1
|
Altheyab A, Alqurashi H, England TJ, Phillips BE, Piasecki M. Cross-education of lower limb muscle strength following resistance exercise training in males and females: A systematic review and meta-analysis. Exp Physiol 2024. [PMID: 39235953 DOI: 10.1113/ep091881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Cross-education describes the training of one limb that leads to performance enhancements in the contralateral untrained limb, driven by neural changes rather than muscle adaptation. In this systematic review and meta-analysis, we aimed to evaluate the efficacy of cross-education (vs. a control group) via resistance exercise training (RET) for improving muscle strength in the untrained lower limb of healthy males and females. A literature search from inception to September 2023 was conducted using MEDLINE (via PubMed), the Cochrane Library (CENTRAL), Web of Science (Core Database), Scopus, EBSCO-host, and Ovid-EMBASE. Independent screening, data extraction and quality assessment were conducted. The measured outcomes were change in one-repetition maximum (1-RM) load, maximum voluntary contraction (MVC), and concentric, eccentric and isometric peak torque. Change in muscle structure (pennation angle and muscle thickness) was also analysed. A total of 29 studies were included. The pooled effect size from the random-effects model shows that cross-education significantly increased 1-RM compared to the control group (standardised mean difference (SMD): 0.59, 95% CI: 0.22-0.97; P = 0.002). Cross-education also significantly improved MVC (SMD: 0.55, 95% CI: 0.16-0.94; P = 0.006), concentric (SMD: 0.61, 95% CI: 0.39-0.84; P < 0.00001), eccentric (SMD: 0.39, 95% CI: 0.13-0.64; P = 0.003) and isometric (SMD: 0.45, 95% CI: 0.26-0.64; P < 0.00001) peak torque, each compared to the control group. When RET was categorised as eccentric or concentric, subgroup analysis showed that only eccentric training was associated with significantly increased isometric peak torque via cross-education (SMD: 0.37, 95% CI: 0.13-0.61; P = 0.003) (concentric, SMD: 0.33, 95% CI: -0.09 to 0.74; P = 0.12). This systematic review and meta-analysis emphasise the potency of cross-education for improving lower limb muscle strength. These findings have potential implications for clinical situations of impaired unilateral limb function (e.g., limb-casting or stroke). Future work exploring the mechanisms facilitating these enhancements will help to develop optimised rehabilitation protocols.
Collapse
Affiliation(s)
- Abdulmajeed Altheyab
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research & National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
- Faculty of College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Science, Riyadh, Saudi Arabia
| | - Helal Alqurashi
- Centre for Rehabilitation and Ageing Research, Academic Unit of Injury, Inflammation and Recovery Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Timothy J England
- Stroke Trials Unit, Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Derby, UK
- Vascular Medicine, Division of Medical Sciences and Graduate Entry Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Bethan E Phillips
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research & National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology, MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research & National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, University of Nottingham, Derby, UK
| |
Collapse
|
2
|
Gomez-Guerrero G, Ansdell P, Howatson G, Avela J, Walker S. Contraction intensity modulates spinal excitability during transcranial magnetic stimulation-evoked silent period in rectus femoris muscle. Eur J Appl Physiol 2024; 124:1355-1366. [PMID: 38032387 PMCID: PMC11055719 DOI: 10.1007/s00421-023-05367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Reduced spinal excitability during the transcranial magnetic stimulation (TMS) silent period (SP) has recently been shown to last longer than previously thought in the upper limbs, as assessed via spinal electrical stimulation. Further, there is reason to expect that contraction intensity affects the duration of the reduced spinal excitability. METHODS This study investigated spinal excitability at different time delays within the TMS-evoked SP in m.rectus femoris. Fifteen participants performed non-fatiguing isometric knee extensions at 25%, 50% and 75% of maximum voluntary contraction (MVC). Lumbar stimulation (LS) induced a lumbar-evoked potential (LEP) of 50% resting M-max. TMS stimulator output induced a SP lasting ~ 200 ms. In each contraction, a LEP (unconditioned) was delivered ~ 2-3 s prior to TMS, which was followed by a second LEP (conditioned) 60, 90, 120 or 150 ms into the silent period. Five contractions were performed at each contraction intensity and for each time delay in random order. RESULTS Compared to the unconditioned LEP, the conditioned LEP amplitude was reduced (- 28 ± 34%, p = 0.007) only at 60 ms during 25% of MVC. Conditioned LEP amplitudes during 50% and 75% of MVC were reduced at 60 ms (- 37 ± 47%, p = 0.009 and - 37 ± 42%, p = 0.005, respectively) and 150 ms (- 30% ± 37%, p = 0.0083 and - 37 ± 43%, p = 0.005, respectively). LEP amplitude at 90 ms during 50% of MVC also reduced (- 25 ± 35%, p = 0.013). CONCLUSION Reduced spinal excitability is extended during 50% and 75% of MVC. In future, paired TMS-LS could be a potential method to understand changes in spinal excitability during SP (at different contraction intensities) when testing various neurophysiological phenomena.
Collapse
Affiliation(s)
- Gonzalo Gomez-Guerrero
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland.
| | - Paul Ansdell
- Faculty of Health and Life Science, Northumbria University, Newcastle Upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Science, Northumbria University, Newcastle Upon Tyne, UK
- Water Research Group, North West University, Potchefstroom, South Africa
| | - Janne Avela
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland
| | - Simon Walker
- NeuroMuscular Research Center (NMRC), Faculty of Sport and Health Sciences, University of Jyväskylä, Viveca (VIV221), 40700, Jyväskylä, Finland
| |
Collapse
|
3
|
Gómez-Feria J, Martín-Rodríguez JF, Mir P. Corticospinal adaptations following resistance training and its relationship with strength: A systematic review and multivariate meta-analysis. Neurosci Biobehav Rev 2023; 152:105289. [PMID: 37353049 DOI: 10.1016/j.neubiorev.2023.105289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/21/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Neural adaptations to resistance training (RT) and their correlation with muscle strength remain partially understood. We conducted a systematic review and multivariate meta-analysis to examine the effects of metronome-paced (MP), self-paced (SP), and isometric (IM) training on M1 and corticospinal pathway activity. Following MP RT, a significant increase in corticospinal excitability was observed, correlating with increased strength. Conversely, no significant relationship was found after SP or IM training. RT also reduced the duration of the cortical silent period, but this change did not predict strength changes and was not specific to any training modality. No significant effects were found for short-interval intracortical inhibition. Our findings suggest that changes in corticospinal excitability may contribute to strength gains after RT. Furthermore, the relationship between these adaptations and strength appears dependent on the type of training performed.
Collapse
Affiliation(s)
- José Gómez-Feria
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Francisco Martín-Rodríguez
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Psicología Experimental, Facultad de Psicología, Universidad de Sevilla, Seville, Spain.
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
4
|
Lim H, Madhavan S. Effects of Cross-Education on Neural Adaptations Following Non-Paretic Limb Training in Stroke: A Scoping Review with Implications for Neurorehabilitation. J Mot Behav 2022; 55:111-124. [PMID: 35940590 DOI: 10.1080/00222895.2022.2106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Current stroke rehabilitation interventions focus on intensive task specific training of the paretic limb, which may not be feasible for individuals with higher levels of impairment or in the early phase of stroke. Cross-education, a mechanism that improves strength or skill of the untrained limb following unilateral motor training, has high clinical relevance for stroke rehabilitation. Despite its potential benefits, our knowledge on the application and efficacy of cross-education in stroke is limited. We performed a scoping review to synthesize the current evidence regarding neurophysiological and motor effects of cross-education training in stroke. Low to strong evidence from five studies demonstrated strength gains ranging from 31-200% in the untrained paretic limb following non-paretic muscle training. Neurophysiological mechanisms underlying cross-education were unclear as the three studies that used transcranial magnetic stimulation to probe functional connectivity demonstrated mixed results in low sample size. Our review suggests that cross-education is a promising clinical approach in stroke, however high quality studies focusing on neurophysiological mechanisms are required to establish the efficacy and underlying mechanisms of cross-education in stroke. Recommendations regarding future directions and clinical utility are provided.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Altan E, Seide S, Bayram I, Gizzi L, Ertan H, Röhrle O. A Systematic Review and Meta-Analysis on the Longitudinal Effects of Unilateral Knee Extension Exercise on Muscle Strength. Front Sports Act Living 2020; 2:518148. [PMID: 33345109 PMCID: PMC7739592 DOI: 10.3389/fspor.2020.518148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/09/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of the study was to investigate the time-dependent increase in the knee extensors' isometric strength as a response to voluntary, unilateral, isometric knee extension exercise (UIKEE). To do so, a systematic review was carried out to obtain data for a Bayesian longitudinal model-based meta-analysis (BLMBMA). For the systematic review, PubMed, Web of Science, SCOPUS, Chochrane Library were used as databases. The systematic review included only studies that reported on healthy, young individuals performing UIKEE. Studies utilizing a bilateral training protocol were excluded as the focus of this review lied on unilateral training. Out of the 3,870 studies, which were reviewed, 20 studies fulfilled the selected inclusion criteria. These 20 studies were included in the BLMBMA to investigate the time-dependent effects of UIKEE. If compared to the baseline strength of the trained limb, these data reveal that UKIEE can increase the isometric strength by up to 46%. A meta-analysis based on the last time-point of each available study was employed to support further investigations into UIKEE-induced strength increase. A sensitivity analysis showed that intensity of training (%MVC), fraction of male subjects and the average age of the subject had no significant influence on the strength gain. Convergence of BLMBMA revealed that the peak strength increase is reached after ~4 weeks of UIKEE training.
Collapse
Affiliation(s)
- Ekin Altan
- Department of Continuum Biomechanics and Mechanobiology, Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Svenja Seide
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Ismail Bayram
- Department of Coach Training in Sports, Faculty of Sport Sciences, Eskisehir Technical University, Eskisehir, Turkey
| | - Leonardo Gizzi
- Department of Continuum Biomechanics and Mechanobiology, Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Hayri Ertan
- Department of Coach Training in Sports, Faculty of Sport Sciences, Eskisehir Technical University, Eskisehir, Turkey
| | - Oliver Röhrle
- Department of Continuum Biomechanics and Mechanobiology, Institute for Modeling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Coaching Education Department, Faculty of Sport Sciences, Eskisehir Technical University, Eskisehir, Turkey
| |
Collapse
|
8
|
Chaouachi A, Ben Othman A, Chaouachi M, Hechmi A, Farthing JP, Granacher U, Behm DG. Comparison of Cross-Education and Global Training Effects in Adults and Youth After Unilateral Strength Training. J Strength Cond Res 2020; 36:2121-2131. [PMID: 32833889 DOI: 10.1519/jsc.0000000000003766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chaouachi, A, Ben Othman, A, Chaouachi, M, Hechmi, A, Farthing, JP, Granacher, U, and Behm, DG. Comparison of cross-education and global training effects in adults and youth after unilateral strength training. J Strength Cond Res XX(X): 000-000, 2020-Youth strength training research examining contralateral, homologous (cross-education), and heterologous (global training) effects after unilateral training have provided mixed results and the relationship to adults has not been compared. The objective was to compare adult and youth cross-education and global training effects on dominant and nondominant limb testing. Initially, 15 men and 15 prepubertal boys volunteered for each unilateral chest press (CP), handgrip training, and control groups (n = 89). Individuals trained their dominant limb 3 times per week for 8 weeks and had their dominant and nondominant limbs tested for CP and leg press 1 repetition maximum (1RM), handgrip, knee extension and flexion, and elbow extension and flexion maximum voluntary isometric contractions (MVICs). Adult CP training gains were significantly greater than youth with lower-body testing (p = 0.002-0.06), whereas youth CP training gains exceeded adults with upper-body tests (p = 0.03-0.07). Training specificity was evident with greater CP 1RM increases with CP vs. handgrip training for both youth (p < 0.0001) and adults (p < 0.0001). Handgrip training elicited greater gains in handgrip MVICs compared with other strength tests (p < 0.0001). In conclusion, only contralateral CP 1RM showed a training advantage for unilateral CP over unilateral handgrip training. Adults showed greater gains with lower-body testing, whereas youth showed greater gains with upper-body testing.
Collapse
Affiliation(s)
- Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,AUT University, Sports Performance Research Institute New Zealand, Auckland, New Zealand
| | - Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Mehdi Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,Movement Sport and Health Sciences Laboratory, University of Rennes 2-ENS Cachan, Rennes, France
| | - Abderraouf Hechmi
- Tunisian Research Laboratory "Sport Performance Optimisation," National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Task-dependent modulation of corticospinal excitability and inhibition following strength training. J Electromyogr Kinesiol 2020; 52:102411. [PMID: 32244044 DOI: 10.1016/j.jelekin.2020.102411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
This study determined whether there are task-dependent differences in cortical excitability following different types of strength training. Transcranial magnetic stimulation (TMS) measured corticospinal excitability (CSE) and intracortical inhibition (ICI) of the biceps brachii muscle in 42 healthy subjects that were randomised to either paced-strength-training (PST, n = 11), self-paced strength-training (SPST, n = 11), isometric strength-training (IST, n = 10) or to a control group (n = 10). Single-pulse and paired-pulse TMS were applied prior to and following 4-weeks of strength-training. PST increased CSE compared to SPST, IST and the control group (all P < 0.05). ICI was only reduced (60%) following PST. Dynamic strength increased by 18 and 25% following PST and SPST, whilst isometric strength increased by 20% following IST. There were no associations between the behavioural outcome measures and the change in CSE and ICI. The corticospinal responses to strength-training are task-dependent, which is a new finding. Strength-training that is performed slowly could promote use-dependent plasticity in populations with reduced volitional drive, such as during periods of limb immobilization, musculoskeletal injury or stroke.
Collapse
|
10
|
Unilateral Elbow Flexion and Leg Press Training Induce Cross-Education But Not Global Training Gains in Children. Pediatr Exerc Sci 2020; 32:36-47. [PMID: 31653801 DOI: 10.1123/pes.2019-0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/12/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Whereas cross-education has been extensively investigated with adults, there are far fewer youth investigations. Two studies suggested that children had greater global responses to unilateral knee extensor fatigue and training, respectively, than adults. The objective of this study was to compare global training responses and cross-education effects after unilateral elbow flexion (EFlex) and leg press (LP) training. METHODS Forty-three prepubertal youths (aged 10-13 y) were randomly allocated into dominant LP (n = 15), EFlex (n = 15) training groups, or a control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pretraining and posttraining for ipsilateral and contralateral 1-repetition maximum LP; knee extensor, knee flexors, elbow flexors; and handgrip maximum voluntary isometric contractions (MVIC), and countermovement jump. RESULTS In comparison to no significant changes with the control group, dominant elbow flexors training demonstrated significant ( P < .001) improvements only with ipsilateral and contralateral upper body testing (EFlex MVIC [15.9-21.5%], EFlex 1-repetition maximum [22.9-50.8%], handgrip MVIC [5.5-13.8%]). Dominant LP training similarly exhibited only significant ( P < .001) improvements for ipsilateral and contralateral lower body testing (LP 1-repetition maximum [59.6-81.8%], knee extensor MVIC [12.4-18.3%], knee flexor MVIC [7.9-22.3%], and countermovement jump [11.1-18.1%]). CONCLUSIONS The ipsilateral and contralateral training adaptations in youth were specific to upper or lower body training, respectively.
Collapse
|
11
|
Siddique U, Rahman S, Frazer AK, Pearce AJ, Howatson G, Kidgell DJ. Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-analysis. Sports Med 2020; 50:1107-1128. [DOI: 10.1007/s40279-020-01258-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Effects of acute and chronic unilateral resistance training variables on ipsilateral motor cortical excitability and cross-education: A systematic review. Phys Ther Sport 2019; 40:143-152. [DOI: 10.1016/j.ptsp.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/09/2019] [Accepted: 09/16/2019] [Indexed: 12/26/2022]
|
13
|
Siddique U, Rahman S, Frazer AK, Howatson G, Kidgell DJ. RETRACTED ARTICLE: Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-Analysis. Sports Med 2019; 49:1809. [PMID: 31359349 DOI: 10.1007/s40279-019-01152-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ummatul Siddique
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Simin Rahman
- Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - Ashlyn K Frazer
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, PO Box 527, Frankston, VIC, 3199, Australia
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Dawson J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, PO Box 527, Frankston, VIC, 3199, Australia.
| |
Collapse
|
14
|
Mason J, Frazer AK, Pearce AJ, Goodwill AM, Howatson G, Jaberzadeh S, Kidgell DJ. Determining the early corticospinal-motoneuronal responses to strength training: a systematic review and meta-analysis. Rev Neurosci 2019; 30:463-476. [DOI: 10.1515/revneuro-2018-0054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 12/22/2022]
Abstract
Abstract
Several studies have used transcranial magnetic stimulation to probe the corticospinal-motoneuronal responses to a single session of strength training; however, the findings are inconsistent. This systematic review and meta-analysis examined whether a single bout of strength training affects the excitability and inhibition of intracortical circuits of the primary motor cortex (M1) and the corticospinal-motoneuronal pathway. A systematic review was completed, tracking studies between January 1990 and May 2018. The methodological quality of studies was determined using the Downs and Black quality index. Data were synthesised and interpreted from meta-analysis. Nine studies (n=107) investigating the acute corticospinal-motoneuronal responses to strength training met the inclusion criteria. Meta-analyses detected that after strength training compared to control, corticospinal excitability [standardised mean difference (SMD), 1.26; 95% confidence interval (CI), 0.88, 1.63; p<0.0001] and intracortical facilitation (ICF) (SMD, 1.60; 95% CI, 0.18, 3.02; p=0.003) were increased. The duration of the corticospinal silent period was reduced (SMD, −17.57; 95% CI, −21.12, −14.01; p=0.00001), but strength training had no effect on the excitability of the intracortical inhibitory circuits [short-interval intracortical inhibition (SICI) SMD, 1.01; 95% CI, −1.67, 3.69; p=0.46; long-interval intracortical inhibition (LICI) SMD, 0.50; 95% CI, −1.13, 2.13; p=0.55]. Strength training increased the excitability of corticospinal axons (SMD, 4.47; 95% CI, 3.45, 5.49; p<0.0001). This systematic review and meta-analyses revealed that the acute neural changes to strength training involve subtle changes along the entire neuroaxis from the M1 to the spinal cord. These findings suggest that strength training is a clinically useful tool to modulate intracortical circuits involved in motor control.
Collapse
|
15
|
Ben Othman A, Chaouachi A, Chaouachi M, Makhlouf I, Farthing JP, Granacher U, Behm DG. Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children. Appl Physiol Nutr Metab 2019; 44:973-984. [PMID: 30664382 DOI: 10.1139/apnm-2018-0766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6%-81.8%; nondominant: 59.5%-96.3%), KE MVIC (dominant: 12.4%-18.3%; nondominant: 8.6%-18.6%), KF MVIC (dominant: 7.9%-22.3%; nondominant: nonsignificant-3.8%), and power (CMJ: dominant: 11.1%-18.1%; nondominant: 7.7%-16.6%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2%) and THT (9.6%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg.
Collapse
Affiliation(s)
- Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,AUT University, Sports Performance Research Institute New Zealand, 17 Antares Place, Rosedale, Auckland 0632, New Zealand.,PVF Football Academy, Hang Yen, Vietnam
| | - Mehdi Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,Movement Sport and Health Sciences Laboratory, Université Rennes 2-ENS, 35170 Bruz, France
| | - Issam Makhlouf
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Campus Am Neuen Palais, Am Neuen Palais 10, D-14469 Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
16
|
Green LA, Gabriel DA. The effect of unilateral training on contralateral limb strength in young, older, and patient populations: a meta-analysis of cross education. PHYSICAL THERAPY REVIEWS 2018. [DOI: 10.1080/10833196.2018.1499272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lara A. Green
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - David A. Gabriel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
17
|
Frazer AK, Pearce AJ, Howatson G, Thomas K, Goodall S, Kidgell DJ. Determining the potential sites of neural adaptation to cross-education: implications for the cross-education of muscle strength. Eur J Appl Physiol 2018; 118:1751-1772. [PMID: 29995227 DOI: 10.1007/s00421-018-3937-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
Cross-education describes the strength gain in the opposite, untrained limb following a unilateral strength training program. Since its discovery in 1894, several studies now confirm the existence of cross-education in contexts that involve voluntary dynamic contractions, eccentric contraction, electrical stimulation, whole-body vibration and, more recently, following mirror feedback training. Although many aspects of cross-education have been established, the mediating neural mechanisms remain unclear. Overall, the findings of this review show that the neural adaptations to cross-education of muscle strength most likely represent a continuum of change within the central nervous system that involves both structural and functional changes within cortical motor and non-motor regions. Such changes are likely to be the result of more subtle changes along the entire neuroaxis which include, increased corticospinal excitability, reduced cortical inhibition, reduced interhemispheric inhibition, changes in voluntary activation and new regions of cortical activation. However, there is a need to widen the breadth of research by employing several neurophysiological techniques (together) to better understand the potential mechanisms mediating cross-education. This fundamental step is required in order to better prescribe targeted and effective guidelines for the clinical practice of cross-education. There is a need to determine whether similar cortical responses also occur in clinical populations where, perhaps, the benefits of cross-education could be best observed.
Collapse
Affiliation(s)
- Ashlyn K Frazer
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia.
| | - Alan J Pearce
- Discipline of Exercise Science, School of Allied Health, La Trobe University, Melbourne, Australia
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK.,Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UK
| | - Dawson J Kidgell
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, School of Primary and Allied Health Care, Monash University, PO Box 527, Frankston, Melbourne, VIC, 3199, Australia
| |
Collapse
|
18
|
Manca A, Hortobágyi T, Rothwell J, Deriu F. Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. J Appl Physiol (1985) 2018; 124:1502-1518. [DOI: 10.1152/japplphysiol.01016.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reviewed the evidence from randomized controlled trials (RCTs) focusing on the neurophysiological adaptations in the untrained side associated with cross-education of strength (CE) and pooled data into definite effect estimates for neurophysiological variables assessed in chronic CE studies. Furthermore, scoping directions for future research were provided to enhance the homogeneity and comparability of studies investigating the neural responses to CE. The magnitude of CE was 21.1 ± 18.2% (mean ± SD; P < 0.0001) in 22 RCTs ( n = 467 subjects) that measured at least 1 neurophysiological variable in the untrained side, including the following: electromyography (EMG; 14 studies); motor evoked potential (MEP; 8 studies); short-interval intracortical inhibition (SICI), recruitment curve, and M wave (6 studies); cortical silent period (cSP; 5 studies); interhemispheric inhibition, intracortical facilitation (ICF), and H reflex (2 studies); and V wave, short-interval ICF, short-latency afferent inhibition, and long-latency afferent inhibition (1 study). Only EMG, MEP, ICF, cSP, and SICI could be included in the meta-analysis (18 studies, n = 387). EMG ( P = 0.26, n = 235) and MEP amplitude ( P = 0.11, n = 145) did not change in the untrained limb after CE. cSP duration ( P = 0.02, n = 114) and SICI ( P = 0.001, n = 95) decreased in the untrained hemisphere according to body region and type and intensity of training. The magnitude of CE did not correlate with changes in these transcranial magnetic stimulation (TMS) measures. The design of this meta-analytical study and the lack of correlations prevented the ability to link mechanistically the observed neurophysiological changes to CE. Notwithstanding the limited amount of data available for pooling, the use of TMS to assess the ipsilateral neurophysiological responses to unilateral training still confirms the central neural origin hypothesis of chronic CE induced by strength training. However, how these neural adaptations contribute to CE remains unclear.
Collapse
Affiliation(s)
- Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
19
|
The ipsilateral corticospinal responses to cross-education are dependent upon the motor-training intervention. Exp Brain Res 2018; 236:1331-1346. [PMID: 29511785 DOI: 10.1007/s00221-018-5224-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/01/2018] [Indexed: 01/06/2023]
Abstract
This study aimed to identify the ipsilateral corticospinal responses of the contralateral limb following different types of unilateral motor-training. Three groups performing unilateral slow-paced strength training (SPST), non-paced strength training (NPST) or visuomotor skill training (VT) were compared to a control group. It was hypothesised that 4 weeks of unilateral SPST and VT, but not NPST, would increase ipsilateral corticospinal excitability (CSE) and reduce short-interval cortical inhibition (SICI), resulting in greater performance gains of the untrained limb. Tracking error of the untrained limb reduced by 29 and 41% following 2 and 4 weeks of VT. Strength of the untrained limb increased by 8 and 16% following 2 and 4 weeks of SPST and by 6 and 13% following NPST. There was no difference in cross-education of strength or tracking error. For the trained limb, SPST and NPST increased strength (28 and 26%), and VT improved by 47 and 58%. SPST and VT increased ipsilateral CSE by 89 and 71% at 2 weeks. Ipsilateral CSE increased 105 and 81% at 4 weeks following SPST and VT. The NPST group and control group showed no changes at 2 and 4 weeks. SPST and VT reduced ipsilateral SICI by 45 and 47% at 2 weeks; at 4 weeks, SPST and VT reduced SICI by 48 and 38%. The ipsilateral corticospinal responses are determined by the type of motor-training. There were no differences in motor performance between SPST, NPST and VT. The data suggests that the corticospinal responses to cross-education are different and determined by the type of motor-training.
Collapse
|
20
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. Neurologia 2018; 36:285-297. [PMID: 29305060 DOI: 10.1016/j.nrl.2017.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Unilateral resistance training has been shown to improve muscle strength in both the trained and the untrained limb. One of the most widely accepted theories is that this improved performance is due to nervous system adaptations, specifically in the primary motor cortex. According to this hypothesis, increased corticospinal excitability (CSE), measured with transcranial magnetic stimulation, is one of the main adaptations observed following prolonged periods of training. The principal aim of this review is to determine the degree of adaptation of CSE and its possible functional association with increased strength in the untrained limb. DEVELOPMENT We performed a systematic literature review of studies published between January 1970 and December 2016, extracted from Medline (via PubMed), Ovid, Web of Science, and Science Direct online databases. The search terms were as follows: (transcranial magnetic stimulation OR excitability) AND (strength training OR resistance training OR force) AND (cross transfer OR contralateral limb OR cross education). A total of 10 articles were found. CONCLUSION Results regarding increased CSE were inconsistent. Although the possibility that the methodology had a role in this inconsistency cannot be ruled out, the results appear to suggest that there may not be a functional association between increases in muscle strength and in CSE.
Collapse
Affiliation(s)
- D Colomer-Poveda
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - S Romero-Arenas
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - T Hortobagyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Países Bajos
| | - G Márquez
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España.
| |
Collapse
|
21
|
The corticospinal responses of metronome-paced, but not self-paced strength training are similar to motor skill training. Eur J Appl Physiol 2017; 117:2479-2492. [DOI: 10.1007/s00421-017-3736-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
|
22
|
Kidgell DJ, Bonanno DR, Frazer AK, Howatson G, Pearce AJ. Corticospinal responses following strength training: a systematic review and meta-analysis. Eur J Neurosci 2017; 46:2648-2661. [DOI: 10.1111/ejn.13710] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Dawson J. Kidgell
- Department of Physiotherapy; School of Primary and Allied Health Care; Faculty of Medicine, Nursing and Health Science; Monash University; Melbourne Vic. 3199 Australia
| | - Daniel R. Bonanno
- Discipline of Podiatry; School of Allied Health; La Trobe University; Melbourne Vic. Australia
- La Trobe Sport and Exercise Medicine Research Centre; School of Allied Health; La Trobe University; Melbourne Vic. Australia
| | - Ashlyn K. Frazer
- Department of Physiotherapy; School of Primary and Allied Health Care; Faculty of Medicine, Nursing and Health Science; Monash University; Melbourne Vic. 3199 Australia
| | - Glyn Howatson
- Faculty of Health and Life Sciences; Northumbria University; Newcastle-upon-Tyne UK
- Water Research Group; School of Environmental Sciences and Development; Northwest University; Potchefstroom South Africa
| | - Alan J. Pearce
- Discipline of Exercise Science; School of Allied Health; La Trobe University; Melbourne Vic. Australia
| |
Collapse
|
23
|
Manca A, Dragone D, Dvir Z, Deriu F. Cross-education of muscular strength following unilateral resistance training: a meta-analysis. Eur J Appl Physiol 2017; 117:2335-2354. [PMID: 28936703 DOI: 10.1007/s00421-017-3720-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/10/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Cross-education (CE) of strength is a well-known phenomenon whereby exercise of one limb can induce strength gains in the contralateral untrained limb. The only available meta-analyses on CE, which date back to a decade ago, estimated a modest 7.8% increase in contralateral strength following unilateral training. However, in recent years new evidences have outlined larger contralateral gains, which deserve to be systematically evaluated. Therefore, the aim of this meta-analysis was to appraise current data on CE and determine its overall magnitude of effect. METHODS Five databases were searched from inception to December 2016. All randomized controlled trials focusing on unilateral resistance training were carefully checked by two reviewers who also assessed the eligibility of the identified trials and extracted data independently. The risk of bias was assessed using the Cochrane Risk-of-Bias tool. RESULTS Thirty-one studies entered the meta-analysis. Data from 785 subjects were pooled and subgroup analyses by body region (upper/lower limb) and type of training (isometric/concentric/eccentric/isotonic-dynamic) were performed. The pooled estimate of CE was a significant 11.9% contralateral increase (95% CI 9.1-14.8; p < 0.00001; upper limb: + 9.4%, p < 0.00001; lower limb: + 16.4%, p < 0.00001). Significant CE effects were induced by isometric (8.2%; p = 0.0003), concentric (11.3%; p < 0.00001), eccentric (17.7%; p = 0.003) and isotonic-dynamic training (15.9%; p < 0.00001), although a high risk of bias was detected across the studies. CONCLUSIONS Unilateral resistance training induces significant contraction type-dependent gains in the contralateral untrained limb. Methodological issues in the included studies are outlined to provide guidance for a reliable quantification of CE in future studies.
Collapse
Affiliation(s)
- A Manca
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro 43/b, 07100, Sassari, Italy
| | - D Dragone
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro 43/b, 07100, Sassari, Italy
| | - Z Dvir
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale S. Pietro 43/b, 07100, Sassari, Italy.
| |
Collapse
|
24
|
Resistance Training for Muscle Weakness in Multiple Sclerosis: Direct Versus Contralateral Approach in Individuals With Ankle Dorsiflexors' Disparity in Strength. Arch Phys Med Rehabil 2017; 98:1348-1356.e1. [DOI: 10.1016/j.apmr.2017.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/28/2016] [Accepted: 02/21/2017] [Indexed: 12/16/2022]
|