1
|
Baker CJ, Min D, Marsh-Wakefield F, Siwan E, Gerofi J, Wang X, Hocking SL, Colagiuri S, Johnson NA, Twigg SM. Circulating CD31 + Angiogenic T cells are reduced in prediabetes and increase with exercise training. J Diabetes Complications 2024; 38:108868. [PMID: 39299028 DOI: 10.1016/j.jdiacomp.2024.108868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
AIMS To investigate circulating angiogenic cells in adults with prediabetes and the effect of a structured exercise program. METHODS A cohort of adults with overweight/obesity and either normal glucose (NG) or prediabetes were randomised to receive exercise (Exercise) (as twice weekly supervised combined high intensity aerobic exercise and progressive resistance training, and once weekly home-based aerobic exercise) or an unsupervised stretching intervention (Control) for 12 weeks. Circulating angiogenic T cells, muscle strength, and cardiovascular disease risk factors, including blood lipids, arterial stiffness, central haemodynamic responses, and cardiorespiratory fitness (VO2peak) in those with prediabetes (n = 35, 16 Control, 19 Exercise) and NG (n = 37, 17 Control, 20 Exercise) were analysed at baseline and after the 12-week intervention. RESULTS At baseline, compared with NG those with prediabetes demonstrated reduced VO2peak, angiogenic CD31+CD8+ T cells and VEGFR2+CD4+ T cells, and increased systolic blood pressure. CD31+ T cells were negatively correlated with cardiovascular disease (CVD) risk. Compared with Control, exercise training increased muscle strength, VO2peak, and CD31+CD4+ and CD31+CD8+ T cells in NG and prediabetes. CONCLUSIONS Circulating angiogenic CD31+ T cells are decreased in people with prediabetes and are enhanced with exercise training. Exercise increases CD31+ T cells, and through this mechanism it is proposed that it may reduce CVD risk. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry number: ACTRN12617000552381.
Collapse
Affiliation(s)
- Callum J Baker
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, University of Sydney, Sydney, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Danqing Min
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, University of Sydney, Sydney, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Felix Marsh-Wakefield
- Liver Injury and Cancer Program, Centenary Institute, Sydney, NSW, Australia; Human Cancer and Viral Immunology Laboratory, The University of Sydney, Sydney, NSW, Australia
| | - Elisha Siwan
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, University of Sydney, Sydney, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - James Gerofi
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, University of Sydney, Sydney, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Xiaoyu Wang
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, University of Sydney, Sydney, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia
| | - Samantha L Hocking
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia; Boden Initiative, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Stephen Colagiuri
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Boden Initiative, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Nathan A Johnson
- Boden Initiative, Charles Perkins Centre, University of Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stephen M Twigg
- Greg Brown Diabetes & Endocrinology Research Laboratory, Charles Perkins Centre, University of Sydney, Sydney, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, Australia; Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
2
|
Pradana F, Nijjar T, Cox PA, Morgan PT, Podlogar T, Lucas SJE, Drayson MT, Kinsella FAM, Wadley AJ. Brief cycling intervals incrementally increase the number of hematopoietic stem and progenitor cells in human peripheral blood. Front Physiol 2024; 15:1327269. [PMID: 39139483 PMCID: PMC11319260 DOI: 10.3389/fphys.2024.1327269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Peripheral blood stem cell (PBSC) donation is the primary procedure used to collect hematopoietic stem and progenitor cells (HSPCs) for hematopoietic stem cell transplantation. Single bouts of exercise transiently enrich peripheral blood with HSPCs and cytolytic natural killer cells (CD56dim), which are important in preventing post-transplant complications. To provide a rationale to investigate the utility of exercise in a PBSC donation setting (≈3 h), this study aimed to establish whether interval cycling increased peripheral blood HSPC and CD56dim concentrations to a greater degree than continuous cycling. Methods In a randomised crossover study design, eleven males (mean ± SD: age 25 ± 7 years) undertook bouts of moderate intensity continuous exercise [MICE, 30 min, 65%-70% maximum heart rate (HRmax)], high-volume high intensity interval exercise (HV-HIIE, 4 × 4 min, 80%-85% HRmax) and low-volume HIIE (LV-HIIE, 4 × 2 min, 90%-95% HRmax). The cumulative impact of each interval on circulating HSPC (CD34+CD45dimSSClow) and CD56dim concentrations (cells/µL), and the bone marrow homing potential of HSPCs (expression of CXCR-4 and VLA-4) were determined. Results There was an increase in HSPC concentration after two intervals of LV-HIIE (Rest: 1.84 ± 1.55 vs. Interval 2: 2.94 ± 1.34, P = 0.01) and three intervals of HV-HIIE only (Rest: 2.05 ± 0.86 vs. Interval 3: 2.51 ± 1.05, P = 0.04). The concentration of all leukocyte subsets increased after each trial, with this greatest for CD56dim NK cells, and in HIIE vs. MICE (LV-HIIE: 4.77 ± 2.82, HV-HIIE: 4.65 ± 2.06, MICE: 2.44 ± 0.77, P < 0.0001). These patterns were observed for concentration, not frequency of CXCR-4+ and VLA-4+ HSPCs, which was unaltered. There was a marginal decrease in VLA-4, but not CXCR-4 expression on exercise-mobilised HSPCs after all trials (P < 0.0001). Discussion The results of the present study indicate that HIIE caused a more marked increase in HSPC and CD56dim NK cell concentrations than MICE, with mobilised HSPCs maintaining their bone marrow homing phenotype. LV-HIIE evoked an increase in HSPC concentration after just 2 × 2-minute intervals. The feasibility and clinical utility of interval cycling in a PBSC donation context should therefore be evaluated.
Collapse
Affiliation(s)
- Fendi Pradana
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Nutrition Study Program, Faculty of Public Health, Tadulako University, Palu, Indonesia
| | - Tarondeep Nijjar
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Phoebe A. Cox
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul T. Morgan
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Tim Podlogar
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Clinical Immunology Service, University of Birmingham, Birmingham, United Kingdom
| | - Francesca A. M. Kinsella
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Centre for Clinical Haematology, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Alex J. Wadley
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
4
|
Tkacz M, Zgutka K, Tomasiak P, Tarnowski M. Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals. Int J Mol Sci 2024; 25:6085. [PMID: 38892272 PMCID: PMC11173310 DOI: 10.3390/ijms25116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial progenitor cells (EPCs) are circulating cells of various origins that possess the capacity for renewing and regenerating the endothelial lining of blood vessels. During physical activity, in response to factors such as hypoxia, changes in osmotic pressure, and mechanical forces, endothelial cells undergo intense physiological stress that results in endothelial damage. Circulating EPCs participate in blood vessel repair and vascular healing mainly through paracrine signalling. Furthermore, physical activity may play an important role in mobilising this important cell population. In this narrative review, we summarise the current knowledge on the biology of EPCs, including their characteristics, assessment, and mobilisation in response to both chronic and acute physical activity in healthy individuals.
Collapse
Affiliation(s)
- Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| |
Collapse
|
5
|
Proschinger S, Schenk A, Metcalfe AJ, Zimmer P. HIIT Induces Stronger Shifts within the Peripheral T Cell Compartment Independent of Sex. Int J Sports Med 2024; 45:211-221. [PMID: 38134917 DOI: 10.1055/a-2197-0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Acute exercise induces changes within the T-cell compartment, especially in cytotoxic CD8+ memory subsets, depending on exercise intensity and duration. It is unclear whether exercise-induced changes in major T-cell subsets differ in response to acute high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) and whether sex-specific effects exist. Twenty-four recreationally active runners (females: n=12, 27.8±4.1years, 54.4±4.6 ml*kg-1*min-1; males: n=12, 31.6±3.8years, 58.9±7.7 ml*kg-1*min-1) participated in this randomized controlled crossover study, and conducted an energy- and duration-matched HIIT and MICT session. Blood was sampled before (T1), immediately (T2) and 1 h after exercise (T3). Flow cytometry was used to identify T-cell populations. HIIT decreased the proportion of CD8+ T-cells more pronounced at T3 compared to MICT (p=0.007), induced a significantly stronger increase in the CD8+ effector memory (TEM) cell proportion at T2 (p=0.032), and decreased CD4+ central memory proportion more pronounced at T2 (p=0.029). A decrease below baseline CD8+ TEM proportion at T3 was observed only after HIIT (p<0.001). No interaction effects between sexes were revealed. Taken together, HIIT represents a more potent stimulus to induce shifts mainly within the cytotoxic CD8+ T-cell compartment, thereby giving implications to investigate the role of HIIT on the cell´s effector phenotype and function in more detail.
Collapse
Affiliation(s)
- Sebastian Proschinger
- Division of Performance and Health (Sports Medicine), TU Dortmund University, Institute for Sport and Sport Science, Dortmund, Germany
| | - Alexander Schenk
- Division of Performance and Health (Sports Medicine), TU Dortmund University, Institute for Sport and Sport Science, Dortmund, Germany
| | - Alan J Metcalfe
- Department for Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), TU Dortmund University, Institute for Sport and Sport Science, Dortmund, Germany
| |
Collapse
|
6
|
Pax7 + Satellite Cells in Human Skeletal Muscle After Exercise: A Systematic Review and Meta-analysis. Sports Med 2023; 53:457-480. [PMID: 36266373 DOI: 10.1007/s40279-022-01767-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Skeletal muscle has extraordinary regenerative capabilities against challenge, mainly owing to its resident muscle stem cells, commonly identified by Pax7+, which expediently donate nuclei to the regenerating multinucleated myofibers. This local reserve of stem cells in damaged muscle tissues is replenished by undifferentiated bone marrow stem cells (CD34+) permeating into the surrounding vascular system. OBJECTIVE The purpose of the study was to provide a quantitative estimate for the changes in Pax7+ muscle stem cells (satellite cells) in humans following an acute bout of exercise until 96 h, in temporal relation to circulating CD34+ bone marrow stem cells. A subgroup analysis of age was also performed. METHODS Four databases (Web of Science, PubMed, Scopus, and BASE) were used for the literature search until February 2022. Pax7+ cells in human skeletal muscle were the primary outcome. Circulating CD34+ cells were the secondary outcome. The standardized mean difference (SMD) was calculated using a random-effects meta-analysis. Subgroup analyses were conducted to examine the influence of age, training status, type of exercise, and follow-up time after exercise. RESULTS The final search identified 20 studies for Pax7+ cells comprising a total of 370 participants between the average age of 21 and 74 years and 26 studies for circulating CD34+ bone marrow stem cells comprising 494 participants between the average age of 21 and 67 years. Only one study assessed Pax7+ cells immediately after aerobic exercise and showed a 32% reduction in exercising muscle followed by a fast repletion to pre-exercise level within 3 h. A large effect on increasing Pax7+ cell content in skeletal muscles was observed 24 h after resistance exercise (SMD = 0.89, p < 0.001). Pax7+ cells increased to ~ 50% above pre-exercise level 24-72 h after resistance exercise. For a subgroup analysis of age, a large effect (SMD = 0.81, p < 0.001) was observed on increasing Pax7+ cells in exercised muscle among adults aged > 50 years, whereas adults at younger age presented a medium effect (SMD = 0.64, p < 0.001). Both resistance exercise and aerobic exercise showed a medium overall effect in increasing circulating CD34+ cells (SMD = 0.53, p < 0.001), which declined quickly to the pre-exercise baseline level after exercise within 6 h. CONCLUSIONS An immediate depletion of Pax7+ cells in exercising skeletal muscle concurrent with a transient release of CD34+ cells suggest a replenishment of the local stem cell reserve from bone marrow. A protracted Pax7+ cell expansion in the muscle can be observed during 24-72 h after resistance exercise. This result provides a scientific basis for exercise recommendations on weekly cycles allowing for adequate recovery time. Exercise-induced Pax7+ cell expansion in muscle remains significant at higher age, despite a lower stem cell reserve after age 50 years. More studies are required to confirm whether Pax7+ cell increment can occur after aerobic exercise. CLINICAL TRIAL REGISTRATION Registered at the International Prospective Register of Systematic Reviews (PROSPERO) [identification code CRD42021265457].
Collapse
|
7
|
Ross M, Kargl CK, Ferguson R, Gavin TP, Hellsten Y. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators. Eur J Appl Physiol 2023:10.1007/s00421-022-05128-6. [PMID: 36715739 DOI: 10.1007/s00421-022-05128-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/25/2022] [Indexed: 01/31/2023]
Abstract
Exercise-induced skeletal muscle angiogenesis is a well-known physiological adaptation that occurs in humans in response to exercise training and can lead to endurance performance benefits, as well as improvements in cardiovascular and skeletal tissue health. An increase in capillary density in skeletal muscle improves diffusive oxygen exchange and waste extraction, and thus greater fatigue resistance, which has application to athletes but also to the general population. Exercise-induced angiogenesis can significantly contribute to improvements in cardiovascular and metabolic health, such as the increase in muscle glucose uptake, important for the prevention of diabetes. Recently, our understanding of the mechanisms by which angiogenesis occurs with exercise has grown substantially. This review will detail the biochemical, cellular and biomechanical signals for exercise-induced skeletal muscle angiogenesis, including recent work on extracellular vesicles and circulating angiogenic cells. In addition, the influence of age, sex, exercise intensity/duration, as well as recent observations with the use of blood flow restricted exercise, will also be discussed in detail. This review will provide academics and practitioners with mechanistic and applied evidence for optimising training interventions to promote physical performance through manipulating capillarisation in skeletal muscle.
Collapse
Affiliation(s)
- Mark Ross
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, Scotland, UK.
| | - Christopher K Kargl
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, USA.,Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Richard Ferguson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Timothy P Gavin
- Department of Health and Kinesiology, Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, USA
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Cavalcante S, Teixeira M, Duarte A, Ferreira M, Simões MI, Conceição M, Costa M, Ribeiro IP, Gonçalves AC, Oliveira J, Ribeiro F. Endothelial Progenitor Cell Response to Acute Multicomponent Exercise Sessions with Different Durations. BIOLOGY 2022; 11:biology11040572. [PMID: 35453771 PMCID: PMC9025950 DOI: 10.3390/biology11040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022]
Abstract
It is widely accepted that exercise training has beneficial effects on vascular health. Although a dose-dependent relation has been suggested, little is known about the effects of different exercise durations on endothelial markers. This study aimed to assess the effect of single exercise sessions with different durations in the circulating levels of endothelial progenitor cells (EPCs) and endothelial cells (CECs) among adults with cardiovascular risk factors. Ten participants performed two multicomponent exercise sessions, one week apart, lasting 30 and 45 min (main exercise phase). Before and after each exercise session, blood samples were collected to quantify EPCs and CECs by flow cytometry. The change in EPCs was significantly different between sessions by 3.0% (95% CI: 1.3 to 4.7), being increased by 1.8 ± 1.7% (p = 0.009) in the 30 min session vs. −1.2 ± 2.0% (p > 0.05) in the 45 min session. No significant change was observed in CECs [−2.0%, 95%CI: (−4.1 to 0.2)] between the sessions. In conclusion, a multicomponent exercise session of 30 min promotes an acute increase in the circulating levels of EPCs without increasing endothelial damage (measured by the levels of CECs) among adults with cardiovascular risk factors.
Collapse
Affiliation(s)
- Suiane Cavalcante
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal; (S.C.); (J.O.)
| | - Manuel Teixeira
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana Duarte
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Miriam Ferreira
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Maria I. Simões
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Maria Conceição
- Unidade Cuidados na Comunidade Cubo Mágico da Saúde, ACES Baixo Vouga, 3800-120 Aveiro, Portugal; (A.D.); (M.F.); (M.I.S.); (M.C.)
| | - Mariana Costa
- Câmara Municipal de Oliveira do Bairro—Projeto Não Fique Parado, 3800-120 Aveiro, Portugal;
| | - Ilda P. Ribeiro
- Cytogenetics and Genomics Laboratory, Institute of Cellular and Molecular Biology, Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal;
- Institute for Clinical and Biomedical Research (iCBR), Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Ana Cristina Gonçalves
- Institute for Clinical and Biomedical Research (iCBR)—Group of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-531 Coimbra, Portugal;
- Laboratory of Oncobiology and Hematology, University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - José Oliveira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, 4099-002 Porto, Portugal; (S.C.); (J.O.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Fernando Ribeiro
- Institute of Biomedicine—iBiMED, School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence:
| |
Collapse
|
9
|
The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Eur J Appl Physiol 2022; 122:1589-1625. [PMID: 35305142 PMCID: PMC9197818 DOI: 10.1007/s00421-022-04921-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular healing and neovascularisation, while exercise is an effective means to mobilise EPCs into the circulation. OBJECTIVES to systematically examine the acute and chronic effects of different forms of exercise on circulating EPCs in healthy populations. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS thirty-one articles met the inclusion criteria including 747 participants aged 19 to 76 years. All included trials used flow cytometry for identification of circulating EPCs. Eight and five different EPC phenotypes were identified in the acute and chronic trials, respectively. In the acute trials, moderate intensity continuous (MICON), maximal, prolonged endurance, resistance and high intensity interval training (HIIT) exercise protocols were utilised. Prolonged endurance and resistance exercise had the most profound effect on circulating EPCs followed by maximal exercise. In the chronic trials, MICON exercise, HIIT, HIIT compared to MICON and MICON compared to exergame (exercise modality based on an interactive video game) were identified. MICON exercise had a positive effect on circulating EPCs in older sedentary individuals which was accompanied by improvements in endothelial function and arterial stiffness. Long-stage HIIT (4 min bouts) appears to be an effective means and superior than MICON exercise in mobilising circulating EPCs. In conclusion, both in acute and chronic trials the degree of exercise-induced EPC mobilisation depends upon the exercise regime applied. In future, more research is warranted to examine the dose-response relationship of different exercise forms on circulating EPCs using standardised methodology and EPC phenotype.
Collapse
|
10
|
Arroyo E, Tagesen EC, Hart TL, Miller BA, Jajtner AR. Comparison of the lymphocyte response to interval exercise versus continuous exercise in recreationally trained men. Brain Behav Immun Health 2022; 20:100415. [PMID: 35112091 PMCID: PMC8790298 DOI: 10.1016/j.bbih.2022.100415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/03/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
The purpose of this investigation was to compare changes in circulating lymphocyte subset cell counts between high-intensity interval exercise (HIIE), sprint interval exercise (SIE), and moderate-intensity continuous exercise (MICE). Recreationally active men (n = 11; age: 23 ± 4 yr; height: 179.9 ± 4.5 cm; body mass: 79.8 ± 8.7 kg; body fat %:12.6 ± 3.8%; V̇O2max: 46.6 ± 3.9 ml⋅kg-1⋅min-1) completed a maximal graded exercise test to determine maximal oxygen uptake (V̇O2max) and three duration-matched cycling trials (HIIE, SIE, and MICE) in a randomized, counterbalanced fashion. HIIE consisted of fifteen 90-s bouts at 85% V̇O2max interspersed with 90-s active recovery periods. SIE consisted of fifteen 20-s bouts at 130% maximal power and 160-s active recovery periods. MICE was a continuous bout at 65% V̇O2max. Total exercise duration was 53 min in all three trials, including warm-up and cool-down. Blood was collected before, immediately post, 30 min, 2 h, 6 h, and 24 h post-exercise. Changes in lymphocyte subset counts, and surface expression of various markers were analyzed via flow cytometry. Changes were assessed using mixed model regression analysis with an autoregressive first order repeated measures correction. Significant decreases were observed in absolute counts of CD56dim NK cells, CD19+ B cells, CD4+ T cells, and CD8+ T cells 30 min and 24-h post-exercise in all three trials. Despite resulting in greater total work and oxygen consumption, MICE elicited similar changes in lymphocyte subset counts and receptor expression compared to both SIE and HIIE. Similarly, while the two interval trials resulted in differing oxygen consumption and total work, no differences in the lymphocyte response were observed. Though both forms of exercise resulted in declines in circulating lymphocyte cell counts, neither exercise type provides an immune-related advantage when matched for duration.
Collapse
Affiliation(s)
| | | | | | | | - Adam R. Jajtner
- Exercise Science Program, Kent State University, Kent, OH, USA
| |
Collapse
|
11
|
Abstract
Trainability is an adaptive response to given exercise loads and must be localized to the targeted physiological function since exercise-induced acute and chronic adaptations are systemic. Lack of adaptation or moderate level of adaptation in one organ or one physiological function would not mean that other organs or functions would not benefit from exercise training. The most beneficial training load could easily be different for skeletal muscle, brain, the gastro-intestinal track, or the immune systems. Hence, the term of non-responders should be used with caution and just referred to a given organ, cell type, molecular signaling, or function. The present paper aims to highlight some, certainly not all, issues on trainability especially related to muscle and cardiovascular system. The specificity of trainability and the systemic nature of exercise-induced adaptation are discussed, and the paper aims to provide suggestions on how to improve performance when faced with non-responders.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, University of Physical Education, Budapest, Hungary
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- *Correspondence: Zsolt Radak,
| | - Albert W. Taylor
- Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Normahani P, Boyle JJ, Cave L, Brookes P, Woollard KJ, Jaffer U. Peripheral blood mononuclear cell gene expression and cytokine profiling in patients with intermittent claudication who exhibit exercise induced acute renal injury. PLoS One 2022; 17:e0265393. [PMID: 35298547 PMCID: PMC8929566 DOI: 10.1371/journal.pone.0265393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Intermittent claudication (IC) is a common manifestation of peripheral arterial disease. Some patients with IC experience a rise in Urinary N-acetyl-β-D-Glucosaminidase (NAG)/ Creatinine (Cr) ratio, a marker of renal injury, following exercise. In this study, we aim to investigate whether peripheral blood mononuclear cells (PBMC) from patients with IC who exhibit a rise in urinary NAG/ Cr ratio following exercise exhibit differential IL-10/ IL-12 ratio and gene expression compared to those who do not have a rise in NAG/ Cr ratio. METHODS We conducted a single center observational cohort study of patients diagnosed with IC. Blood and urine samples were collected at rest and following a standardised treadmill exercise protocol. For comparative analysis patients were separated into those with any rise in NAG/Cr ratio (Group 1) and those with no rise in NAG/Cr ratio (Group 2) post exercise. Isolated PBMC from pre- and post-exercise blood samples were analysed using flow cytometry. PBMC were also cultured for 20 hours to perform further analysis of IL-10 and IL-12 cytokine levels. RNA-sequencing analysis was performed to identify differentially expressed genes between the groups. RESULTS 20 patients were recruited (Group 1, n = 8; Group 2, n = 12). We observed a significantly higher IL-10/IL-12 ratio in cell supernatant from participants in Group 1, as compared to Group 2, on exercise at 20 hours incubation; 47.24 (IQR 9.70-65.83) vs 6.13 (4.88-12.24), p = 0.04. 328 genes were significantly differentially expressed between Group 1 and 2. The modulated genes had signatures encompassing hypoxia, metabolic adaptation to starvation, inflammatory activation, renal protection, and oxidative stress. DISCUSSION Our results suggest that some patients with IC have an altered immune status making them 'vulnerable' to systemic inflammation and renal injury following exercise. We have identified a panel of genes which are differentially expressed in this group of patients.
Collapse
Affiliation(s)
- Pasha Normahani
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom.,Department of Surgery and Cancer, Imperial college London, London, United Kingdom
| | - Joseph J Boyle
- National Heart and Ling Institute, Imperial College London, London, United Kingdom
| | - Luke Cave
- National Heart and Ling Institute, Imperial College London, London, United Kingdom
| | - Paul Brookes
- Department of Pathology, Royal Brompton and Harefield hospitals, London, United Kingdom
| | - Kevin J Woollard
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Usman Jaffer
- Imperial Vascular Unit, Imperial College Healthcare NHS Trust, London, United Kingdom.,Department of Surgery and Cancer, Imperial college London, London, United Kingdom
| |
Collapse
|
13
|
Schmid M, Kröpfl JM, Spengler CM. Changes in Circulating Stem and Progenitor Cell Numbers Following Acute Exercise in Healthy Human Subjects: a Systematic Review and Meta-analysis. Stem Cell Rev Rep 2021; 17:1091-1120. [PMID: 33389632 PMCID: PMC8316227 DOI: 10.1007/s12015-020-10105-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2020] [Indexed: 12/22/2022]
Abstract
Despite of the increasing number of investigations on the effects of acute exercise on circulating stem and progenitor cell (SC) numbers, and in particular on respective subgroups, i.e. endothelial (ESC), hematopoietic (HSC), and mesenchymal (MSC) stem and progenitor cells, a consensus regarding mechanisms and extent of these effects is still missing. The aim of this meta-analysis was to systematically evaluate the overall-effects of acute exercise on the different SC-subgroups and investigate possible subject- and intervention-dependent factors affecting the extent of SC-mobilization in healthy humans. Trials assessing SC numbers before and at least one timepoint after acute exercise, were identified in a systematic computerized search. Compared to baseline, numbers were significantly increased for early and non-specified SCs (enSCs) until up to 0.5 h after exercise (0–5 min: +0.64 [Standardized difference in means], p < 0.001; 6–20 min: +0.42, p < 0.001; 0.5 h: +0.29, p = 0.049), for ESCs until 12–48 h after exercise (0–5 min: +0.66, p < 0.001; 6–20 min: +0.43 p < 0.001; 0.5 h: +0.43, p = 0.002; 1 h: +0.58, p = 0.001; 2 h: +0.50, p = 0.002; 3–8 h: +0.70, p < 0.001; 12–48 h: +0.38, p = 0.003) and for HSCs at 0–5 min (+ 0.47, p < 0.001) and at 3 h after exercise (+ 0.68, p < 0.001). Sex, intensity and duration of the intervention had generally no influence. The extent and kinetics of the exercise-induced mobilization of SCs differ between SC-subpopulations. However, also definitions of SC-subpopulations are non-uniform. Therefore, finding a consensus with a clear definition of cell surface markers defining ESCs, HSCs and MSCs is a first prerequisite for understanding this important topic. ![]()
Collapse
Affiliation(s)
- M Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - J M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - C M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
14
|
Schmid M, Gruber HJ, Kröpfl JM, Spengler CM. Acute Exercise-Induced Oxidative Stress Does Not Affect Immediate or Delayed Precursor Cell Mobilization in Healthy Young Males. Front Physiol 2020; 11:577540. [PMID: 33192581 PMCID: PMC7606978 DOI: 10.3389/fphys.2020.577540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Exercise is known to acutely and transiently mobilize precursor cells to the peripheral blood. To date, the underlying mechanisms have not yet been fully elucidated and we hypothesized that exercise-induced oxidative stress could be a mobilizing agent, either directly or via circulating apoptotic cells as mediators. The aim of the study was to assess the effect of acute exercise-induced oxidative stress on numbers of circulating angiogenic precursor cells (CACs), circulating non-angiogenic precursor cells (nCACs), mesenchymal precursor cells (MPCs), mature endothelial cells (ECs), and mononuclear cells (MNCs), as well as their apoptotic subsets. Healthy, young males (n = 18, age: 24.2 ± 3.5 years) completed two identical, standardized incremental cycling tests. The first, un-supplemented control test was followed by a 7-day-long supplementation of vitamin C (1,000 mg/day) and E (400 I.U./day), immediately preceding the second test. Blood samples were collected before, directly after, 30, 90, 180, and 270 min after exercise, and aforementioned circulating cell numbers were determined by flow cytometry and a hematology analyzer. Additionally, total oxidative capacity (TOC) and total antioxidative capacity (TAC) were measured in serum at all timepoints. Antioxidative supplementation abolished the exercise-induced increase in the oxidative stress index (TOC/TAC), and reduced baseline concentrations of TOC and TOC/TAC. However, it did not have any effect on CACs, nCACs, and MPC numbers or the increase in apoptotic MNCs following exercise. Our results indicate that exercise-induced oxidative stress is neither a main driver of lymphocyte and monocyte apoptosis, nor one of the mechanisms involved in the immediate or delayed mobilization of precursor cells.
Collapse
Affiliation(s)
- Michelle Schmid
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Kröpfl JM, Beltrami FG, Gruber HJ, Stelzer I, Spengler CM. Exercise-Induced Circulating Hematopoietic Stem and Progenitor Cells in Well-Trained Subjects. Front Physiol 2020; 11:308. [PMID: 32457637 PMCID: PMC7220991 DOI: 10.3389/fphys.2020.00308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
It has been proposed that exercise-induced systemic oxidative stress increases circulating hematopoietic stem and progenitor cell (HPC) number in active participants, while HPC clonogenicity is reduced post-exercise. However, HPCs could be protected against exercise-induced reactive oxygen species in a trained state. Therefore, we characterized the acute exercise-induced HPC profile of well-trained participants including cell number, clonogenicity, and clearance. Twenty-one healthy, well-trained participants-12 runners, 9 cyclists; age 30.0 (4.3) years-performed a strenuous acute exercise session consisting of 4 bouts of 4-min high-intensity with 3-min low-intensity in-between, which is known to elicit oxidative stress. Average power/speed of intense phases was 85% of the peak achieved in a previous incremental test. Before and 10 min after exercise, CD34+/45dim cell number and clonogenicity, total oxidative (TOC), and antioxidative (TAC) capacities, as well as CD31 expression on detected HPCs were investigated. TOC significantly decreased from 0.093 (0.059) nmol/l to 0.083 (0.052) nmol/l post-exercise (p = 0.044). Although HPC proportions significantly declined below baseline (from 0.103 (0.037)% to 0.079 (0.028)% of mononuclear cells, p < 0.001), HPC concentrations increased post-exercise [2.10 (0.75) cells/μl to 2.46 (0.98) cells/μl, p = 0.002] without interaction between exercise modalities, while HPC clonogenicity was unaffected. Relating HPC concentrations and clonogenicity to exercise session specific (anti-) oxidative parameters, no association was found. CD31 median fluorescent intensity expression on detected HPCs was diminished post-exercise [from 1,675.9 (661.0) to 1,527.1 (558.9), p = 0.023] and positively correlated with TOC (r rm = 0.60, p = 0.005). These results suggest that acute exercise-reduced oxidative stress influences HPC clearance but not mobilization in well-trained participants. Furthermore, a well-trained state protected HPCs' clonogenicity from post-exercise decline.
Collapse
Affiliation(s)
- Julia M Kröpfl
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Fernando G Beltrami
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Ingeborg Stelzer
- Institute of Medical and Chemical Laboratory Diagnostics, LKH Hochsteiermark, Leoben, Austria
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
|
17
|
Magalhães FDC, Aguiar PF, Tossige-Gomes R, Magalhães SM, Ottone VDO, Fernandes T, Oliveira EM, Dias-Peixoto MF, Rocha-Vieira E, Amorim FT. High-intensity interval training followed by postexercise cold-water immersion does not alter angiogenic circulating cells, but increases circulating endothelial cells. Appl Physiol Nutr Metab 2019; 45:101-111. [PMID: 31167081 DOI: 10.1139/apnm-2019-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
High-intensity interval training (HIIT) induces vascular adaptations that might be attenuated by postexercise cold-water immersion (CWI). Circulating angiogenic cells (CAC) participate in the vascular adaptations and circulating endothelial cells (CEC) indicate endothelial damage. CAC and CEC are involved in vascular adaptation. Therefore, the aim of the study was to investigate postexercise CWI during HIIT on CAC and CEC and on muscle angiogenesis-related molecules. Seventeen male subjects performed 13 HIIT sessions followed by 15 min of passive recovery (n = 9) or CWI at 10 °C (n = 8). HIIT comprised cycling (8-12 bouts, 90%-110% peak power). The first and the thirteenth sessions were similar (8 bouts at 90% of peak power). Venous blood was drawn before exercise (baseline) and after the recovery strategy (postrecovery) in the first (pretraining) and in the thirteenth (post-training) sessions. For CAC and CEC identification lymphocyte surface markers (CD133, CD34, and VEGFR2) were used. Vastus lateralis muscle biopsies were performed pre- and post-training for protein (p-eNOSser1177) and gene (VEGF and HIF-1) expression analysis related to angiogenesis. CAC was not affected by HIIT or postexercise CWI. Postexercise CWI increased acute and baseline CEC number. Angiogenic protein and genes were not differently modulated by post-CWI. HIIT followed by either recovery strategy did not alter CAC number. Postexercise CWI increased a marker of endothelial damage both acutely and chronically, suggesting that this postexercise recovery strategy might cause endothelial damage. Novelty HIIT followed by CWI did not alter CAC. HIIT followed by CWI increased CEC. Postexercise CWI might cause endothelial damage.
Collapse
Affiliation(s)
- Flávio de Castro Magalhães
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil.,Exercise Physiology Laboratory, Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Paula Fernandes Aguiar
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil
| | - Rosalina Tossige-Gomes
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil
| | - Sílvia Mourão Magalhães
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil
| | - Vinícius de Oliveira Ottone
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil
| | - Tiago Fernandes
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry of the Motor Activity, School of Physical Education and Sport, University of São Paulo, São Paulo 05508-030, Brazil
| | - Marco Fabrício Dias-Peixoto
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil
| | - Etel Rocha-Vieira
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil
| | - Fabiano Trigueiro Amorim
- Laboratory of Exercise Biology, Integrated Center of Health Research, Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais 39100-000, Brazil.,Exercise Physiology Laboratory, Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|