADA), the occurence of mechano growth factor (MGF) abuse in sport has likely increased. However, there is still no WADA-validated and -approved method for its detection. RESULTS Four polyclonal antibodies (Ab-K01, Ab-B01, Ab-B02 and Ab-K02) against MGF C-terminal peptides were generated, purified and evaluated by western blot, ELISA and reverse-phase protein microarray, respectively. It was found that all the antibodies could identify their corresponding antigen in mouse serum by reverse-phase protein microarray, in particular, Ab-K01 showed the highest affinity among them and might be a potential tool for the detection of antibody affinity. Furthermore, Ab-B01 and Ab-K01 were successfully used for the determination of MGF-40 by reverse competitive ELISA. CONCLUSION The quantitative measurement of MGF-40 has laid the foundation for doping detection of MGF and further biological research on MGF.
Collapse
|
20
|
Kweon H, Kim SG, Choi JY. Inhibition of foreign body giant cell formation by 4- hexylresorcinol through suppression of diacylglycerol kinase delta gene expression. Biomaterials 2014; 35:8576-84. [DOI: 10.1016/j.biomaterials.2014.06.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
|