1
|
Ferraro S, Dave A, Cereda C, Verduci E, Marcovina S, Zuccotti G. Space research to explore novel biochemical insights on Earth. Clin Chim Acta 2024; 558:119673. [PMID: 38621588 DOI: 10.1016/j.cca.2024.119673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Travel to space has overcome unprecedent technological challenges and this has resulted in transfer of these technological results on Earth to better our lives. Health technology, medical devices, and research advancements in human biology are the first beneficiaries of this transfer. The real breakthrough came with the International Space Station, which endorsed multidisciplinary international scientific collaborations and boosted the research on pathophysiological adaptation of astronauts to life on space. These studies evidenced that life in space appeared to have exposed the astronauts to an accelerated aging-related pathophysiological dysregulation across multiple systems. In this review we emphasize the interaction between several biomarkers and their alteration in concentrations/expression/function by space stress factors. These altered interactions, suggest that different biochemical and hormonal factors, and cell signals, contribute to a complex network of pathophysiological mechanisms, orchestrating the homeostatic dysregulation of various organs/metabolic pathways. The main effects of space travel on altering cell organelles biology, ultrastructure, and cross-talk, have been observed in cell aging as well as in the disruption of metabolic pathways, which are also the causal factor of rare inherited metabolic disorders, one of the major pediatric health issue. The pathophysiologic breakthrough from space research could allow the development of precision health both on Earth and Space by promoting the validation of improved biomarker-based risk scores and the exploration of new pathophysiologic hypotheses and therapeutic targets. Nonstandard abbreviations: International Space Station (ISS), Artificial Intelligence (AI), European Space Agency (ESA), National Aeronautics and Space Agency (NASA), Low Earth Orbit (LEO), high sensitive troponin (hs-cTn), high sensitive troponin I (hs-cTn I), high sensitive troponin T, Brain Natriuretic Peptide (BNP), N terminal Brain Natriuretic Peptide (NT-BNP), cardiovascular disease (CVD), parathyroid hormone (PTH), urinary hydroxyproline (uHP), urinary C- and N-terminal telopeptides (uCTX and uNTX), pyridinoline (PYD), deoxypyridinoline (DPD), half-time (HF), serum Bone Alkaline Phosphatase (sBSAP), serum Alkaline Phosphatase (sAP), Carboxy-terminal Propeptide of Type 1 Procollagen (P1CP), serum Osteocalcin (sOC)), advanced glycation end products (AGEs), glycated hemoglobin A1c (HbA1c), Insulin-like growth factor 1 (IGF1), Growth Hormone (GH), amino acid (AA), β-hydroxy-β methyl butyrate (HMB), maple syrup urine disease (MSUD), non-communicable diseases (NCDs).
Collapse
Affiliation(s)
- Simona Ferraro
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy.
| | - Anilkumar Dave
- Space Economy and Open Innovation, Darwix srl, Venice, Italy
| | - Cristina Cereda
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Center of Functional Genomics and Rare Diseases
| | - Elvira Verduci
- Department of Health Sciences, University of Milan, Milan, Italy; Metabolic Diseases Unit, Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy
| | | | - Gianvincenzo Zuccotti
- Department of Pediatrics, Buzzi Children's Hospital, Milan, Italy; Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Wang S, Wang J, Zeng X, Wang T, Yu Z, Wei Y, Cai M, Zhuoma D, Chu XY, Chen YZ, Zhao Y. Database of space life investigations and information on spaceflight plant biology. PLANTA 2023; 258:58. [PMID: 37528331 DOI: 10.1007/s00425-023-04213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/23/2023] [Indexed: 08/03/2023]
Abstract
Extensive spaceflight life investigations (SLIs) have revealed observable space effects on plants, particularly their growth, nutrition yield, and secondary metabolite production. Knowledge of these effects not only facilitates space agricultural and biopharmaceutical technology development but also provides unique perspectives to ground-based investigations. SLIs are specialized experimental protocols and notable biological phenomena. These require specialized databases, leading to the development of the NASA Science Data Archive, Erasmus Experiment Archive, and NASA GeneLab. The increasing interests of SLIs across diverse fields demand resources with comprehensive content, convenient search facilities, and friendly information presentation. A new database SpaceLID (Space Life Investigation Database http://bidd.group/spacelid/ ) was developed with detailed menu search tools and categorized contents about the phenomena, protocols, and outcomes of 459 SLIs (including 106 plant investigations) of 92 species, where 236 SLIs and 57 plant investigations are uncovered by the existing databases. The usefulness of SpaceLID as an SLI information source is illustrated by the literature-reported analysis of metabolite, nutrition, and symbiosis variations of spaceflight plants. In conclusion, this study extensively investigated the impact of the space environment on plant biology, utilizing SpaceLID as an information source and examining various plant species, including Arabidopsis thaliana, Brassica rapa L., and Glycyrrhiza uralensis Fisch. The findings provide valuable insights into the effects of space conditions on plant physiology and metabolism.
Collapse
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Junyong Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Xian Zeng
- Department of Biological Medicines and Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, 201203, China
| | - Tao Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Zijie Yu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Yiqi Wei
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Mengna Cai
- Institute of Civil Design, Tsinghua University, Beijing, 102206, China
| | | | - Xin-Yi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 102206, China
| |
Collapse
|
3
|
Gerosa L, Malvandi AM, Malavolta M, Provinciali M, Lombardi G. Exploring cellular senescence in the musculoskeletal system: Any insights for biomarkers discovery? Ageing Res Rev 2023; 88:101943. [PMID: 37142059 DOI: 10.1016/j.arr.2023.101943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
The locomotor system comprises skeletal muscles and bones with active metabolism and cellular turnover. Chronic locomotor system disorders gradually arising with aging are inversely associated with the correct function of bone and muscles. Senescent cells appear more frequently in advanced ages or pathological conditions, and the accumulation of senescent cells in muscle tissue negatively correlates with muscle regeneration, which is crucial for maintaining strength and preventing frailty. Senescence in the bone microenvironment, osteoblasts, and osteocytes affects bone turnover favoring osteoporosis. It is likely that in response to injury and age-related damage over the lifetime, a subset of niche cells accumulates oxidative stress and DNA damage beyond the threshold that primes the onset of cellular senescence. These senescent cells may acquire resistance to apoptosis that, combined with the weakened immune system, results in impaired clearance of senescent cells and their accumulation. The secretory profile of senescent cells causes local inflammation, further spreading senescence in neighboring niche cells and impairing tissue homeostasis. The resulting impairment of turnover/tissue repair in the musculoskeletal system reduces the efficiency of the organ in response to environmental needs that finally lead to functional decline. Management of the musculoskeletal system at the cellular level can benefit the quality of life and reduce early aging. This work discusses current knowledge of cellular senescence of musculoskeletal tissues to conclude with biologically active biomarkers effective enough to reveal the underlying mechanisms of tissue flaws at the earliest possible.
Collapse
Affiliation(s)
- Laura Gerosa
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy.
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121 Ancona, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy; Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
4
|
Goswami N. Compensatory hemodynamic changes in response to central hypovolemia in humans: lower body negative pressure: updates and perspectives. J Muscle Res Cell Motil 2023; 44:89-94. [PMID: 36380185 PMCID: PMC10329599 DOI: 10.1007/s10974-022-09635-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Central hypovolemia is accompanied by hemodynamic compensatory responses. Understanding the complex systemic compensatory responses to altered hemodynamic patterns during conditions of central hypovolemia-as induced by standing up and/or lower body negative pressure (LBNP)-in humans are important. LBNP has been widely used to understand the integrated physiological responses, which occur during sit to stand tests (orthostasis), different levels of hemorrhages (different levels of LBNP simulate different amount of blood loss) as well as a countermeasure against the cephalad fluid shifts which are seen during spaceflight. Additionally, LBNP application (used singly or together with head up tilt, HUT) is useful in understanding the physiology of orthostatic intolerance. The role seasonal variations in hormonal, autonomic and circulatory state play in LBNP-induced hemodynamic responses and LBNP tolerance as well as sex-based differences during central hypovolemia and the adaptations to exercise training have been investigated using LBNP. The data generated from LBNP studies have been useful in developing better models for prediction of orthostatic tolerance and/or for developing countermeasures. This review examines how LBNP application influences coagulatory parameters and outlines the effects of temperature changes on LBNP responses. Finally, the review outlines how LBNP can be used as innovative teaching tool and for developing research capacities and interests of medical students and students from other disciplines such as mathematics and computational biology.
Collapse
Affiliation(s)
- Nandu Goswami
- Division of Physiology, Gravitational Physiology and Medicine Research Unit, Otto Löwi Research Center of Vascular Biology, Inflammation, and Immunity, Medical University of Graz, Neue Stiftingtalstrasse 6, D-5, 8036, Graz, Austria.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| |
Collapse
|
5
|
Sanders LM, Scott RT, Yang JH, Qutub AA, Garcia Martin H, Berrios DC, Hastings JJA, Rask J, Mackintosh G, Hoarfrost AL, Chalk S, Kalantari J, Khezeli K, Antonsen EL, Babdor J, Barker R, Baranzini SE, Beheshti A, Delgado-Aparicio GM, Glicksberg BS, Greene CS, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Mason CE, Matar M, Mias GI, Miller J, Myers JG, Nelson C, Oribello J, Park SM, Parsons-Wingerter P, Prabhu RK, Reynolds RJ, Saravia-Butler A, Saria S, Sawyer A, Singh NK, Snyder M, Soboczenski F, Soman K, Theriot CA, Van Valen D, Venkateswaran K, Warren L, Worthey L, Zitnik M, Costes SV. Biological research and self-driving labs in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00618-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Scott RT, Sanders LM, Antonsen EL, Hastings JJA, Park SM, Mackintosh G, Reynolds RJ, Hoarfrost AL, Sawyer A, Greene CS, Glicksberg BS, Theriot CA, Berrios DC, Miller J, Babdor J, Barker R, Baranzini SE, Beheshti A, Chalk S, Delgado-Aparicio GM, Haendel M, Hamid AA, Heller P, Jamieson D, Jarvis KJ, Kalantari J, Khezeli K, Komarova SV, Komorowski M, Kothiyal P, Mahabal A, Manor U, Garcia Martin H, Mason CE, Matar M, Mias GI, Myers JG, Nelson C, Oribello J, Parsons-Wingerter P, Prabhu RK, Qutub AA, Rask J, Saravia-Butler A, Saria S, Singh NK, Snyder M, Soboczenski F, Soman K, Van Valen D, Venkateswaran K, Warren L, Worthey L, Yang JH, Zitnik M, Costes SV. Biomonitoring and precision health in deep space supported by artificial intelligence. NAT MACH INTELL 2023. [DOI: 10.1038/s42256-023-00617-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Wang J, Wang T, Zeng X, Wang S, Yu Z, Wei Y, Cai M, Chu XY, Chen YZ, Zhao Y. Database of space life investigations and bioinformatics of microbiology in extreme environments. Front Microbiol 2022; 13:1017773. [PMID: 36406421 PMCID: PMC9668873 DOI: 10.3389/fmicb.2022.1017773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 08/03/2023] Open
Abstract
Biological experiments performed in space crafts like space stations, space shuttles, and recoverable satellites has enabled extensive spaceflight life investigations (SLIs). In particular, SLIs have revealed distinguished space effects on microbial growth, survival, metabolite production, biofilm formation, virulence development and drug resistant mutations. These provide unique perspectives to ground-based microbiology and new opportunities for industrial pharmaceutical and metabolite productions. SLIs are with specialized experimental setups, analysis methods and research outcomes, which can be accessed by established databases National Aeronautics and Space Administration (NASA) Life Science Data Archive, Erasmus Experiment Archive, and NASA GeneLab. The increasing research across diverse fields may be better facilitated by databases of convenient search facilities and categorized presentation of comprehensive contents. We therefore developed the Space Life Investigation Database (SpaceLID) http://bidd.group/spacelid/, which collected SLIs from published academic papers. Currently, this database provides detailed menu search facilities and categorized contents about the studied phenomena, materials, experimental procedures, analysis methods, and research outcomes of 448 SLIs of 90 species (microbial, plant, animal, human), 81 foods and 106 pharmaceuticals, including 232 SLIs not covered by the established databases. The potential applications of SpaceLID are illustrated by the examples of published experimental design and bioinformatic analysis of spaceflight microbial phenomena.
Collapse
Affiliation(s)
- Junyong Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Tao Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Zijie Yu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yiqi Wei
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Mengna Cai
- Institute of Civil Design, Tsinghua University, Beijing, China
| | - Xin-Yi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yu Zong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
- The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Sadeghian F, Divsalar DN, Fadil R, Tavakolian K, Blaber AP. Canadian aging and inactivity study: Spaceflight-inspired exercises during head-down tilt bedrest blunted reductions in muscle-pump but not cardiac baroreflex in older persons. Front Physiol 2022; 13:943630. [PMID: 36213230 PMCID: PMC9532525 DOI: 10.3389/fphys.2022.943630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
As part of the first Canadian aging and inactivity study (CAIS) we assessed the efficacy of space-based exercise countermeasures for maintenance of cardiac and muscle-pump baroreflex in older persons during bedrest. An initiative of the Canadian Space Agency, Canadian Institutes of Health Research and the Canadian Frailty Network, CAIS involved 14 days of 6-degree head-down tilt bedrest (HDBR) with (Exercise) or without (Control) combined upper and lower body strength, aerobic, and high-intensity interval training exercise countermeasures. Twenty healthy men and women aged 55 to 65, randomly divided into control and exercise groups (male control (MC, n = 5), male exercise (ME, n = 5), female control (FC, n = 6), female exercise (FE, n = 4)) (age: 58.7 ± 0.5 years, height: 1.67 ± 0.02 m, body mass: 70.2 ± 3.2 kg; mean ± SEM), completed the study. Cardiac and muscle-pump baroreflex activity were assessed with supine-to-stand tests. Wavelet transform coherence was used to characterise cardiac and muscle-pump baroreflex fraction time active (FTA) and gain values, and convergent cross-mapping was used to investigate causal directionality between blood pressure (BP) and heart rate, as well as BP and lower leg muscle electromyography (EMG). Seven of the twenty participants were unable to stand for 6 minutes after HDBR, with six of those being female. Our findings showed that 2 weeks of bedrest impaired skeletal muscle’s ability to return blood to the venous circulation differently across various sexes and intervention groups. Comparing values after bed rest with before bed rest values, there was a significant increase in heart rates (∆ of +25%; +17% in MC to +33% in FC; p < 0.0001), beat-to-beat EMG decreased (∆ of −43%; −25% in ME to −58% in MC; p < 0.02), while BP change was dependent on sex and intervention groups. Unlike their male counterparts, in terms of muscle-pump baroreflex, female participants had considerably decreased FTA after HDBR (p < 0.01). All groups except female control demonstrated parallel decreases in cardiac active gain and causality, while the FC demonstrated an increase in cardiac causality despite a similar decline in cardiac active gain. Results showed that the proposed exercises may alleviate muscle-pump baroreflex declines but could not influence the cardiac baroreflex decline from 14 days of inactivity in older adults.
Collapse
Affiliation(s)
- Farshid Sadeghian
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, Canada
| | - Donya Naz Divsalar
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, Canada
| | - Rabie Fadil
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Kouhyar Tavakolian
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
| | - Andrew P. Blaber
- Department of Biomedical Physiology and Kinesiology, Aerospace Physiology Laboratory, Simon Fraser University, Burnaby, Canada
- Biomedical Engineering Program, University of North Dakota, Grand Forks, ND, United States
- *Correspondence: Andrew P. Blaber,
| |
Collapse
|
9
|
Reynolds RJ, Scott RT, Turner RT, Iwaniec UT, Bouxsein ML, Sanders LM, Antonsen EL. Validating Causal Diagrams of Human Health Risks for Spaceflight: An Example Using Bone Data from Rodents. Biomedicines 2022; 10:2187. [PMID: 36140288 PMCID: PMC9496259 DOI: 10.3390/biomedicines10092187] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
As part of the risk management plan for human system risks at the US National Aeronautics and Space Administration (NASA), the NASA Human Systems Risk Board uses causal diagrams (in the form of directed, acyclic graphs, or DAGs) to communicate the complex web of events that leads from exposure to the spaceflight environment to performance and health outcomes. However, the use of DAGs in this way is relatively new at NASA, and thus far, no method has been articulated for testing their veracity using empirical data. In this paper, we demonstrate a set of procedures for doing so, using (a) a DAG related to the risk of bone fracture after exposure to spaceflight; and (b) four datasets originally generated to investigate this phenomenon in rodents. Tests of expected marginal correlation and conditional independencies derived from the DAG indicate that the rodent data largely agree with the structure of the diagram. Incongruencies between tests and the expected relationships in one of the datasets are likely explained by inadequate representation of a key DAG variable in the dataset. Future directions include greater tie-in with human data sources, including multiomics data, which may allow for more robust characterization and measurement of DAG variables.
Collapse
Affiliation(s)
- Robert J. Reynolds
- KBR Wyle Services, LLC, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Ryan T. Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94043, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lauren M. Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94043, USA
| | - Erik L. Antonsen
- Department of Emergency Medicine, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Ahrari K, Omolaoye TS, Goswami N, Alsuwaidi H, du Plessis SS. Effects of space flight on sperm function and integrity: A systematic review. Front Physiol 2022; 13:904375. [PMID: 36035496 PMCID: PMC9402907 DOI: 10.3389/fphys.2022.904375] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
With the advancement in space exploration and the intention to establish an inhabitable human settlement on Mars, it is important to investigate the effects of exposure to space/microgravity and the associated radiations on procreation. Sperm function and integrity are fundamental to male reproduction and can potentially be affected by the environmental changes experienced in space. Therefore, this study was conducted to systematically gather, filter, and collate all the relevant information on the effects of spaceflight on male reproductive parameters and functions. A search was performed utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Data were extracted from the major electronic databases including PubMed, and other credible literature sources. MeSH search terms that were employed included "spermatozoa", "microgravity", and "ionizing radiation". The literature search did not discriminate against papers published before a certain date due to the very limited number of articles available. However, there was a restriction on the male gender and language (English). The parameters included in this study are sperm motility, total sperm count, sperm DNA fragmentation hormonal levels and testicular histology. Following a comprehensive literature search, a total of 273 articles were retrieved and screened, 252 articles were excluded due to the irrelevance to the topic, duplication, and non-original articles. A total of 21 articles met the inclusion criteria and are included in the current study. Findings from these studies showed that sperm motility was decreased after exposure to microgravity and ionizing radiation. Total sperm count was also found to be reduced by microgravity only. Sperm DNA fragmentation was increased by both ionizing radiation and microgravity. Testosterone levels and testicular weight were also decreased by microgravity. Although there is a dearth in the literature regarding the effects of microgravity and ionizing radiation on male reproductive parameters, the available findings showed that exposure to microgravity poses a risk to male reproductive health. Therefore, it is essential to develop countermeasures to either manage, treat, or prevent these consequential adverse effects. Hence, this review also highlights some potential countermeasure approaches that may mitigate the harmful effects of microgravity and associated exposures on male reproductive health.
Collapse
Affiliation(s)
- Khulood Ahrari
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Temidayo S. Omolaoye
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nandu Goswami
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Otto Loewi Research Center of Vascular Biology, Inflammation, and Immunity, Medical University of Graz, Graz, Austria
| | - Hanan Alsuwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Stefan S. du Plessis
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
11
|
Effect of Microgravity Environment on Gut Microbiome and Angiogenesis. Life (Basel) 2021; 11:life11101008. [PMID: 34685381 PMCID: PMC8541308 DOI: 10.3390/life11101008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Microgravity environments are known to cause a plethora of stressors to astronauts. Recently, it has become apparent that gut microbiome composition of astronauts is altered following space travel, and this is of significance given the important role of the gut microbiome in human health. Other changes observed in astronauts comprise reduced muscle strength and bone fragility, visual impairment, endothelial dysfunction, metabolic changes, behavior changes due to fatigue or stress and effects on mental well-being. However, the effects of microgravity on angiogenesis, as well as the connection with the gut microbiome are incompletely understood. Here, the potential association of angiogenesis with visual impairment, skeletal muscle and gut microbiome is proposed and explored. Furthermore, metabolites that are effectors of angiogenesis are deliberated upon along with their connection with gut bacterial metabolites. Targeting and modulating the gut microbiome may potentially have a profound influence on astronaut health, given its impact on overall human health, which is thus warranted given the likelihood of increased human activity in the solar system, and the determination to travel to Mars in future missions.
Collapse
|
12
|
Furukawa S, Chatani M, Higashitani A, Higashibata A, Kawano F, Nikawa T, Numaga-Tomita T, Ogura T, Sato F, Sehara-Fujisawa A, Shinohara M, Shimazu T, Takahashi S, Watanabe-Takano H. Findings from recent studies by the Japan Aerospace Exploration Agency examining musculoskeletal atrophy in space and on Earth. NPJ Microgravity 2021; 7:18. [PMID: 34039989 PMCID: PMC8155041 DOI: 10.1038/s41526-021-00145-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/25/2021] [Indexed: 11/09/2022] Open
Abstract
The musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan.
| | - Masahiro Chatani
- Department of Pharmacology, Showa University School of Dentistry, Tokyo, Japan. .,Pharmacological Research Center, Showa University, Tokyo, Japan.
| | | | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan
| | - Fuminori Kawano
- Graduate School of Health Sciences, Matsumoto University, Matsumoto, Nagano, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Takuro Numaga-Tomita
- Department of Molecular Pharmacology, School of Medicine, Shinshu University, Matsumoto, Nagano, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Fuminori Sato
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Growth Regulation, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Shinohara
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | | | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Haruko Watanabe-Takano
- Department of Cell Biology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
13
|
Du J, Cui J, Yang J, Wang P, Zhang L, Luo B, Han B. Alterations in Cerebral Hemodynamics During Microgravity: A Literature Review. Med Sci Monit 2021; 27:e928108. [PMID: 33446627 PMCID: PMC7814510 DOI: 10.12659/msm.928108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Most reported neurological symptoms that happen after exposure to microgravity could be originated from alterations in cerebral hemodynamics. The complicated mechanisms involved in the process of hemodynamics and the disparate experimental protocols designed to study the process may have contributed to the discrepancies in results between studies and the lack of consensus among researchers. This literature review examines spaceflight and ground-based studies of cerebral hemodynamics and aims to summarize the underlying physiological mechanisms that are altered in cerebral hemodynamics during microgravity. We reviewed studies that were published before July 2020 and sought to provide a comprehensive summary of the physiological or pathological theories of hemodynamics and to arrive at firm conclusions from incongruous results that were reported in those related articles. We give plausible explanations of inconsistent results on factors including intracranial pressure, cerebral blood flow, and cerebrovascular autoregulation. Although there are no definitive data to confirm how cerebral hemodynamics changes during microgravity, every discrepancy in results was interpreted by existing theories, which were derived from physiological and pathological processes. We conclude that microgravity-induced alterations of hemodynamics at the brain level are multifaceted. Factors including duration, partial pressures of carbon dioxide, and individual adaptability contribute to this process and are unpredictable. With a growing understanding of this hemodynamics model, additional factors will likely be considered. Aiming for a full understanding of the physiological and/or pathological changes of hemodynamics will enable researchers to investigate its cellular and molecular mechanisms in future studies, which are desperately needed.
Collapse
Affiliation(s)
- Jichen Du
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Jiangbo Cui
- Aerospace Clinic Academy, Peking University Health Science Center, Beijing, China (mainland)
| | - Jing Yang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Peifu Wang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Lvming Zhang
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Bin Luo
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| | - Bailin Han
- Department of Neurology, Aerospace Center Hospital, Beijing, China (mainland)
| |
Collapse
|
14
|
Advancing the Integration of Biosciences Data Sharing to Further Enable Space Exploration. Cell Rep 2020; 33:108441. [PMID: 33242404 DOI: 10.1016/j.celrep.2020.108441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the impact of space exploration remains biologically elusive. Cell Press is dedicating this month to spaceflight (Afshinnekoo et al., 2020), with the open science NASA GeneLab database enabling the study revealing mitochondria as a key biological feature from spaceflight (da Silveira et al., 2020).
Collapse
|
15
|
Fluid Shifts Induced by Physical Therapy in Lower Limb Lymphedema Patients. J Clin Med 2020; 9:jcm9113678. [PMID: 33207688 PMCID: PMC7697258 DOI: 10.3390/jcm9113678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
Complete decongestive therapy (CDT), a physical therapy including manual lymphatic drainage (MLD) and compression bandaging, is aimed at mobilizing fluid and reducing limb volume in lymphedema patients. Details of fluid shifts occurring in response to CDT are currently not well studied. Therefore, we investigated fluid shifts before, during and after CDT. Thirteen patients (3 males and 10 females, aged 57 ± 8.0 years, 167.2 ± 8.3 cm height, 91.0 ± 23.4 kg weight) diagnosed with stage II leg lymphedema participated. Leg volume, limb and whole-body fluid composition (total body water (limbTBW/%TBW), extracellular (limbECF/%ECF) and intracellular (limbICF/%ICF fluid), as well as ECF/ICF and limbECF/limbICF ratios were determined using perometry and bioelectrical impedance spectroscopy. Plasma volume, proteins, osmolality, oncotic pressure and electrolytes were assessed. Leg volume (p < 0.001), limbECF (p = 0.041), limbICF (p = 0.005) and limbECF/limbICF decreased over CDT. Total leg volume and limbTBW were correlated (r = 0.635). %TBW (p = 0.001) and %ECF (p = 0.007) decreased over time. The maximum effects were seen within one week of CDT. LimbICF (p = 0.017), %TBW (p = 0.009) and %ICF (p = 0.003) increased post-MLD, whereas ECF/ICF decreased due to MLD. Plasma volume increased by 1.5% post-MLD, as well as albumin and the albumin-to-globulin ratio (p = 0.005 and p = 0.049, respectively). Our results indicate that physical therapy leads to fluid shifts in lymphedema patients, with the greatest effects occurring within one week of therapy. Fluid shifts due to physical therapy were also reflected in increased plasma volume and plasma protein concentrations. Perometry, in contrast to bioelectrical impedance analysis, does not seem to be sensitive enough to detect small fluid changes caused by manual lymphatic drainage.
Collapse
|
16
|
Laing C, Green DA, Mulder E, Hinghofer-Szalkay H, Blaber AP, Rittweger J, Goswami N. Effect of novel short-arm human centrifugation-induced gravitational gradients upon cardiovascular responses, cerebral perfusion and g-tolerance. J Physiol 2020; 598:4237-4249. [PMID: 32715482 PMCID: PMC7589294 DOI: 10.1113/jp273615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/08/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The aim of this study was to determine the effect of rotational axis position (RAP and thus g-gradient) during short-arm human centrifugation (SAHC) upon cardiovascular responses, cerebral perfusion and g-tolerance. In 10 male and 10 female participants, 10 min passive SAHC runs were performed with the RAP above the head (P1), at the apex of the head (P2), or at heart level (P3), with foot-level Gz at 1.0 g, 1.7 g and 2.4 g. We hypothesized that movement of the RAP from above the head (the conventional position) towards the heart might reduce central hypovolaemia, limit cardiovascular responses, aid cerebral perfusion, and thus promote g-tolerance. Moving the RAP footward towards the heart decreased the cerebral tissue saturation index, calf circumference and heart rate responses to SAHC, thereby promoting g-tolerance. Our results also suggest that RAP, and thus g-gradient, warrants further investigation as it may support use as a holistic spaceflight countermeasure. ABSTRACT Artificial gravity (AG) through short-arm human centrifugation (SAHC) has been proposed as a holistic spaceflight countermeasure. Movement of the rotational axis position (RAP) from above the head towards the heart may reduce central hypovolaemia, aid cerebral perfusion, and thus promote g-tolerance. This study determined the effect of RAP upon cardiovascular responses, peripheral blood displacement (i.e. central hypovolaemia), cerebral perfusion and g-tolerance, and their inter-relationships. Twenty (10 male) healthy participants (26.2 ± 4.0 years) underwent nine (following a familiarization run) randomized 10 min passive SAHC runs with RAP set above the head (P1), at the apex of the head (P2), or at heart level (P3) with foot-level Gz at 1.0 g, 1.7 g and 2.4 g. Cerebral tissue saturation index (cTSI, cerebral perfusion surrogate), calf circumference (CC, central hypovolaemia), heart rate (HR) and digital heart-level mean arterial blood pressure (MAP) were continuously recorded, in addition to incidence of pre-syncopal symptoms (PSS). ΔCC and ΔHR increases were attenuated from P1 to P3 (ΔCC: 5.46 ± 0.54 mm to 2.23 ± 0.42 mm; ΔHR: 50 ± 4 bpm to 8 ± 2 bpm, P < 0.05). In addition, ΔcTSI decrements were also attenuated (ΔcTSI: -2.85 ± 0.48% to -0.95 ± 0.34%, P < 0.05) and PSS incidence lower in P3 than P1 (P < 0.05). A positive linear relationship was observed between ΔCC and ΔHR with increasing +Gz, and a negative relationship between ΔCC and ΔcTSI, both independent of RAP. Our data suggest that movement of RAP towards the heart (reduced g-gradient), independent of foot-level Gz, leads to improved g-tolerance. Further investigations are required to assess the effect of differential baroreceptor feedback (i.e. aortic-carotid g-gradient).
Collapse
Affiliation(s)
- Charles Laing
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,King's College London, Centre for Human and Applied Physiological Sciences (CHAPS), London, UK
| | - David A Green
- King's College London, Centre for Human and Applied Physiological Sciences (CHAPS), London, UK.,Space Medicine Team, HRE-OM, European Astronaut Centre, European Space Agency, Cologne, Germany.,KBR, Wyle Laboratories GmbH, Cologne, Germany
| | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Helmut Hinghofer-Szalkay
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Medical University of Graz, Austria
| | - Andrew P Blaber
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Joern Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Paediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Division of Physiology, Medical University of Graz, Austria
| |
Collapse
|
17
|
Cardio-postural interactions and muscle-pump baroreflex are severely impacted by 60-day bedrest immobilization. Sci Rep 2020; 10:12042. [PMID: 32694819 PMCID: PMC7374578 DOI: 10.1038/s41598-020-68962-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
To understand fundamental mechanisms associated with post-flight orthostatic intolerance we investigated the interaction between the cardiovascular and postural functions before and after 60 days of head down bedrest (HDBR). Twenty healthy young males (35.0 ± 1.7 years) were subjected to 60-day HDBR at 6˚ to simulate spaceflight-induced fluid shifts. A supine-to-stand (STS) test was conducted to evaluate cardio-postural control before and after (R) HDBR while an assessment of cardiovascular function was performed during HDBR. Beat-to-beat heart period, systolic blood pressure, and electromyography impulses were derived for wavelet transform coherence and causality analyses of the cardio-postural control and used to assess changes in the muscle-pump baroreflex. During quiet stand of the STS test, compared to baseline, heart rate was 50% higher on the day of exit from bedrest (R0) and 20% higher eight days later (R8). There was a 50% increase in deoxygenated hemoglobin on R0 and R8. Leg muscle activity reduced, and postural sway increased after HDBR. Causality of the muscle-pump baroreflex was reduced on R0 (0.73 ± 0.2) compared to baseline (0.87 ± 0.2) with complete recovery by R8. The muscle-pump baroreflex also had decreased gain and fraction time active following HDBR. Overall, our data show a significantly impaired muscle-pump baroreflex following bedrest.
Collapse
|
18
|
Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SV. A systematic review and meta-analysis of bone loss in space travelers. NPJ Microgravity 2020; 6:13. [PMID: 32411816 PMCID: PMC7200725 DOI: 10.1038/s41526-020-0103-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/23/2020] [Indexed: 12/29/2022] Open
Abstract
Bone loss in space travelers is a major challenge for long-duration space exploration. To quantify microgravity-induced bone loss in humans, we performed a meta-analysis of studies systematically identified from searching Medline, Embase, Web of Science, BIOSIS, NASA Technical reports, and HathiTrust, with the last update in November 2019. From 25 articles selected to minimize the overlap between reported populations, we extracted post-flight bone density values for 148 individuals, and in-flight and post-flight biochemical bone marker values for 124 individuals. A percentage difference in bone density relative to pre-flight was positive in the skull, +2.2% [95% confidence interval: +1.1, +3.3]; neutral in the thorax/upper limbs, −0.7% [−1.3, −0.2]; and negative in the lumbar spine/pelvis, −6.2 [−6.7, −5.6], and lower limbs, −5.4% [−6.0, −4.9]. In the lower limb region, the rate of bone loss was −0.8% [−1.1, −0.5] per month. Bone resorption markers increased hyperbolically with a time to half-max of 11 days [9, 13] and plateaued at 113% [108, 117] above pre-flight levels. Bone formation markers remained unchanged during the first 30 days and increased thereafter at 7% [5, 10] per month. Upon landing, resorption markers decreased to pre-flight levels at an exponential rate that was faster after longer flights, while formation markers increased linearly at 84% [39, 129] per month for 3–5 months post-flight. Microgravity-induced bone changes depend on the skeletal-site position relative to the gravitational vector. Post-flight recovery depends on spaceflight duration and is limited to a short post-flight period during which bone formation exceeds resorption.
Collapse
Affiliation(s)
- Mariya Stavnichuk
- 1Department of Biomedical Engineering, McGill University, Montréal, Canada.,2Shriners Hospital for Children-Canada, Montréal, Canada
| | - Nicholas Mikolajewicz
- 2Shriners Hospital for Children-Canada, Montréal, Canada.,3Faculty of Dentistry, McGill University, Montréal, Canada
| | - Tatsuya Corlett
- 2Shriners Hospital for Children-Canada, Montréal, Canada.,3Faculty of Dentistry, McGill University, Montréal, Canada
| | - Martin Morris
- 4Schulich Library of Physical Sciences, Life Sciences and Engineering, McGill University, Montréal, Canada
| | - Svetlana V Komarova
- 1Department of Biomedical Engineering, McGill University, Montréal, Canada.,2Shriners Hospital for Children-Canada, Montréal, Canada.,3Faculty of Dentistry, McGill University, Montréal, Canada
| |
Collapse
|
19
|
Landon LB, Douglas GL, Downs ME, Greene MR, Whitmire AM, Zwart SR, Roma PG. The Behavioral Biology of Teams: Multidisciplinary Contributions to Social Dynamics in Isolated, Confined, and Extreme Environments. Front Psychol 2019; 10:2571. [PMID: 31824374 PMCID: PMC6883946 DOI: 10.3389/fpsyg.2019.02571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 10/30/2019] [Indexed: 12/26/2022] Open
Abstract
Teams in isolated, confined, and extreme (ICE) environments face many risks to behavioral health, social dynamics, and team performance. Complex long-duration ICE operational settings such as spaceflight and military deployments are largely closed systems with tightly coupled components, often operating as autonomous microsocieties within isolated ecosystems. As such, all components of the system are presumed to interact and can positively or negatively influence team dynamics through direct or indirect pathways. However, modern team science frameworks rarely consider inputs to the team system from outside the social and behavioral sciences and rarely incorporate biological factors despite the brain and associated neurobiological systems as the nexus of input from the environment and necessary substrate for emergent team dynamics and performance. Here, we provide a high-level overview of several key neurobiological systems relevant to social dynamics. We then describe several key components of ICE systems that can interact with and on neurobiological systems as individual-level inputs influencing social dynamics over the team life cycle-specifically food and nutrition, exercise and physical activity, sleep/wake/work rhythms, and habitat design and layout. Finally, we identify opportunities and strategic considerations for multidisciplinary research and development. Our overarching goal is to encourage multidisciplinary expansion of team science through (1) prospective horizontal integration of variables outside the current bounds of team science as significant inputs to closed ICE team systems and (2) bidirectional vertical integration of biology as the necessary inputs and mediators of individual and team behavioral health and performance. Prospective efforts to account for the behavioral biology of teams in ICE settings through an integrated organizational neuroscience approach will enable the field of team science to better understand and support teams who work, live, serve, and explore in extreme environments.
Collapse
Affiliation(s)
- Lauren Blackwell Landon
- Behavioral Health & Performance Laboratory, Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, KBR/NASA Johnson Space Center, Houston, TX, United States
| | - Grace L. Douglas
- Advanced Food Technology, Human Systems Engineering and Development Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, United States
| | - Meghan E. Downs
- Human Physiology, Performance, Protection, and Operations Laboratory, Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, KBR/NASA Johnson Space Center, Houston, TX, United States
| | - Maya R. Greene
- Usability Testing and Analysis Facility, Human Systems Engineering and Development Division, Human Health and Performance Directorate, KBR/NASA Johnson Space Center, Houston, TX, United States
| | - Alexandra M. Whitmire
- Human Factors and Behavioral Performance Element, Human Research Program, NASA Johnson Space Center, Houston, TX, United States
| | - Sara R. Zwart
- Nutritional Biochemistry Laboratory, Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, University of Texas Medical Branch/NASA Johnson Space Center, Houston, TX, United States
| | - Peter G. Roma
- Behavioral Health & Performance Laboratory, Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, KBR/NASA Johnson Space Center, Houston, TX, United States
| |
Collapse
|
20
|
Kehler DS, Theou O, Rockwood K. Bed rest and accelerated aging in relation to the musculoskeletal and cardiovascular systems and frailty biomarkers: A review. Exp Gerontol 2019; 124:110643. [PMID: 31255732 DOI: 10.1016/j.exger.2019.110643] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022]
Abstract
Prolonged bed rest and lifelong physical inactivity cause deleterious effects to multiple physiological systems that appear to hasten aging processes. Many such changes are similar to those seen with microgravity in space, but at a much faster rate. Head down tilt bed rest models are used to study whole-body changes that occur with spaceflight. We propose that bed rest can be used to quantify accelerated human aging in relation to frailty. In particular, frailty as a measure of the accumulation of deficits estimates the variability in aging across systems, and moves away from the traditional single-system approach. Here, we provide an overview of the impact of bed rest on the musculoskeletal and cardiovascular systems as well as frailty-related biological markers and inflammatory cytokines. We also propose future inquiries to study the accumulation of deficits with head down bed rest and bed rest in the clinical setting, specifically to understand how unrepaired and unremoved subclinical and subcellular damage give rise to clinically observable health problems.
Collapse
Affiliation(s)
- D S Kehler
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada.
| | - O Theou
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - K Rockwood
- Division of Geriatric Medicine, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
21
|
The effects of varying gravito-inertial stressors on grip strength and hemodynamic responses in men and women. Eur J Appl Physiol 2019; 119:951-960. [PMID: 30730002 PMCID: PMC6422992 DOI: 10.1007/s00421-019-04084-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
Purpose The body behaves as a global system with many interconnected subsystems. While the effects of a gravitational change on body responses have been extensively studied in isolation, we are not aware of any study that has examined these two types of body responses concurrently. Here, we examined how the cognitive and cardiovascular systems respond during application of varying gravito-inertial stressors in men and women. Methods Ten men and nine women underwent three 5-min centrifugation sessions (2.4 g at the feet, 1.5 g at the heart) in which participants rhythmically moved a hand-held object for 20 s. Grip force and hemodynamic responses were continuously measured during centrifugation and rest periods. Result Men optimized the modulation between grip force and the destabilizing load force, but not women. Exposure to artificial gravity induced higher heart rate and mean arterial pressure in both sexes compared to baseline. However, during artificial gravity exposure, only women decreased heart rate across sessions. Interestingly, we found that finishers of the protocol (mostly men) and Non-finishers (mostly women) exhibited divergent patterns of hemodynamic responses. Conclusion We speculate that the lack of grip force adaptation reported in women could be linked to the challenged hemodynamic responses during artificial gravity. By deriving a simple model to predict failure to complete the protocol, we found that mean arterial pressure—and not sex of the participant—was the most relevant factor. As artificial gravity is being proposed as a countermeasure in long-term manned missions, the observed effects in grip force adaptation and hemodynamic responses during varying gravito-inertial stressors application are particularly important.
Collapse
|
22
|
Goswami N, Blaber AP, Hinghofer-Szalkay H, Convertino VA. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol Rev 2019; 99:807-851. [PMID: 30540225 DOI: 10.1152/physrev.00006.2018] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review presents lower body negative pressure (LBNP) as a unique tool to investigate the physiology of integrated systemic compensatory responses to altered hemodynamic patterns during conditions of central hypovolemia in humans. An early review published in Physiological Reviews over 40 yr ago (Wolthuis et al. Physiol Rev 54: 566-595, 1974) focused on the use of LBNP as a tool to study effects of central hypovolemia, while more than a decade ago a review appeared that focused on LBNP as a model of hemorrhagic shock (Cooke et al. J Appl Physiol (1985) 96: 1249-1261, 2004). Since then there has been a great deal of new research that has applied LBNP to investigate complex physiological responses to a variety of challenges including orthostasis, hemorrhage, and other important stressors seen in humans such as microgravity encountered during spaceflight. The LBNP stimulus has provided novel insights into the physiology underlying areas such as intolerance to reduced central blood volume, sex differences concerning blood pressure regulation, autonomic dysfunctions, adaptations to exercise training, and effects of space flight. Furthermore, approaching cardiovascular assessment using prediction models for orthostatic capacity in healthy populations, derived from LBNP tolerance protocols, has provided important insights into the mechanisms of orthostatic hypotension and central hypovolemia, especially in some patient populations as well as in healthy subjects. This review also presents a concise discussion of mathematical modeling regarding compensatory responses induced by LBNP. Given the diverse applications of LBNP, it is to be expected that new and innovative applications of LBNP will be developed to explore the complex physiological mechanisms that underline health and disease.
Collapse
Affiliation(s)
- Nandu Goswami
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Andrew Philip Blaber
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Helmut Hinghofer-Szalkay
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| | - Victor A Convertino
- Physiology Section, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz , Graz , Austria ; Department of Biomedical Physiology and Kinesiology, Simon Fraser University , Burnaby, British Columbia , Canada ; Battlefield Health & Trauma Center for Human Integrative Physiology, Combat Casualty Care Research Program, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
23
|
Marusic U, Kavcic V, Pisot R, Goswami N. The Role of Enhanced Cognition to Counteract Detrimental Effects of Prolonged Bed Rest: Current Evidence and Perspectives. Front Physiol 2019; 9:1864. [PMID: 30728781 PMCID: PMC6351441 DOI: 10.3389/fphys.2018.01864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Prolonged periods of physical inactivity or bed rest can lead to a significant decline of functional and cognitive functions. Different kinds of countermeasures (e.g., centrifugation, nutritional, and aerobic interventions) have been developed to attempt to mitigate negative effects related to bed rest confinement. The aim of this report is to provide an overview of the current evidence related to the effectiveness of computerized cognitive training (CCT) intervention during a period of complete physical inactivity in older adults. CCT, using a virtual maze navigation task, appears to be effective and has long-lasting benefits (up to 1.5 years after the study). Moreover, enhanced cognition (executive control) reduces decline in the ability to perform complex motor-cognitive dual-tasks after prolonged period of bed rest. It has been demonstrated that CCT administration in older adults also prevents bed rest stress-related physiological changes [these groups showed minimal changes in vascular function and an unchanged level of brain-derived neurotrophic factor (BDNF)] while control subjects showed decreased peripheral vascularization and increased plasma level of the neurotrophin BDNF during a 14-day bed rest. In addition, the effects of CCT are evident also from the brain electrocortical findings: CCT group revealed a decreased power in lower delta and theta bands while significant increases in the same EEG spectral bands power were found in control subjects. If we consider an increase of power in delta band as a marker of cortical aging, then the lack of shift of EEG power to lower band indicates a preventive role of CCT on the cortical level during physiological deconditioning induced by 2-week bed rest immobilization. However, replication on a larger sample is required to confirm the observed findings. Applications derived from these findings could be appropriate for implementation of hospital treatment for bed ridden patients as well as for fall prevention programs.
Collapse
Affiliation(s)
- Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia.,Department of Health Sciences, Alma Mater Europaea - European Center Maribor, Maribor, Slovenia
| | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, MI, United States
| | - Rado Pisot
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Nandu Goswami
- Department of Health Sciences, Alma Mater Europaea - European Center Maribor, Maribor, Slovenia.,Head of Research Unit: "Gravitational Physiology, Aging and Medicine", Otto Loewi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Evans JM, Knapp CF, Goswami N. Artificial Gravity as a Countermeasure to the Cardiovascular Deconditioning of Spaceflight: Gender Perspectives. Front Physiol 2018; 9:716. [PMID: 30034341 PMCID: PMC6043777 DOI: 10.3389/fphys.2018.00716] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Space flight-induced physiological deconditioning resulting from decreased gravitational input, decreased plasma volume, and disruption of regulatory mechanisms is a significant problem in returning astronauts as well as in normal aging. Here we review effects of a promising countermeasure on cardiovascular systems of healthy men and women undergoing Earth-based models of space-flight. This countermeasure is produced by a centrifuge and called artificial gravity (AG). Numerous studies have determined that AG improves orthostatic tolerance (as assessed by various protocols) of healthy ambulatory men, of men deconditioned by bed rest or by immersion (both wet and dry) and, in one case, following spaceflight. Although a few studies of healthy, ambulatory women and one study of women deconditioned by furosemide, have reported improvement of orthostatic tolerance following exposure to AG, studies of bed-rested women exposed to AG have not been conducted. However, in ambulatory, normovolemic subjects, AG training was more effective in men than women and more effective in subjects who exercised during AG than in those who passively rode the centrifuge. Acute exposure to an AG protocol, individualized to provide a common stimulus to each person, also improved orthostatic tolerance of normovolemic men and women and of furosemide-deconditioned men and women. Again, men's tolerance was more improved than women's. In both men and women, exposure to AG increased stroke volume, so greater improvement in men vs. women was due in part to their different vascular responses to AG. Following AG exposure, resting blood pressure (via decreased vascular resistance) decreased in men but not women, indicating an increase in men's vascular reserve. Finally, in addition to counteracting space flight deconditioning, improved orthostatic tolerance through AG-induced improvement of stroke volume could benefit aging men and women on Earth.
Collapse
Affiliation(s)
- Joyce M. Evans
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Charles F. Knapp
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Nandu Goswami
- Physiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| |
Collapse
|
25
|
Bauer J, Grimm D, Gombocz E. Semantic analysis of thyroid cancer cell proteins obtained from rare research opportunities. J Biomed Inform 2017; 76:138-153. [DOI: 10.1016/j.jbi.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/12/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022]
|
26
|
Goswami N. Falls and Fall-Prevention in Older Persons: Geriatrics Meets Spaceflight! Front Physiol 2017; 8:603. [PMID: 29075195 PMCID: PMC5641583 DOI: 10.3389/fphys.2017.00603] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
This paper provides a general overview of key physiological consequences of microgravity experienced during spaceflight and of important parallels and connections to the physiology of aging. Microgravity during spaceflight influences cardiovascular function, cerebral autoregulation, musculoskeletal, and sensorimotor system performance. A great deal of research has been carried out to understand these influences and to provide countermeasures to reduce the observed negative consequences of microgravity on physiological function. Such research can inform and be informed by research related to physiological changes and the deterioration of physiological function due to aging. For example, head-down bedrest is used as a model to study effects of spaceflight deconditioning due to reduced gravity. As hospitalized older persons spend up to 80% of their time in bed, the deconditioning effects of bedrest confinement on physiological functions and parallels with spaceflight deconditioning can be exploited to understand and combat both variations of deconditioning. Deconditioning due to bed confinement in older persons can contribute to a downward spiral of increasing frailty, orthostatic intolerance, falls, and fall-related injury. As astronauts in space spend substantial amounts of time carrying out exercise training to counteract the microgravity-induced deconditioning and to counteract orthostatic intolerance on return to Earth, it is logical to suggest some of these interventions for bed-confined older persons. Synthesizing knowledge regarding deconditioning due to reduced gravitational stress in space and deconditioning during bed confinement allows for a more comprehensive approach that can incorporate aspects such as (mal-) nutrition, muscle strength and function, cardiovascular (de-) conditioning, and cardio-postural interactions. The impact of such integration can provide new insights and lead to methods of value for both space medicine and geriatrics (Geriatrics meets spaceflight!). In particular, such integration can lead to procedures that address the morbidity and the mortality associated with bedrest immobilization and in the rising health care costs associated with an aging population demographic.
Collapse
Affiliation(s)
- Nandu Goswami
- Gravitational Physiology, Aging and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria.,Department of Health Sciences, Alma Mater Europea University, Maribor, Slovenia
| |
Collapse
|
27
|
Glick NR, Fischer MH. Potential Benefits of Ameliorating Metabolic and Nutritional Abnormalities in People With Profound Developmental Disabilities. Nutr Metab Insights 2017; 10:1178638817716457. [PMID: 35185339 PMCID: PMC8855413 DOI: 10.1177/1178638817716457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
Background: People with profound developmental disabilities have some of the most severe neurological impairments seen in society, have accelerated mortality due to huge medical challenges, and yet are often excluded from scientific studies. They actually have at least 2 layers of conditions: (1) the original disability and (2) multiple under-recognized and underexplored metabolic and nutritional imbalances involving minerals (calcium, zinc, and selenium), amino acids (taurine, tryptophan), fatty acids (linoleic acid, docosahexaenoic acid, arachidonic acid, adrenic acid, Mead acid, plasmalogens), carnitine, hormones (insulinlike growth factor 1), measures of oxidative stress, and likely other substances and systems. Summary: This review provides the first list of metabolic and nutritional abnormalities commonly found in people with profound developmental disabilities and, based on the quality of life effects of similar abnormalities in neurotypical people, indicates the potential effects of these abnormalities in this population which often cannot communicate symptoms. Key messages: We propose that improved understanding and management of these disturbed mechanisms would enhance the quality of life of people with profound developmental disabilities. Such insights may also apply to people with other conditions associated with disability, including some diseases requiring stem cell implantation and living in microgravity.
Collapse
Affiliation(s)
- Norris R Glick
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Milton H Fischer
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
28
|
Goswami N, Evans J, Schneider S, von der Wiesche M, Mulder E, Rössler A, Hinghofer-Szalkay H, Blaber AP. Effects of individualized centrifugation training on orthostatic tolerance in men and women. PLoS One 2015; 10:e0125780. [PMID: 26020542 PMCID: PMC4447337 DOI: 10.1371/journal.pone.0125780] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/26/2015] [Indexed: 12/03/2022] Open
Abstract
Aims Exposure to artificial gravity (AG) at different G loads and durations on human centrifuges has been shown to improve orthostatic tolerance in men. However, the effects on women and of an individual-specific AG training protocol on tolerance are not known. Methods We examined the effects of 90 minutes of AG vs. 90 minutes of supine rest on the orthostatic tolerance limit (OTL), using head up tilt and lower body negative pressure until presyncope of 7 men and 5 women. Subjects were placed in the centrifuge nacelle while instrumented and after one-hour they underwent either: 1) AG exposure (90 minutes) in supine position [protocol 1, artificial gravity exposure], or 2) lay supine on the centrifuge for 90 minutes in supine position without AG exposure [protocol 2, control]. The AG training protocol was individualized, by first determining each subject’s maximum tolerable G load, and then exposing them to 45 minutes of ramp training at sub-presyncopal levels. Results Both sexes had improved OTL (14 minutes vs 11 minutes, p < 0.0019) following AG exposure. When cardiovascular (CV) variables at presyncope in the control test were compared with the CV variables at the same tilt-test time (isotime) during post-centrifuge, higher blood pressure, stroke volume and cardiac output and similar heart rates and peripheral resistance were found post-centrifuge. Conclusions These data suggest a better-maintained central circulating blood volume post-centrifugation across gender and provide an integrated insight into mechanisms of blood pressure regulation and the possible implementation of in-flight AG countermeasure profiles during spaceflights.
Collapse
Affiliation(s)
- Nandu Goswami
- Medical University of Graz, Institute for Physiology, Graz, Austria
- * E-mail:
| | - Joyce Evans
- University of Kentucky, Lexington, United States of America
| | - Stefan Schneider
- German Sports University, Cologne, Germany
- Faculty of Science, Health Education and Engineering, University of Sunshine Coast, Marrochydore, Queensland, Australia
| | | | - Edwin Mulder
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Andreas Rössler
- Medical University of Graz, Institute for Physiology, Graz, Austria
| | | | | |
Collapse
|
29
|
Goswami N, Bruner M, Xu D, Bareille MP, Beck A, Hinghofer-Szalkay H, Blaber AP. Short-arm human centrifugation with 0.4g at eye and 0.75g at heart level provides similar cerebrovascular and cardiovascular responses to standing. Eur J Appl Physiol 2015; 115:1569-75. [DOI: 10.1007/s00421-015-3142-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
|
30
|
Goswami N, Kavcic V, Marusic U, Simunic B, Rössler A, Hinghofer-Szalkay H, Pisot R. Effect of computerized cognitive training with virtual spatial navigation task during bed rest immobilization and recovery on vascular function: a pilot study. Clin Interv Aging 2015; 10:453-9. [PMID: 25709419 PMCID: PMC4330037 DOI: 10.2147/cia.s76028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of bed rest (BR) immobilization, with and without computerized cognitive training with virtual spatial navigation task (CCT), on vascular endothelium on older subjects. The effects of 14-day BR immobilization in healthy older males (n=16) of ages 53–65 years on endothelial function were studied using EndoPAT®, a noninvasive and user-independent method. From the group of 16 older men, 8 randomly received CCT during the BR, using virtual navigation tasks in a virtual environment with joystick device. In all the cases, EndoPAT assessments were done at pre- and post-BR immobilization as well as following 28 days of ambulatory recovery. The EndoPAT index increased from 1.53±0.09 (mean ± standard error of the mean) at baseline to 1.61±0.16 following immobilization (P=0.62) in the group with CCT. The EndoPAT index decreased from 2.06±0.13 (mean ± standard error of the mean) at baseline to 1.70±0.09 at the last day of BR study, day 14 (BR14) (P=0.09) in the control group. Additionally, there were no statistically significant differences between BR14 and at 28 days of follow-up (rehabilitation program) (R28). Our results show a trend of immobilization in older persons affecting the vasoconstrictory endothelial response. As the control subjects had a greater increase in EndoPAT index after R28 (+0.018) compared to subjects who had cognitive training (+0.11) (calculated from the first day of BR study), it is possible that cognitive training during BR does not improve endothelial function but rather contributes to slowing down the impairment of endothelial function. Finally, our results also show that EndoPAT may be a useful noninvasive tool to assess the vascular reactivity.
Collapse
Affiliation(s)
- Nandu Goswami
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Voyko Kavcic
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Uros Marusic
- Institute for Kinesiology Research, University of Primorska, Ankaran, Slovenia
| | - Bostjan Simunic
- Institute for Kinesiology Research, University of Primorska, Ankaran, Slovenia
| | - Andreas Rössler
- Institute of Physiology, Medical University of Graz, Graz, Austria
| | | | - Rado Pisot
- Institute for Kinesiology Research, University of Primorska, Ankaran, Slovenia
| |
Collapse
|
31
|
Cvirn G, Waha JE, Ledinski G, Schlagenhauf A, Leschnik B, Koestenberger M, Tafeit E, Hinghofer-Szalkay H, Goswami N. Bed rest does not induce hypercoagulability. Eur J Clin Invest 2015; 45:63-9. [PMID: 25413567 DOI: 10.1111/eci.12383] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/19/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Although there is no direct evidence, it is generally believed that bed rest shifts the haemostatic system towards hypercoagulability; thus, immobilized patients are commonly treated with anticoagulants. We therefore aimed to investigate whether long-term bed rest actually leads to an elevated risk for thromboembolic events. MATERIALS AND METHODS Eleven healthy men were enrolled in our study (bed rest campaign in MEDES Clinique d'Investigation, Toulouse, France). Besides various standard laboratory methods, we used calibrated automated thrombography (CAT) and thrombelastometry (TEM). Activation of samples with minute amounts of relipidated tissue factor allowed sensitive detection of hyper- or hypocoagulable states. RESULTS CAT and TEM values were not indicative of bed rest-induced hypercoagulability. On the contrary, several parameters were indicative of a tendency towards a hypocoagulable state. Peak and thrombin formation velocity (VELINDEX) were significantly decreased during bed rest compared to baseline. Coagulation times were significantly increased and alpha angles were significantly decreased, indicating attenuated clot formation. Moreover, F1 + 2 and thrombin/antithrombin complex (TAT) values were significantly decreased during bed rest, indicating suppressed coagulation activation. FVII plasma levels were also significantly decreased during the first week of bed rest. CONCLUSIONS Our data indicate that the re-ambulation period is associated with a tendency towards hypercoagulability: ttPeak and StartTail were significantly shorter, Peak and VELINDEX were significantly higher compared to baseline. Moreover, plasma levels of F1 + 2, TAT, FVII and FVIII were significantly higher compared to baseline. The results from our study suggest that bed rest by itself is not associated with hypercoagulable states in healthy subjects.
Collapse
Affiliation(s)
- Gerhard Cvirn
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abete P, Adlbrecht C, Assimakopoulos SF, Côté N, Dullaart RP, Evsyukova HV, Fang TC, Goswami N, Hinghofer-Szalkay H, Ho YL, Hoebaus C, Hülsmann M, Indridason OS, Kholová I, Lin YH, Maniscalco M, Mathieu P, Mizukami H, Ndrepepa G, Roessler A, Sánchez-Ramón S, Santamaria F, Schernthaner GH, Scopa CD, Sharp KM, Skuladottir GV, Steichen O, Stenvinkel P, Tejera-Alhambra M, Testa G, Visseren FL, Westerink J, Witasp A, Yagihashi S, Ylä-Herttuala S. Research update for articles published in EJCI in 2011. Eur J Clin Invest 2013. [DOI: 10.1111/eci.12131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pasquale Abete
- Dipartimento di Scienze Mediche Traslazionali; Università degli Studi di Napoli “Federico II”; Naples Italy
| | - Christopher Adlbrecht
- Division of Cardiology; Department of Internal Medicine II; Medical University of Vienna; Vienna Austria
| | | | - Nancy Côté
- Department of Surgery; Laboratoire d'Études Moléculaires des Valvulopathies (LEMV); Institut Universitaire de Cardiologie et de Pneumologie de Québec/Research Center; Laval University; Québec Canada
| | - Robin P.F. Dullaart
- Department of Endocrinology; University of Groningen and University Medical Centre Groningen; Groningen The Netherlands
| | - Helen V. Evsyukova
- Department of Hospital Therapy; Medical Faculty; St Petersburg State University; St. Petersburg Russia
| | - Te-Chao Fang
- Division of Nephrology; Department of Internal Medicine; Buddhist Tzu Chi General Hospital; Hualien Taiwan
| | - Nandu Goswami
- Institute of Physiology; Medical University of Graz; Austria
| | | | - Yi-Lwun Ho
- Department of Internal Medicine; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Clemens Hoebaus
- Department of Medicine II; Angiology, Medical University and General Hospital of Vienna; Vienna Austria
| | - Martin Hülsmann
- Division of Cardiology; Department of Internal Medicine II; Medical University of Vienna; Vienna Austria
| | - Olafur S. Indridason
- Internal Medicine Services; Landspitali - The National University Hospital of Iceland; Reykjavik Iceland
| | - Ivana Kholová
- Pathology; Fimlab Laboratories; Tampere University Hospital; Tampere Finland
| | - Yen-Hung Lin
- Department of Internal Medicine; National Taiwan University Hospital and National Taiwan University College of Medicine; Taipei Taiwan
| | - Mauro Maniscalco
- Section of Respiratory Diseases; Hospital “S. Maria della Pietà”; Casoria Naples Italy
| | - Patrick Mathieu
- Department of Surgery; Laboratoire d'Études Moléculaires des Valvulopathies (LEMV); Institut Universitaire de Cardiologie et de Pneumologie de Québec/Research Center; Laval University; Québec Canada
| | - Hiroki Mizukami
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Gjin Ndrepepa
- Herz- und Kreislauferkrankungen; Deutsches Herzzentrum München; Technische Universität; Munich Germany
| | | | | | - Francesca Santamaria
- Department of Translational Medical Sciences; Federico II University; Naples Italy
| | | | | | | | - Gudrun V. Skuladottir
- Department of Physiology; Faculty of Medicine; School of Health Sciences; University of Iceland; Reykjavik Iceland
| | - Olivier Steichen
- Internal Medicine Department; Assistance Publique-Hôpitaux de Paris; Tenon Hospital; Paris France
- Faculty of Medicine; Université Pierre et Marie Curie-Paris 6; Paris France
| | - Peter Stenvinkel
- Divisions of Renal Medicine and Baxter Novum; Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
| | - Marta Tejera-Alhambra
- Laboratory of Neuroimmunology; Hospital General Universitario Gregorio Marañón; Madrid Spain
| | - Gianluca Testa
- Dipartimento di Medicina e Scienze della Salute; Università del Molise; Campobasso Italy
| | - Frank L.J. Visseren
- Department of Vascular Medicine; University Medical Center Utrecht; Utrecht The Netherlands
| | - Jan Westerink
- Department of Vascular Medicine; University Medical Center Utrecht; Utrecht The Netherlands
| | - Anna Witasp
- Divisions of Renal Medicine and Baxter Novum; Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
| | - Soroku Yagihashi
- Department of Pathology and Molecular Medicine; Hirosaki University Graduate School of Medicine; Hirosaki Japan
| | - Seppo Ylä-Herttuala
- A.I.Virtanen Institute for Molecular Sciences; University of Eastern Finland; Kuopio Finland
| |
Collapse
|
33
|
Goswami N, Gorur P, Pilsl U, Anyaehie B, Green DA, Bondarenko AI, Roessler A, Hinghofer-Szalkay HG. Effect of orthostasis on endothelial function: a gender comparative study. PLoS One 2013; 8:e71655. [PMID: 24147147 PMCID: PMC3798144 DOI: 10.1371/journal.pone.0071655] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/01/2013] [Indexed: 01/22/2023] Open
Abstract
As the vascular endothelium has multiple functions, including regulation of vascular tone, it may play a role in the pathophysiology of orthostatic intolerance. We investigated the effect of orthostasis on endothelial function using EndoPAT®, a non-invasive and user-independent method, and across gender. As sex steroid hormones are known to affect endothelial function, this study examined the potential effect of these hormones on the endothelial response to orthostasis by including females at different phases of the menstrual cycle (follicular and luteal—where the hormone balance differs), and females taking an oral contraceptive. A total of 31 subjects took part in this study (11 males, 11 females having normal menstrual cycles and 9 females taking oral contraceptive). Each subject made two visits for testing; in the case of females having normal menstrual cycles the first session was conducted either 1–7 (follicular) or 14–21 days (luteal) after the start of menstruation, and the second session two weeks later, i.e., during the other phase, respectively. Endothelial function was assessed at baseline and following a 20-min orthostatic challenge (active standing). The EndoPAT® index increased from 1.71 ± 0.09 (mean ± SEM) at baseline to 2.07 ± 0.09 following orthostasis in females (p<0.001). In males, the index increased from 1.60 ± 0.08 to 1.94 ± 0.13 following orthostasis (p<0.001). There were no significant differences, however, in the endothelial response to orthostasis between females and males, menstrual cycle phases and the usage of oral contraceptive. Our results suggest an increased vasodilatatory endothelial response following orthostasis in both females and males. The effect of gender and sex hormones on the endothelial response to orthostasis appears limited. Further studies are needed to determine the potential role of this post orthostasis endothelial response in the pathophysiology of orthostatic intolerance.
Collapse
Affiliation(s)
- Nandu Goswami
- Institute of Physiology, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
- * E-mail:
| | - Paavan Gorur
- Centre of Human and Aerospace Physiological Sciences, King’s College London, London, United Kingdom
| | - Ulrike Pilsl
- Department of Anatomy, Medical University of Graz, Graz, Austria
| | - Bond Anyaehie
- Department of Physiology, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - David A. Green
- Centre of Human and Aerospace Physiological Sciences, King’s College London, London, United Kingdom
| | | | - Andreas Roessler
- Institute of Physiology, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
34
|
Keith Sharp M, Batzel JJ, Montani JP. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration. Eur J Appl Physiol 2013; 113:1919-37. [PMID: 23539439 DOI: 10.1007/s00421-013-2623-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 03/03/2013] [Indexed: 01/03/2023]
Abstract
Mathematical modeling represents an important tool for analyzing cardiovascular function during spaceflight. This review describes how modeling of the cardiovascular system can contribute to space life science research and illustrates this process via modeling efforts to study postflight orthostatic intolerance (POI), a key issue for spaceflight. Examining this application also provides a context for considering broader applications of modeling techniques to the challenges of bioastronautics. POI, which affects a large fraction of astronauts in stand tests upon return to Earth, presents as dizziness, fainting and other symptoms, which can diminish crew performance and cause safety hazards. POI on the Moon or Mars could be more critical. In the field of bioastronautics, POI has been the dominant application of cardiovascular modeling for more than a decade, and a number of mechanisms for POI have been investigated. Modeling approaches include computational models with a range of incorporated factors and hemodynamic sophistication, and also physical models tested in parabolic and orbital flight. Mathematical methods such as parameter sensitivity analysis can help identify key system mechanisms. In the case of POI, this could lead to more effective countermeasures. Validation is a persistent issue in modeling efforts, and key considerations and needs for experimental data to synergistically improve understanding of cardiovascular responses are outlined. Future directions in cardiovascular modeling include subject-specific assessment of system status, as well as research on integrated physiological responses, leading, for instance, to assessment of subject-specific susceptibility to POI or effects of cardiovascular alterations on muscular, vision and cognitive function.
Collapse
Affiliation(s)
- M Keith Sharp
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
35
|
Cerebrovascular autoregulation: lessons learned from spaceflight research. Eur J Appl Physiol 2012; 113:1909-17. [PMID: 23132388 DOI: 10.1007/s00421-012-2539-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
This review summarizes our current understanding of cerebral blood flow regulation with exposure to microgravity, outlines potential mechanisms associated with post-flight orthostatic intolerance, and proposes future directions for research and linkages with cerebrovascular disorders found in the general population. It encompasses research from cellular mechanisms (e.g. hind limb suspension: tissue, animal studies) to whole body analysis with respect to understanding human responses using space analogue studies (bed rest, parabolic flight) as well as data collected before, during, and after spaceflight. Recent evidence indicates that cerebrovascular autoregulation may be impaired in some astronauts leading to increased susceptibility to syncope upon return to a gravitational environment. The proposed review not only provides insights into the mechanisms of post-flight orthostatic intolerance, but also increases our understanding of the mechanisms associated with pathophysiological conditions (e.g. unexplained syncope) with clinical applications in relation to postural hypotension or intradialytic hypotension.
Collapse
|