1
|
Burtscher J, Raberin A, Brocherie F, Malatesta D, Manferdelli G, Citherlet T, Krumm B, Bourdillon N, Antero J, Rasica L, Burtscher M, Millet GP. Recommendations for Women in Mountain Sports and Hypoxia Training/Conditioning. Sports Med 2024; 54:795-811. [PMID: 38082199 PMCID: PMC11052836 DOI: 10.1007/s40279-023-01970-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 04/28/2024]
Abstract
The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Antoine Raberin
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France
| | - Davide Malatesta
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Giorgio Manferdelli
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Nicolas Bourdillon
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland
| | - Juliana Antero
- Institut de Recherche Bio-Médicale Et d'Épidémiologie du Sport (EA 7329), French Institute of Sport, Paris, France
| | - Letizia Rasica
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Building Synathlon, Campus Dorigny, 1015, Lausanne, Switzerland.
| |
Collapse
|
2
|
Brocherie F, Timon R. Editorial: Long-term effects of hypoxic conditioning on sports performance, health and well-being. Front Physiol 2022; 13:1112754. [PMID: 36569755 PMCID: PMC9782396 DOI: 10.3389/fphys.2022.1112754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport, Paris, France,*Correspondence: Franck Brocherie,
| | - Rafael Timon
- Faculty of Sports Sciences, University of Extremadura, Caceres, Spain
| |
Collapse
|
3
|
Souza D, Vale AF, Silva A, Araújo MAS, de Paula Júnior CA, de Lira CAB, Ramirez-Campillo R, Martins W, Gentil P. Acute and Chronic Effects of Interval Training on the Immune System: A Systematic Review with Meta-Analysis. BIOLOGY 2021; 10:biology10090868. [PMID: 34571745 PMCID: PMC8465842 DOI: 10.3390/biology10090868] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Simple Summary Interval training (IT) is a popular training strategy recognized by its positive effects on metabolic and cardiovascular system. However, there seems no consensus regarding the effects of IT on immune system parameters. Therefore, we aimed to summarize the evidence regarding the effects of IT on the immune system. As our many findings, an IT acutely promote a transitory change on immune cell count followed by reduced function. The magnitude of these changes seems to vary in accordance with IT type. On the other hand, the regular practice of IT might contribute to improve immune function without apparent change on immune cell count. Abstract Purpose: To summarize the evidence regarding the acute and chronic effects of interval training (IT) in the immune system through a systematic review with meta-analysis. Design: Systematic review with meta-analysis. Data source: English, Portuguese and Spanish languages search of the electronic databases Pubmed/Medline, Scopus, and SciELO. Eligibility criteria: Studies such as clinical trials, randomized cross-over trials and randomized clinical trials, investigating the acute and chronic effects of IT on the immune outcomes in humans. Results: Of the 175 studies retrieved, 35 were included in the qualitative analysis and 18 in a meta-analysis. Within-group analysis detected significant acute decrease after IT on immunoglobulin A (IgA) secretory rate (n = 115; MD = −15.46 µg·min−1; 95%CI, −28.3 to 2.66; p = 0.02), total leucocyte count increase (n = 137; MD = 2.58 × 103 µL−1; 95%CI, 1.79 to 3.38; p < 0.001), increase in lymphocyte count immediately after exercise (n = 125; MD = 1.3 × 103 µL−1; 95%CI, 0.86 to 1.75; p < 0.001), and decrease during recovery (30 to 180 min post-exercise) (n = 125; MD = −0.36 × 103 µL−1;−0.57 to −0.15; p < 0.001). No effect was detected on absolute IgA (n = 127; MD = 47.5 µg·mL−1; 95%CI, −10.6 to 105.6; p = 0.11). Overall, IT might acutely reduce leucocyte function. Regarding chronic effects IT improved immune function without change leucocyte count. Conclusion: IT might provide a transient disturbance on the immune system, followed by reduced immune function. However, regular IT performance induces favorable adaptations on immune function.
Collapse
Affiliation(s)
- Daniel Souza
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | - Arthur F. Vale
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | - Anderson Silva
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | - Murilo A. S. Araújo
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | | | - Claudio A. B. de Lira
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
| | | | - Wagner Martins
- Faculdade de Fisioterapia, Universidade de Brasília, Distrito Federal, Brasilia 70910-900, Brazil;
| | - Paulo Gentil
- Faculdade de Educação Física e Dança, Universidade Federal de Goiás, Goiânia 74690-900, Brazil; (D.S.); (A.F.V.); (A.S.); (M.A.S.A.); (C.A.B.d.L.)
- Correspondence: ; Tel.: +55-62-3521-1021
| |
Collapse
|
4
|
Faiss R, Rapillard A. Repeated Sprint Training in Hypoxia: Case Report of Performance Benefits in a Professional Cyclist. Front Sports Act Living 2020; 2:35. [PMID: 33345027 PMCID: PMC7739633 DOI: 10.3389/fspor.2020.00035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/20/2020] [Indexed: 11/21/2022] Open
Abstract
Repeated sprint training in hypoxia (RSH) has gained unprecedented popularity among the various strategies using hypoxia as an additional stimulus to improve performance. This case study reports the benefits of 150 repeated sprints in normobaric hypoxia over 10 days in a professional cyclist. After 3 weeks of endurance training in November, the cyclist performed five RSH sessions at a simulated altitude of 3,300 m on his own bicycle attached to an indoor trainer in a hypoxic chamber (FiO2 14.1 ± 0.1%, PiO2 94.6 ± 1.4 mm Hg). Each session consisted of four blocks of seven all-out sprints of 6 s interspersed with 14 s active recovery (for a total of 126 s per block). After 12 min of warm-up with a single isolated 6 s reference sprint, the sessions included a first and a second sprinting block with 4 min 54 s active recovery in-between. After 9 min 54 s active recovery including an isolated 6 s reference sprint, a third and a fourth block were performed with 4 min 54 s active recovery in-between, before an active cool-down of 9 min 54 s. The total duration was thus of 50 min per session for a total hypoxic exposure of 250 min exercising. Power output and heart rate were monitored at 1 Hz. Lactate concentration ([La]) and pulse oxygen saturation (SpO2) were measured at the start and end of each block during the first and fifth training session. Basal SpO2 was of 83% during session one and 85.5% during session five. When comparing the first and fifth training session, peak power increased for the best 1 s value (+8%) and the best 5 s average (+10%) to reach 1,041 W and 961 W, respectively. Average power for all blocks (including active recoveries) increased from 334 to 354 W with a similar average heart rate during the sessions (146'.min−1). Peak [La] was increased from 12.3 to 13.8 mmol.l−1. In conclusion, this case report illustrates a 10-days RSH intervention perceived as efficient in a professional cyclist and shown to improve total work (6-s sprints) produced for a similar physiological strain.
Collapse
Affiliation(s)
- Raphael Faiss
- Research and Expertise in anti-Doping sciences (REDs), Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Arnaud Rapillard
- Clinique romande de réadaptation, SUVACare, Sport Medicine Unit, Sion, Switzerland
| |
Collapse
|
5
|
Current methods for stress marker detection in saliva. J Pharm Biomed Anal 2020; 191:113604. [PMID: 32957066 PMCID: PMC7474833 DOI: 10.1016/j.jpba.2020.113604] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Introduction of relevant biomarkers in stress conditions. Reference ranges of biomarkers in normal conditions. Saliva as easy-accessible specimen. Review of analytical methods for biomarker determination in saliva. Possibilities for design of point-of-care devices.
Stress and stress-related diseases are leading to drastic consequences in private and professional life. Therefore, the need for stress prevention strategies is of personal and economic interest. Especially during the recent period related to covid-19 outbreak and lock-down, an ongoing discussion of increasing stress etiology is reported. Biomarker analysis may help to assist diagnosis and classification of stress-related diseases and therefore support therapeutical decisions. Due to its non-invasive sampling, the analysis of saliva has become highly attractive compared to the detection methods in other specimen. This review article summarizes the status of research, innovative approaches, and trends. Scientific literature published since 2011 was excerpted with concentration on the detection of up to seven promising marker substances. Most often reported cortisol represents the currently best evaluated stress marker, while norepinephrine (noradrenaline) or its metabolite 3-methoxy-4-hydroxyphenylglycol is also a quite commonly considered stress marker. Other complementary stress marker candidates are testosterone, dehydroepiandrosterone (DHEA) and its sulfonated analogue DHEA-S, alpha-amylase, secretory immunoglobulin A, and chromogranin A. Several working groups are researching in the field of stress marker detection to develop reliable, fast, and affordable methods. Analytical methods reported mainly focused on immunological and electrochemical as well as chromatographic methods hyphenated to mass spectrometric detection to yield the required detection limits.
Collapse
|
6
|
Kasai N, Kojima C, Sumi D, Ikutomo A, Goto K. Inflammatory, Oxidative Stress, and Angiogenic Growth Factor Responses to Repeated-Sprint Exercise in Hypoxia. Front Physiol 2019; 10:844. [PMID: 31447683 PMCID: PMC6696976 DOI: 10.3389/fphys.2019.00844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022] Open
Abstract
The present study was designed to determine the effects of repeated-sprint exercise in moderate hypoxia on inflammatory, muscle damage, oxidative stress, and angiogenic growth factor responses among athletes. Ten male college track and field sprinters [mean ± standard error (SE): age, 20.9 ± 0.1 years; height, 175.7 ± 1.9 cm; body weight, 67.3 ± 2.0 kg] performed two exercise trials in either hypoxia [HYPO; fraction of inspired oxygen (FiO2), 14.5%] or normoxia (NOR; FiO2, 20.9%). The exercise consisted of three sets of 5 s × 6 s maximal sprints with 30 s rest periods between sprints and 10 min rest periods between sets. After completing the exercise, subjects remained in the chamber for 3 h under the prescribed oxygen concentration (hypoxia or normoxia). The average power output during exercise did not differ significantly between trials (p = 0.17). Blood lactate concentrations after exercise were significantly higher in the HYPO trial than in the NOR trial (p < 0.05). Plasma interleukin-6 concentrations increased significantly after exercise (p < 0.01), but there was no significant difference between the two trials (p = 0.07). Post-exercise plasma interleukin-1 receptor antagonist, serum myoglobin, serum lipid peroxidation, plasma vascular endothelial growth factor (VEGF), and urine 8-hydroxydeoxyguanosine concentrations did not differ significantly between the two trials (p > 0.05). In conclusion, exercise-induced inflammatory, muscle damage, oxidative stress, and VEGF responses following repeated-sprint exercise were not different between hypoxia and normoxia.
Collapse
Affiliation(s)
- Nobukazu Kasai
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Chihiro Kojima
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Daichi Sumi
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akiho Ikutomo
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Kazushige Goto
- Graduate School of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan.,Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
7
|
Sone R, Eda N, Kosaki K, Endo M, Watanabe K. Influence of acute high-intensity exercise on salivary nitric oxide levels. J Oral Sci 2019; 61:307-312. [PMID: 31217380 DOI: 10.2334/josnusd.18-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study, employing an exercise versus control crossover design, was conducted to investigate the influence of acute high-intensity exercise on salivary nitric oxide (NO) levels. Nine healthy males (aged 23.8 ± 1.4 years) performed ergometer exercise at 80%VO2peak for 60 min, whereas controls sat at rest for 60 min. Saliva samples were collected before (Pre: 0800 h) and after (Post 0-h: 0900 h, Post 1-h: 1000 h, Post 2-h: 1100 h, Post 3-h: 1200 h) the interventions. Salivary NO levels were determined by colorimetric assay. It was found that the salivary NO levels in controls were decreased (P < 0.05) at Post 0-h (-94 ± 15), Post 1-h (-80 ± 20), Post 2-h (-92 ± 34) and Post 3-h (-145 ± 39) relative to the Pre values. Under exercise conditions, salivary NO levels did not change after high-intensity ergometer exercise relative to the Pre values. Thus, the response of salivary NO levels appeared to differ between high-intensity ergometer exercise and inactivity, that exercise-related stress induces the production of salivary NO.
Collapse
Affiliation(s)
- Ryota Sone
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | | | - Keisei Kosaki
- Faculty of Health and Sport Sciences, University of Tsukuba
| | | | | |
Collapse
|
8
|
Lim PW, Nambiar S, Muhardi L, Abdul Kader UH, Garssen J, Sandalova E. Young Children Display Diurnal Patterns of Salivary IgA and Alpha-Amylase Expression Which Are Independent of Food Intake and Demographic Factors. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3687416. [PMID: 30733960 PMCID: PMC6348797 DOI: 10.1155/2019/3687416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/18/2018] [Accepted: 12/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Salivary alpha-amylase (sAA) and salivary immunoglobulin A (sIgA) have been proposed as biomarkers for research on the mucosal immune system and on stress. Expression of both sAA and sIgA has been described to follow opposing diurnal patterns. This knowledge is crucial for the interpretation of studies using these biomarkers. AIM It was hypothesized that sAA and sIgA display diurnal patterns in children and that this is independent of food intake or demographic factors. METHODS Whole saliva was collected from 78 healthy children (15-39 months old) in the morning and evening for two random nonconsecutive days. The samples have been analysed for sAA and sIgA. The total daily energy, fat, saturated fat, protein, carbohydrate and fibre, mineral, and vitamin consumption were analysed based on the two-day weighed food records collected by the parents. RESULTS It was demonstrated that most young children followed the diurnal pattern when sAA increased and sIgA decreased from morning to evening. No correlation was observed between the intake of any of the nutrients and morning or evening values for both salivary proteins. The morning and evening values of sAA and sIgA did not correlate with age, sex, Asian ethnicity, and BMI of the children. CONCLUSION Diurnal patterns of sAA and sIgA exist in healthy young children and are not affected by their nutrient intake, sex, Asian ethnicity, and BMI. Scientists including sIgA and sAA in their research must consider the diurnal pattern that these markers exhibit and design the study accordingly.
Collapse
Affiliation(s)
- P. W. Lim
- Danone Nutricia Early Life Nutrition, Matrix Building #05-01b, 30 Biopolis Street, Singapore 138667
| | - S. Nambiar
- Danone Nutricia Early Life Nutrition, Matrix Building #05-01b, 30 Biopolis Street, Singapore 138667
| | - L. Muhardi
- Danone Nutricia Early Life Nutrition, Matrix Building #05-01b, 30 Biopolis Street, Singapore 138667
| | - U. H. Abdul Kader
- Danone Nutricia Early Life Nutrition, Matrix Building #05-01b, 30 Biopolis Street, Singapore 138667
| | - J. Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Early Life Nutrition, Uppsalalaan 12, 3584 CT Utrecht, Netherlands
| | - E. Sandalova
- Danone Nutricia Early Life Nutrition, Matrix Building #05-01b, 30 Biopolis Street, Singapore 138667
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Caris AV, Santos RVT. Performance and altitude: Ways that nutrition can help. Nutrition 2018; 60:35-40. [PMID: 30529882 DOI: 10.1016/j.nut.2018.09.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
High altitudes are a challenge for human physiology and for sports enthusiasts. Several reasons lead to deterioration in performance at high altitudes. Hypoxia owing to high altitude causes a breakdown of homeostasis with imbalance in several physiological systems, including the immune system. The reduction in mucosal immunity and inflammation and the predominance of the humoral immune response causes a condition of immunosuppression and an increased likelihood of infection. In addition, it is known that worsening of the immune response is associated with reduced performance. On the other hand, immunonutrition plays an important role in modulating the effects of physical exercise on the immune system. However, to our knowledge, few studies have evaluated the effect of nutrition on the immune system after exercise in hypoxia. Although the association between exercise and hypoxia has been shown to be more severe for the body owing to the sum of stressful agents, supplementation with carbohydrates and glutamine seems to play a relevant role in mitigating immunosuppressive effects. These findings, although limited by the fact that they are the result of very few studies, shed light on a relevant theme for sports physiology and nutrition and suggest that both supplements may be useful for athletes, visitors, and workers in high-altitude regions. The aim of this review was to discuss the effects of high-altitude hypoxia on the human body from the point of view of exercise immunology because it is known that transient immunosuppression after strenuous exercise and competition should be followed by reduction in training overload and worse performance.
Collapse
Affiliation(s)
- Aline V Caris
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
10
|
Sperlich B, De Clerck I, Zinner C, Holmberg HC, Wallmann-Sperlich B. Prolonged Sitting Interrupted by 6-Min of High-Intensity Exercise: Circulatory, Metabolic, Hormonal, Thermal, Cognitive, and Perceptual Responses. Front Physiol 2018; 9:1279. [PMID: 30386249 PMCID: PMC6198043 DOI: 10.3389/fphys.2018.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/24/2018] [Indexed: 01/03/2023] Open
Abstract
The aim was to examine certain aspects of circulatory, metabolic, hormonal, thermoregulatory, cognitive, and perceptual responses while sitting following a brief session of high-intensity interval exercise. Twelve students (five men; age, 22 ± 2 years) performed two trials involving either simply sitting for 180 min (SIT) or sitting for this same period with a 6-min session of high-intensity exercise after 60 min (SIT+HIIT). At T0 (after 30 min of resting), T1 (after a 20-min breakfast), T2 (after sitting for 1 h), T3 (immediately after the HIIT), T4, T5, T6, and T7 (30, 60, 90, and 120 min after the HIIT), circulatory, metabolic, hormonal, thermoregulatory, cognitive, and perceptual responses were assessed. The blood lactate concentration (at T3-T5), heart rate (at T3-T6), oxygen uptake (at T3-T7), respiratory exchange ratio, and sensations of heat (T3-T5), sweating (T3, T4) and odor (T3), as well as perception of vigor (T3-T6), were higher and the respiratory exchange ratio (T4-T7) and mean body and skin temperatures (T3) lower in the SIT+HIIT than the SIT trial. Levels of blood glucose and salivary cortisol, cerebral oxygenation, and feelings of anxiety/depression, fatigue or hostility, as well as the variables of cognitive function assessed by the Stroop test did not differ between SIT and SIT+HIIT. In conclusion, interruption of prolonged sitting with a 6-min session of HIIT induced more pronounced circulatory and metabolic responses and improved certain aspects of perception, without affecting selected hormonal, thermoregulatory or cognitive functions.
Collapse
Affiliation(s)
- Billy Sperlich
- Integrative and Experimental Exercise Science & Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| | | | - Christoph Zinner
- Department of Sport, University of Applied Sciences for Police and Administration of Hesse, Wiesbaden, Germany
| | - Hans-Christer Holmberg
- School of Sport Sciences, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
11
|
Abstract
BACKGROUND Sprint events in cross-country skiing are unique not only with respect to their length (0.8-1.8 km), but also in involving four high-intensity heats of ~3 min in duration, separated by a relatively short recovery period (15-60 min). OBJECTIVE Our aim was to systematically review the scientific literature to identify factors related to the performance of elite sprint cross-country skiers. METHODS Four electronic databases were searched using relevant medical subject headings and keywords, as were reference lists, relevant journals, and key authors in the field. Only original research articles addressing physiology, biomechanics, anthropometry, or neuromuscular characteristics and elite sprint cross-country skiers and performance outcomes were included. All articles meeting inclusion criteria were quality assessed. Data were extracted from each article using a standardized form and subsequently summarized. RESULTS Thirty-one articles met the criteria for inclusion, were reviewed, and scored an average of 66 ± 7 % (range 56-78 %) upon quality assessment. All articles except for two were quasi-experimental, and only one had a fully-experimental research design. In total, articles comprised 567 subjects (74 % male), with only nine articles explicitly reporting their skiers' sprint International Skiing Federation points (weighted mean 116 ± 78). A similar number of articles addressed skating and classical techniques, with more than half of the investigations involving roller-skiing assessments under laboratory conditions. A range of physiological, biomechanical, anthropometric, and neuromuscular characteristics was reported to relate to sprint skiing performance. Both aerobic and anaerobic capacities are important qualities, with the anaerobic system suggested to contribute more to the performance during the first of repeated heats; and the aerobic system during subsequent heats. A capacity for high speed in all the following instances is important for the performance of sprint cross-country skiers: at the start of the race, at any given point when required (e.g., when being challenged by a competitor), and in the final section of each heat. Although high skiing speed is suggested to rely primarily on high cycle rates, longer cycle lengths are commonly observed in faster skiers. In addition, faster skiers rely on different technical strategies when approaching peak speeds, employ more effective techniques, and use better coordinated movements to optimize generation of propulsive force from the resultant ski and pole forces. Strong uphill technique is critical to race performance since uphill segments are the most influential on race outcomes. A certain strength level is required, although more does not necessarily translate to superior sprint skiing performance, and sufficient strength-endurance capacities are also of importance to minimize the impact and accumulation of fatigue during repeated heats. Lastly, higher lean mass does appear to benefit sprint skiers' performance, with no clear advantage conferred via body height and mass. LIMITATIONS Generalization of findings from one study to the next is challenging considering the array of experimental tasks, variables defining performance, fundamental differences between skiing techniques, and evolution of sprint skiing competitions. Although laboratory-based measures can effectively assess on-snow skiing performance, conclusions drawn from roller-skiing investigations might not fully apply to on-snow skiing performance. A low number of subjects were females (only 17 %), warranting further studies to better understand this population. Lastly, more training studies involving high-level elite sprint skiers and investigations pertaining to the ability of skiers to maintain high-sprint speeds at the end of races are recommended to assist in understanding and improving high-level sprint skiing performance, and resilience to fatigue. CONCLUSIONS Successful sprint cross-country skiing involves well-developed aerobic and anaerobic capacities, high speed abilities, effective biomechanical techniques, and the ability to develop high forces rapidly. A certain level of strength is required, particularly ski-specific strength, as well as the ability to withstand fatigue across the repeated heats of sprint races. Cross-country sprint skiing is demonstrably a demanding and complex sport, where high-performance skiers need to simultaneously address physiological, biomechanical, anthropometric, and neuromuscular aspects to ensure success.
Collapse
|
12
|
Integrated Framework of Load Monitoring by a Combination of Smartphone Applications, Wearables and Point-of-Care Testing Provides Feedback that Allows Individual Responsive Adjustments to Activities of Daily Living. SENSORS 2018; 18:s18051632. [PMID: 29783763 PMCID: PMC5981295 DOI: 10.3390/s18051632] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/15/2022]
Abstract
Athletes schedule their training and recovery in periods, often utilizing a pre-defined strategy. To avoid underperformance and/or compromised health, the external load during training should take into account the individual's physiological and perceptual responses. No single variable provides an adequate basis for planning, but continuous monitoring of a combination of several indicators of internal and external load during training, recovery and off-training as well may allow individual responsive adjustments of a training program in an effective manner. From a practical perspective, including that of coaches, monitoring of potential changes in health and performance should ideally be valid, reliable and sensitive, as well as time-efficient, easily applicable, non-fatiguing and as non-invasive as possible. Accordingly, smartphone applications, wearable sensors and point-of-care testing appear to offer a suitable monitoring framework allowing responsive adjustments to exercise prescription. Here, we outline 24-h monitoring of selected parameters by these technologies that (i) allows responsive adjustments of exercise programs, (ii) enhances performance and/or (iii) reduces the risk for overuse, injury and/or illness.
Collapse
|
13
|
Born DP, Zinner C, Sperlich B. The Mucosal Immune Function Is Not Compromised during a Period of High-Intensity Interval Training. Is It Time to Reconsider an Old Assumption? Front Physiol 2017; 8:485. [PMID: 28744226 PMCID: PMC5504186 DOI: 10.3389/fphys.2017.00485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/23/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose: The aim of the study was to evaluate the mucosal immune function and circadian variation of salivary cortisol, Immunoglobin-A (sIgA) secretion rate and mood during a period of high-intensity interval training (HIIT) compared to long-slow distance training (LSD). Methods: Recreational male runners (n = 28) completed nine sessions of either HIIT or LSD within 3 weeks. The HIIT involved 4 × 4 min of running at 90-95% of maximum heart rate interspersed with 3 min of active recovery while the LSD comprised of continuous running at 70-75% of maximum heart rate for 60-80 min. The psycho-immunological stress-response was investigated with a full daily profile of salivary cortisol and immunoglobin-A (sIgA) secretion rate along with the mood state on a baseline day, the first and last day of training and at follow-up 4 days after the last day of training. Before and after the training period, each athlete's running performance and peak oxygen uptake (V·O2peak) was determined with an incremental exercise test. Results: The HIIT resulted in a longer time-to-exhaustion (P = 0.02) and increased V·O2peak compared to LSD (P = 0.01). The circadian variation of sIgA secretion rate showed highest values in the morning immediately after waking up followed by a decrease throughout the day in both groups (P < 0.05). With HIIT, the wake-up response of sIgA secretion rate was higher on the last day of training (P < 0.01) as well as the area under the curve (AUCG) higher on the first and last day of training and follow-up compared to the LSD (P = 0.01). Also the AUCG for the sIgA secretion rate correlated with the increase in V·O2peak and running performance. The AUCG for cortisol remained unaffected on the first and last day of training but increased on the follow-up day with both, HIIT and LSD (P < 0.01). Conclusion: The increased sIgA secretion rate with the HIIT indicates no compromised mucosal immune function compared to LSD and shows the functional adaptation of the mucosal immune system in response to the increased stress and training load of nine sessions of HIIT.
Collapse
Affiliation(s)
- Dennis-Peter Born
- Integrative and Experimental Exercise Science, Institute for Sport Sciences, University of WuerzburgWuerzburg, Germany
| | - Christoph Zinner
- Integrative and Experimental Exercise Science, Institute for Sport Sciences, University of WuerzburgWuerzburg, Germany
| | - Billy Sperlich
- Integrative and Experimental Exercise Science, Institute for Sport Sciences, University of WuerzburgWuerzburg, Germany
| |
Collapse
|
14
|
Effects of Carbohydrate and Glutamine Supplementation on Oral Mucosa Immunity after Strenuous Exercise at High Altitude: A Double-Blind Randomized Trial. Nutrients 2017; 9:nu9070692. [PMID: 28671626 PMCID: PMC5537807 DOI: 10.3390/nu9070692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/20/2017] [Accepted: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
This study analyzed the effects of carbohydrate and glutamine supplementation on salivary immunity after exercise at a simulated altitude of 4500 m. Fifteen volunteers performed exercise of 70% of VO2peak until exhaustion and were divided into three groups: hypoxia placebo, hypoxia 8% maltodextrin (200 mL/20 min), and hypoxia after six days glutamine (20 g/day) and 8% maltodextrin (200 mL/20 min). All procedures were randomized and double-blind. Saliva was collected at rest (basal), before exercise (pre-exercise), immediately after exercise (post-exercise), and two hours after exercise. Analysis of Variance (ANOVA) for repeated measures and Tukey post hoc test were performed. Statistical significance was set at p < 0.05. SaO₂% reduced when comparing baseline vs. pre-exercise, post-exercise, and after recovery for all three groups. There was also a reduction of SaO₂% in pre-exercise vs. post-exercise for the hypoxia group and an increase was observed in pre-exercise vs. recovery for both supplementation groups, and between post-exercise and for the three groups studied. There was an increase of salivary flow in post-exercise vs. recovery in Hypoxia + Carbohydrate group. Immunoglobulin A (IgA) decreased from baseline vs. post-exercise for Hypoxia + Glutamine group. Interleukin 10 (IL-10) increased from post-exercise vs. after recovery in Hypoxia + Carbohydrate group. Reduction of tumor necrosis factor alpha (TNF-α) was observed from baseline vs. post-exercise and after recovery for the Hypoxia + Carbohydrate group; a lower concentration was observed in pre-exercise vs. post-exercise and recovery. TNF-α had a reduction from baseline vs. post-exercise for both supplementation groups, and a lower secretion between baseline vs. recovery, and pre-exercise vs. post-exercise for Hypoxia + Carbohydrate group. Five hours of hypoxia and exercise did not change IgA. Carbohydrates, with greater efficiency than glutamine, induced anti-inflammatory responses.
Collapse
|
15
|
Svendsen IS, Hem E, Gleeson M. Effect of acute exercise and hypoxia on markers of systemic and mucosal immunity. Eur J Appl Physiol 2016; 116:1219-29. [PMID: 27129582 PMCID: PMC4875053 DOI: 10.1007/s00421-016-3380-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/12/2016] [Indexed: 11/25/2022]
Abstract
Purpose To determine how immune markers are affected by acute hypoxic exercise at the same relative intensity. Methods Twelve endurance-trained males (age: 28 ± 4 years, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2max: 63.7 ± 5.3 mL/kg/min) cycled for 75 min at 70 % of altitude-specific \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2max, once in normoxia (N) and once in hypobaric hypoxia equivalent to 2000 m above sea-level (H). Blood and saliva samples were collected pre-, post- and 2 h post-exercise. Results Participants cycled at 10.5 % lower power output in H vs. N, with no significant differences in heart rate (P = 0.10) or rating of perceived exertion (P = 0.21). Post-exercise plasma cortisol was higher in H vs. N [683 (95 % CI 576–810) nmol/l vs. 549 (469–643) nmol/l, P = 0.017]. The exercise-induced decrease in CD4:CD8 ratio was greater in H vs. N (−0.5 ± 0.2 vs. −0.3 ± 0.2, P = 0.019). There were no significant between-trial differences for adrenocorticotropic hormone, plasma cytokines, antigen-stimulated cytokine production, salivary immunoglobulin-A or lactoferrin. However, there was a main trial effect for concentration [F(11) = 5.99, P < 0.032] and secretion [F(11) = 5.01, P < 0.047] of salivary lysozyme, with this being higher in N at every time-point. Conclusion Whether the observed differences between H and N are of sufficient magnitude to clinically impair host defence is questionable, particularly as they are transient in nature and since other immune markers are unaffected. As such, acute hypoxic exercise likely does not pose a meaningful additional threat to immune function compared to exercise at sea level, provided that absolute workload is reduced in hypoxia so that relative exercise intensity is the same.
Collapse
Affiliation(s)
- Ida S Svendsen
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Erlend Hem
- Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
| | - Michael Gleeson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
16
|
Guilhem G, Hanon C, Gendreau N, Bonneau D, Guével A, Chennaoui M. Salivary Hormones Response to Preparation and Pre-competitive Training of World-class Level Athletes. Front Physiol 2015; 6:333. [PMID: 26635619 PMCID: PMC4644790 DOI: 10.3389/fphys.2015.00333] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 11/13/2022] Open
Abstract
This study aimed to compare the response of salivary hormones of track and field athletes induced by preparation and pre-competitive training periods in an attempt to comment on the physiological effects consistent with the responses of each of the proteins measured. Salivary testosterone, cortisol, alpha-amylase, immunoglobulin A (IgA), chromogranin A, blood creatine kinase activity, and profile of mood state were assessed at rest in 24 world-class level athletes during preparation (3 times in 3 months) and pre-competitive (5 times in 5 weeks) training periods. Total mood disturbance and fatigue perception were reduced, while IgA (+61%) and creatine kinase activity (+43%) increased, and chromogranin A decreased (-27%) during pre-competitive compared to preparation period. A significant increase in salivary testosterone (+9 to +15%) and a decrease in testosterone/cortisol ratio were associated with a progressive reduction in training load during pre-competitive period (P < 0.05). None of the psycho-physiological parameters were significantly correlated to training load during the pre-competitive period. Results showed a lower adrenocortical response and autonomic activity, and an improvement of immunity status, in response to the reduction in training load and fatigue, without significant correlations of salivary hormones with training load. Our findings suggest that saliva composition is sensitive to training contents (season period) but could not be related to workload resulting from track and field athletics training.
Collapse
Affiliation(s)
- Gaël Guilhem
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French National Institute of Sport (INSEP)Paris, France
| | - Christine Hanon
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French National Institute of Sport (INSEP)Paris, France
| | - Nicolas Gendreau
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French National Institute of Sport (INSEP)Paris, France
| | - Dominique Bonneau
- Laboratory Sport, Expertise and Performance (EA 7370), Research Department, French National Institute of Sport (INSEP)Paris, France
- Fatigue and Vigilance Unit (EA 7330), Neurosciences and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA), Paris Descartes UniversityBrétigny-sur-Orge, France
| | - Arnaud Guével
- Laboratory “Movement, Interactions, Performance” (EA 4334), University of NantesNantes, France
| | - Mounir Chennaoui
- Fatigue and Vigilance Unit (EA 7330), Neurosciences and Operational Constraints Department, French Armed Forces Biomedical Research Institute (IRBA), Paris Descartes UniversityBrétigny-sur-Orge, France
| |
Collapse
|