1
|
Schwalm LC, Fohrmann D, Schaffarczyk M, Gronwald T, Willwacher S, Hollander K. Habituation Does Not Change Running Economy in Advanced Footwear Technology. Int J Sports Physiol Perform 2024; 19:1285-1290. [PMID: 39187239 DOI: 10.1123/ijspp.2024-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE This study aimed to compare running economy across habituated and nonhabituated advanced footwear technology (AFT) in trained long-distance runners. METHODS A total of 16 participants completed up to six 5-minute trials in 1 to 3 pairs of their own habituated shoes and 3 different and standardized AFTs at individual marathon pace. We measured oxygen uptake and carbon dioxide production and expressed running economy as oxygen uptake (in milliliters oxygen per kilogram per minute), oxygen cost of transport (oxygen per kilogram per minute), energetic cost (in watts per kilogram), and energetic cost of transport (in joules per kilogram per kilometer). We used linear mixed-effect models to evaluate differences. Relative shoe weight and shoe mileage (distance worn during running) were covariates. RESULTS Forty-eight standardized and 29 individual AFT conditions were measured (mileage 117.0 [128.8] km, range 0-522 km; 25 habituated 135.7 [129.2] km, range 20-522 km; 4 nonhabituated 0 [0] km, range 0-0 km). Rating of perceived exertion, blood [La], and respiratory exchange ratio ranged from 9 to 15, 1.11 to 4.54 mmol/L, and 0.76 to 1.01. There was no effect for habituation on energetic cost of transport (thabituation = -.232, P = .409, b = -0.006; 95% CI, -0.058 to 0.046) or other running economy metrics. Neither shoe weight nor shoe mileage had an effect. CONCLUSIONS Our results suggest that habituation to AFTs does not result in greater benefits in the use of AFTs. This means that implementation in training may not be needed, even if we cannot rule out any other possible benefits of habituation at this stage, such as adaptation of the musculoskeletal system.
Collapse
Affiliation(s)
- Lars C Schwalm
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Dominik Fohrmann
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Marcelle Schaffarczyk
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| | - Steffen Willwacher
- Institute of Advanced Biomechanics and Motion Studies, Offenburg University of Applied Sciences, Offenburg, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Panday SB, Pathak P, Ahn J. Professional long distance runners achieve high efficiency at the cost of weak orbital stability. Heliyon 2024; 10:e34707. [PMID: 39130430 PMCID: PMC11315134 DOI: 10.1016/j.heliyon.2024.e34707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Successful performance in long distance race requires both high efficiency and stability. Previous research has demonstrated the high running efficiency of trained runners, but no prior study quantitatively addressed their orbital stability. In this study, we evaluated the efficiency and orbital stability of 8 professional long-distance runners and compared them with those of 8 novices. We calculated the cost of transport and normalized mechanical energy to assess physiological and mechanical running efficiency, respectively. We quantified orbital stability using Floquet Multipliers, which assess how fast a system converges to a limit cycle under perturbations. Our results show that professional runners run with significantly higher physiological and mechanical efficiency but with weaker orbital stability compared to novices. This finding is consistent with the inevitable trade-off between efficiency and stability; increase in orbital stability necessitates increase in energy dissipation. We suggest that professional runners have developed the ability to exploit inertia beneficially, enabling them to achieve higher efficiency partly at the cost of sacrificing orbital stability.
Collapse
Affiliation(s)
- Siddhartha Bikram Panday
- Division of Sports Industry and Science, Hanyang University, Republic of Korea
- Department of Art and Sportainment, Hanyang University, Republic of Korea
| | - Prabhat Pathak
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, USA
| | - Jooeun Ahn
- Department of Physical Education, Seoul National University, Republic of Korea
- Institute of Sport Science, Seoul National University, Republic of Korea
| |
Collapse
|
3
|
Song Y, Cen X, Sun D, Bálint K, Wang Y, Chen H, Gao S, Bíró I, Zhang M, Gu Y. Curved carbon-plated shoe may further reduce forefoot loads compared to flat plate during running. Sci Rep 2024; 14:13215. [PMID: 38851842 PMCID: PMC11162459 DOI: 10.1038/s41598-024-64177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Using a curved carbon-fiber plate (CFP) in running shoes may offer notable performance benefit over flat plates, yet there is a lack of research exploring the influence of CFP geometry on internal foot loading during running. The objective of this study was to investigate the effects of CFP mechanical characteristics on forefoot biomechanics in terms of plantar pressure, bone stress distribution, and contact force transmission during a simulated impact peak moment in forefoot strike running. We employed a finite element model of the foot-shoe system, wherein various CFP configurations, including three stiffnesses (stiff, stiffer, and stiffest) and two shapes (flat plate (FCFP) and curved plate (CCFP)), were integrated into the shoe sole. Comparing the shoes with no CFP (NCFP) to those with CFP, we consistently observed a reduction in peak forefoot plantar pressure with increasing CFP stiffness. This decrease in pressure was even more notable in a CCFP demonstrating a further reduction in peak pressure ranging from 5.51 to 12.62%, compared to FCFP models. Both FCFP and CCFP designs had a negligible impact on reducing the maximum stress experienced by the 2nd and 3rd metatarsals. However, they greatly influenced the stress distribution in other metatarsal bones. These CFP designs seem to optimize the load transfer pathway, enabling a more uniform force transmission by mainly reducing contact force on the medial columns (the first three rays, measuring 0.333 times body weight for FCFP and 0.335 for CCFP in stiffest condition, compared to 0.373 in NCFP). We concluded that employing a curved CFP in running shoes could be more beneficial from an injury prevention perspective by inducing less peak pressure under the metatarsal heads while not worsening their stress state compared to flat plates.
Collapse
Affiliation(s)
- Yang Song
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo, China
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xuanzhen Cen
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Dong Sun
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Kovács Bálint
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Yan Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hairong Chen
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Shunxiang Gao
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - István Bíró
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary
- Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Ming Zhang
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No.2 Hospital, Ningbo, China.
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary.
- Faculty of Sports Science, Ningbo University, Ningbo, China.
| |
Collapse
|
4
|
Rodrigo-Carranza V, Hoogkamer W, González-Ravé JM, González-Mohíno F. Relationship Between Advanced Footwear Technology Longitudinal Bending Stiffness and Energy Cost of Running. Scand J Med Sci Sports 2024; 34:e14687. [PMID: 38923087 DOI: 10.1111/sms.14687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION/PURPOSE Shoe longitudinal bending stiffness (LBS) is often considered to influence running economy (RE) and thus, running performance. However, previous results are mixed and LBS levels have not been studied in advanced footwear technology (AFT). The purpose of this study was to evaluate the effects of increased LBS from curved carbon fiber plates embedded within an AFT midsole compared to a traditional running shoe on RE and spatiotemporal parameters. METHODS Twenty-one male trained runners completed three times 4 min at 13 km/h with two experimental shoe models with a curved carbon fiber plate embedded in an AFT midsole with different LBS values (Stiff: 35.5 N/mm and Stiffest: 43.1 N/mm), and a Control condition (no carbon fiber plate: 20.1 N/mm). We measured energy cost of running (W/kg) and spatiotemporal parameters in one visit. RESULTS RE improved for the Stiff shoe condition (15.71 ± 0.95 W/kg; p < 0.001; n2 = 0.374) compared to the Control condition (16.13 ± 1.08 W/kg; 2.56%) and Stiffest condition (16.03 ± 1.19 W/kg; 1.98%). However, we found no significant differences between the Stiffest and Control conditions. Moreover, there were no spatiotemporal differences between shoe conditions. CONCLUSION Changes in LBS in AFT influences RE suggesting that moderately stiff shoes have the most effective LBS to improve RE in AFT compared to very stiff shoes and traditional, flexible shoe conditions while running at 13 km/h.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Fernando González-Mohíno
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
5
|
Matijevich ES, Honert EC, Yang F, Lam WK, Nigg BM. Greater foot and footwear mechanical work associated with less ankle joint work during running. Sports Biomech 2024:1-19. [PMID: 38164950 DOI: 10.1080/14763141.2023.2296916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
Footwear energy storage and return is often suggested as one explanation for metabolic energy savings when running in Advanced Athletic Footwear. However, there is no common understanding of how footwear energy storage and return facilitates changes in muscle and joint kinetics. The purpose of this study was to evaluate the magnitude and timing of foot, footwear and lower limb joint powers and work while running in Advanced and Traditional Athletic Footwear. Fifteen runners participated in an overground motion analysis study. Since footwear kinetics are methodologically challenging to quantify, we leveraged distal rearfoot power analyses ('foot + footwear' power) and evaluated changes in the magnitude and timing of foot + footwear power and lower limb joint powers. Running in Advanced Footwear resulted in greater foot + footwear work, compared to Traditional Shoes, and lower positive ankle work, potentially reducing the muscular demand on the runner. The timing of foot + footwear power varied only slightly across footwear. There are exciting innovation opportunities to manipulate the timing of footwear energy and return. This study demonstrates the research value of quantifying time-series foot + footwear power, and points industry developers towards footwear innovation opportunities.
Collapse
Affiliation(s)
- Emily S Matijevich
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| | - Eric C Honert
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| | - Fan Yang
- Li Ning Sports Research Center, Beijing, China
| | - Wing-Kai Lam
- Department of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, AB, Canada
| |
Collapse
|
6
|
Rodrigo-Carranza V, Hoogkamer W, González-Ravé JM, Horta-Muñoz S, Serna-Moreno MDC, Romero-Gutierrez A, González-Mohíno F. Influence of different midsole foam in advanced footwear technology use on running economy and biomechanics in trained runners. Scand J Med Sci Sports 2024; 34:e14526. [PMID: 37858294 DOI: 10.1111/sms.14526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Ethylene and vinyl acetate (EVA) and polyether block amide (PEBA) are recently the most widely used materials for advanced footwear technology (AFT) that has been shown to improve running economy (RE). This study investigated the effects of these midsole materials on RE and biomechanics, in both fresh and worn state (after 450 km). METHODS Twenty-two male trained runners participated in this study. Subjects ran four 4-min trials at 13 km‧h-1 with both fresh EVA and PEBA AFT and with the same models with 450 km of wear using a randomized crossover experimental design. We measured energy cost of running (W/kg), spatiotemporal, and neuromuscular parameters. RESULTS There were significant differences in RE between conditions (p = 0.01; n2 = 0.17). There was a significant increase in energy cost in the worn PEBA condition compared with new (15.21 ± 1.01 and 14.87 ± 0.99 W/kg; p < 0.05; ES = 0.54), without differences between worn EVA (15.13 ± 1.14 W/kg; p > 0.05), and new EVA (15.15 ± 1.13 w/kg; ES = 0.02). The increase in energy cost between new and worn was significantly higher for the PEBA shoes (0.32 ± 0.38 W/kg) but without significant increase for the EVA shoes (0.06 ± 0.58 W/kg) (p < 0.01; ES = 0.51) with changes in step frequency and step length. The new PEBA shoes had lower energy cost than the new EVA shoes (p < 0.05; ES = 0.27) with significant differences between conditions in contact time. CONCLUSION There is a clear RE advantage of incorporating PEBA versus EVA in an AFT when the models are new. However, after 450 km of use, the PEBA and EVA shoes had similar RE.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Department of Kinesiology, Integrative Locomotion Laboratory, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wouter Hoogkamer
- Department of Kinesiology, Integrative Locomotion Laboratory, University of Massachusetts, Amherst, Massachusetts, USA
| | | | - Sergio Horta-Muñoz
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - María Del Carmen Serna-Moreno
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - Ana Romero-Gutierrez
- Universidad de Castilla-La Mancha, Escuela Técnica Superior Ingenieros Industriales de Ciudad Real, Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Ciudad Real, Spain
| | - Fernando González-Mohíno
- Sports Performance Research Group (GIRD), University of Castilla-La Mancha, Toledo, Spain
- Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| |
Collapse
|
7
|
Beltran RT, Powell DW, Greenwood D, Paquette MR. The Influence of Footwear Longitudinal Bending Stiffness on Running Economy and Biomechanics in Older Runners. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1062-1072. [PMID: 36094795 DOI: 10.1080/02701367.2022.2114589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Purpose: This study assessed the effects of footwear longitudinal bending stiffness on running economy and biomechanics of rearfoot striking older runners. Methods: Nine runners over 60 years of age completed two running bouts at their preferred running pace in each of three footwear conditions: low (4.4 ± 1.8 N·m-1), moderate (5.7 ± 1.7 N·m-1), and high (6.4 ± 1.6 N·m-1) bending stiffness. Testing order was randomized and a mirror protocol was used (i.e., A,B,C,C,B,A). Expired gases, lower limb kinematics, and ground reaction forces were collected simultaneously and lower limb joint kinetics, running economy (i.e., VO2), leg stiffness, and spatio-temporal variables were calculated. Results: Running economy was not different among stiffness conditions (p = 0.60, p = 0.53 [mass adjusted]). Greater footwear stiffness reduced step length (p = 0.046) and increased peak vertical ground reaction force (p = 0.019) but did not change peak ankle plantarflexor torque (p = 0.65), peak positive ankle power (p = 0.48), ankle positive work (p = 0.86), propulsive force (p = 0.081), and leg stiffness (p = 0.46). Moderate footwear stiffness yielded greater peak negative knee power compared to low (p = 0.04) and high (p = 0.03) stiffness. Conclusions: These novel findings demonstrate that increasing footwear longitudinal bending stiffness using flat carbon fiber inserts does not improve running economy and generally does not alter lower limb joint mechanics of rearfoot strike runners over 60 years. Future studies should investigate how other footwear characteristics (e.g., midsole material, plate location, and sole curvature) influence economy and biomechanics in this population.
Collapse
|
8
|
Mai P, Robertz L, Robbin J, Bill K, Weir G, Kurz M, Trudeau MB, Hollander K, Hamill J, Willwacher S. Towards functionally individualised designed footwear recommendation for overuse injury prevention: a scoping review. BMC Sports Sci Med Rehabil 2023; 15:152. [PMID: 37951935 PMCID: PMC10638717 DOI: 10.1186/s13102-023-00760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Injury prevention is essential in running due to the risk of overuse injury development. Tailoring running shoes to individual needs may be a promising strategy to reduce this risk. Novel manufacturing processes allow the production of individualised running shoes that incorporate features that meet individual biomechanical and experiential needs. However, specific ways to individualise footwear to reduce injury risk are poorly understood. Therefore, this scoping review provides an overview of (1) footwear design features that have the potential for individualisation; and (2) the literature on the differential responses to footwear design features between selected groups of individuals. These purposes focus exclusively on reducing the risk of overuse injuries. We included studies in the English language on adults that analysed: (1) potential interaction effects between footwear design features and subgroups of runners or covariates (e.g., age, sex) for running-related biomechanical risk factors or injury incidences; (2) footwear comfort perception for a systematically modified footwear design feature. Most of the included articles (n = 107) analysed male runners. Female runners may be more susceptible to footwear-induced changes and overuse injury development; future research should target more heterogonous sampling. Several footwear design features (e.g., midsole characteristics, upper, outsole profile) show potential for individualisation. However, the literature addressing individualised footwear solutions and the potential to reduce biomechanical risk factors is limited. Future studies should leverage more extensive data collections considering relevant covariates and subgroups while systematically modifying isolated footwear design features to inform footwear individualisation.
Collapse
Affiliation(s)
- Patrick Mai
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
- Institute for Advanced Biomechanics and Motion Studies, Offenburg University, Offenburg, Germany.
- Department of Physical Performance, Norwegian School of Sports Sciences, Oslo, Norway.
| | - Leon Robertz
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Johanna Robbin
- Institute for Advanced Biomechanics and Motion Studies, Offenburg University, Offenburg, Germany
| | - Kevin Bill
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Gillian Weir
- Biomechanics Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Markus Kurz
- Sports Tech Research Centre, Mid Sweden University, Östersund, Sweden
| | | | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Joseph Hamill
- Biomechanics Laboratory, University of Massachusetts Amherst, Amherst, MA, USA
| | - Steffen Willwacher
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
- Institute for Advanced Biomechanics and Motion Studies, Offenburg University, Offenburg, Germany
| |
Collapse
|
9
|
Song Y, Cen X, Chen H, Sun D, Munivrana G, Bálint K, Bíró I, Gu Y. The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: A pilot computational analysis. J Biomech 2023; 153:111597. [PMID: 37126883 DOI: 10.1016/j.jbiomech.2023.111597] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
A carbon-fiber plate (CFP) embedded into running shoes is a commonly applied method to improve running economy, but little is known in regard the effects of CFP design features on internal foot mechanics. This study aimed to explore how systematic changes in CFP geometrical variations (i.e., thickness and location) can alter plantar pressure and strain under the forefoot as well as metatarsal stress state through computational simulations. A foot-shoe finite element (FE) model was built and different CFP features including three thicknesses (1 mm, 2 mm, and 3 mm) and three placements (high-loaded (just below the insole), mid-loaded (in between the midsole), and low-loaded (just above the outsole)) were further modulated within the shoe sole. Simulations were conducted at the impact peak instant during forefoot strike running. Compared with the no-CFP shoe, peak plantar pressure and compressive strain under the forefoot consistently decreased when the CFP thickness increased, and the low-loaded conditions were found more effective (peak pressure decreased up to 31.91% and compressive strain decreased up to 18.61%). In terms of metatarsal stress, CFP designs resulted in varied effects and were dependent on their locations. Specifically, high-loaded CFP led to relatively higher peak metatarsal stress without the reduction trend as thickness increased (peak stress increased up to 12.91%), while low-loaded conditions showed a gradual reduction in peak stress, decreasing by 0.74%. Therefore, a low-loaded thicker CFP should be considered to achieve the pressure-relief effects of running shoes without the expense of increased metatarsal stress.
Collapse
Affiliation(s)
- Yang Song
- Faculty of Sports Science, Ningbo University, Ningbo, China; Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary; Faculty of Kinesiology, University of Split, Split, Croatia
| | - Xuanzhen Cen
- Faculty of Sports Science, Ningbo University, Ningbo, China; Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary; Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Hairong Chen
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Dong Sun
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | | | - Kovács Bálint
- Faculty of Sports Science, Ningbo University, Ningbo, China; Department of Kinesiology, Hungarian University of Sports Science, Budapest, Hungary
| | - István Bíró
- Doctoral School on Safety and Security Sciences, Óbuda University, Budapest, Hungary; Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China.
| |
Collapse
|
10
|
Hébert-Losier K, Pamment M. Advancements in running shoe technology and their effects on running economy and performance - a current concepts overview. Sports Biomech 2023; 22:335-350. [PMID: 35993160 DOI: 10.1080/14763141.2022.2110512] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Advancements in running shoe technology over the last 5 years have sparked controversy in athletics as linked with clear running economy and performance enhancements. Early debates mainly surrounded 'super shoes' in long-distance running, but more recently, the controversy has filtered through to sprint and middle-distance running with the emergence of 'super spikes'. This Current Concepts paper provides a brief overview on the controversial topic of super shoes and super spikes. The defining features of technologically advanced shoes are a stiff plate embedded within the midsole, curved plate and midsole geometry, and lightweight, resilient, high-energy returning foam that - in combination - enhance running performance. Since the launch of the first commercially available super shoe, all world records from the 5 km to the marathon have been broken by athletes wearing super shoes or super spikes, with a similar trend observed in middle-distance running. The improvements in super shoes are around 4% for running economy and 2% for performance, and speculatively around 1% to 1.5% for super spikes. These enhancements are believed multifactorial in nature and difficult to parse, although involve longitudinal bending stiffness, the 'teeter-totter effect', the high-energy return properties of the midsole material, enhanced stack height and lightweight characteristic of shoes.
Collapse
Affiliation(s)
- Kim Hébert-Losier
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, Adams Centre for High Performance, University of Waikato, Tauranga, New Zealand
| | - Milly Pamment
- National Performance Institute, British Athletics, Loughborough University, Loughborough, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
11
|
Increasing Shoe Longitudinal Bending Stiffness Is Not Beneficial to Reduce Energy Cost During Graded Running. Int J Sports Physiol Perform 2023; 18:209-212. [PMID: 36634310 DOI: 10.1123/ijspp.2022-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Carbon plates have been used to increase running shoes' longitudinal bending stiffness (LBS), leading to reductions in the energy cost of level running (Cr). However, whether or not this is true during uphill (UH) running remains unknown. The aim of our study was to identify the effect of LBS on Cr during UH running. METHODS Twenty well-trained male runners participated in this study. Cr was determined using gas exchange during nine 4-minute bouts performed using 3 different LBS shoe conditions at 2.22 and 4.44 m/s on level and 2.22 m/s UH (gradient: + 15%) running. All variables were compared using 2-way analyses of variance (LBS × speed/grade effects). RESULTS There was no significant effect of LBS (F = 2.04; P = .14, ηp2=.11) and no significant LBS × grade interaction (F = 0.31; P = .87, ηp2=.02). Results were characterized by a very large interindividual variability in response to LBS changes. CONCLUSIONS The current study contributes to a growing body of literature reporting no effect of LBS on Cr during level and UH running. Yet, the very large interindividual differences in response to changes in LBS suggest that increasing shoe LBS may be beneficial for some runners.
Collapse
|
12
|
Ardigò LP, Buglione A, Russo L, Cular D, Esposito F, Doria C, Padulo J. Marathon shoes vs. track spikes: a crossover pilot study on metabolic demand at different speeds in experienced runners. Res Sports Med 2023; 31:13-20. [PMID: 33988477 DOI: 10.1080/15438627.2021.1929225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to assess the metabolic cost (Cr) with marathon shoes (Adidas Adizero 3 [AA]) vs. track spikes (Nike Zoom Matumbo 3 [NZM]) on track. For this, five experienced runners were randomly assessed (NZM/AA) on a running track at 73% and 85% of best performance speed on 1500-m race. At first, speed (4.39 ± 0.53 m·s-1), Crs with AA and NZM resulted 3.63 ± 0.29 and 3.64 ± 0.43 J·kg-1·m-1 (+0.3% with NZM, effect size [ES] small and p = 0.951), respectively. Besides, at second speed (5.20 ± 0.18 m·s-1), Crs were 4.09 ± 0.28 and 4.07 ± 0.22 J·kg-1·m-1 (-0.5% with NZM, ES small and p = 0.919) with AA and NZM, respectively. It resulted in an increased Cr (+12.2%) between s1 and s2 with both shoe conditions (ES large and p = 0.009 and 0.011 with AA and NZM, respectively). There is a pattern yet to be confirmed for track spikes to become more beneficial at higher speeds (when duty factor becomes lower and therefore grip on track is crucial).
Collapse
Affiliation(s)
- Luca Paolo Ardigò
- School of Exercise and Sport Science, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonio Buglione
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Luca Russo
- Department of Biotechnology and Applied Clinical Science, University of L'Aquila, L'Aquila, Italy
| | - Drazen Cular
- Faculty of Kinesiology, University of Split, Split, Croatia.,"Einstein" Craft for Research, Development, Education, Trade and Services, Split, Croatia
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy.,IRCSS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
| | - Johnny Padulo
- Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
13
|
Chollet M, Michelet S, Horvais N, Pavailler S, Giandolini M. Individual physiological responses to changes in shoe bending stiffness: a cluster analysis study on 96 runners. Eur J Appl Physiol 2023; 123:169-177. [PMID: 36229743 DOI: 10.1007/s00421-022-05060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Shoe longitudinal bending stiffness is known to influence running economy (RE). Recent studies showed divergent results ranging from 3% deterioration to 3% improvement in RE when bending stiffness increases. The variability of these results highlights inter-individual differences. Thus, our purpose was to study the runner-specific metabolic responses to changes in shoe bending stiffness. METHODS After assessing their maximal oxygen consumption ([Formula: see text] max) and aerobic speed (MAS) during a first visit, 96 heterogeneous runners performed two treadmill 5 min runs at 75% [Formula: see text] max with two different prototypes of shoes on a second day. Prototypes differed only by their forefoot bending stiffness (17 N/mm vs. 10.4 N/mm). RE and stride kinematics were recorded during each trial. A clustering analysis was computed by comparing the measured RE and the technical measurement error of our gas exchange analyzer to identify functional groups of runners, i.e., responding similarly to footwear interventions. ANOVAs were then computed on biomechanical and morphological variables to compare the functional groups. RESULTS Considering the whole sample (n = 96), there was no significant difference in RE between the two conditions. Cluster 1 (n = 29) improves RE in the stiffest condition (2.7 ± 2.1%). Cluster 2 (n = 26) impairs RE in the stiffest condition (2.7 ± 1.3%). Cluster 3 (n = 41) demonstrated no change in RE (0.28 ± 0.65%). Cluster 1 demonstrated 1.7 km·h-1 greater MAS compared to cluster 2 (p = 0.014). CONCLUSION The present study highlights that the effect of shoe bending stiffness on RE is runner-specific. High-level runners took advantage of increased bending stiffness, whereas medium-level runners did not. Finally, this study emphasizes the importance of individual response examination to understand the effect of footwear on runner's performance.
Collapse
Affiliation(s)
- Mickael Chollet
- Inter-university Laboratory of Human Movement Sciences, Univ. Savoie Mont Blanc, 73000, Chambery, France.
| | - Samuel Michelet
- Amer sports innovation and sport sciences lab, Salomon SAS, Annecy, France
| | - Nicolas Horvais
- Amer sports innovation and sport sciences lab, Salomon SAS, Annecy, France
| | | | - Marlene Giandolini
- Amer sports innovation and sport sciences lab, Salomon SAS, Annecy, France
| |
Collapse
|
14
|
Running Velocity and Longitudinal Bending Stiffness Influence the Asymmetry of Kinematic Variables of the Lower Limb Joints. Bioengineering (Basel) 2022; 9:bioengineering9110607. [PMID: 36354518 PMCID: PMC9687503 DOI: 10.3390/bioengineering9110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Running-related limb asymmetries suggest specific sports injuries and recovery circumstances. It is debatable if running speed affected asymmetry, and more research is required to determine how longitudinal bending stiffness (LBS) affected asymmetry. The purpose of this study was to investigate the influence of running velocity and LBS on kinematic characteristics of the hip, knee, ankle, metatarsophalangeal joint (MTP) and the corresponding asymmetry. Kinematic (200 Hz) running stance phase data were collected bilaterally for 16 healthy male recreational runners (age: 23.13 ± 1.17, height: 175.2 ± 1.6 cm, body mass: 75.7 ± 3.6 kg, BMI: 24.7 ± 1.3 kg/m2) running on a force plate at three different velocities (10, 12 and 14 km/h) and three increasing-LBS shoes in a randomized order. The symmetry angle (SA) was calculated to quantify gait asymmetry magnitude at each running velocity and LBS. Changes in running velocity and LBS led to differences in kinematic variables between the hip, knee, ankle and MTP (p < 0.05). Significant changes in SA caused by running velocity were found in the knee flexion angle (p = 0.001) and flexion angle peak velocity (p < 0.001), ankle plantarflexion angle (p = 0.001) and plantarflexion angle peak velocity (p = 0.043) and MTP dorsiflexion angle (p = 0.001) and dorsiflexion angle peak velocity (p = 0.019). A significant change in the SA caused by LBS was found in the MTP dorsiflexion peak angle velocity (p = 0.014). There were interaction effects between running velocity and LBS on the MTP plantarflexion angle (p = 0.033) and plantarflexion angle peak velocity (p = 0.038). These findings indicate the existence of bilateral lower limb asymmetry. Meanwhile, it was proved that running velocity and LBS can influence the asymmetry of lower limb joints. Additionally, there was an interaction between running velocity and LBS on the asymmetry of the lower limb. These findings can provide some information for sports injuries, such as metatarsal stress fractures and anterior cruciate ligament injuries. They can also provide some useful information for running velocities and running shoes.
Collapse
|
15
|
Panday SB, Pathak P, Moon J, Koo D. Complexity of Running and Its Relationship with Joint Kinematics during a Prolonged Run. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9656. [PMID: 35955013 PMCID: PMC9368290 DOI: 10.3390/ijerph19159656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effect of prolonged running on joint kinematics and its association with stride complexity between novice and elite runners. Ten elite marathoners and eleven healthy individuals took part in a 20 min submaximal prolonged running experiment at their preferred running speed (PRS). A three-dimensional motion capture system was utilized to capture and calculate the alpha exponent, stride-to-stride fluctuations (SSFs), and stride-to-stride variability (SSV) of spatiotemporal parameters and joint kinematics. In the results, the elite athletes ran at a considerably higher PRS than the novice runners, yet no significant differences were found in respiratory exchange ratio with increasing time intervals. For the spatiotemporal parameters, we observed a significant increase in the step width and length variability in novice runners with increasing time-interval (p < 0.05). However, we did not observe any differences in the alpha exponent of spatiotemporal parameters. Significant differences in SSF of joint kinematics were observed, particularly in the sagittal plane for ankle, knee, and hip at heel strike (p < 0.05). While in mid-stance, time-interval differences were observed in novices who ran with a lower knee flexion angle (p < 0.05). During toe-off, significantly higher SSV was observed, particularly in the hip and ankle for novices (p < 0.05). The correlation analysis of joint SSV revealed a distinct negative relationship with the alpha exponent of step-length and step-width for elite runners, while, for novices, a positive relation was observed only for the alpha exponent of step-width. In conclusion, our study shows that increased step-width variability seen in novices could be a compensatory mechanism to maintain performance and mitigate the loss of stability. On the other hand, elite runners showed a training-induced effective modulation of lower-limb kinematics to improve their running performance.
Collapse
Affiliation(s)
| | - Prabhat Pathak
- Department of Physical Education, Seoul National University, Seoul 08826, Korea
| | - Jeheon Moon
- Department of Physical Education, Korea National University of Education, Cheongju-si 28173, Korea
| | - Dohoon Koo
- Department of Exercise Prescription, College of Medical Science, Jeonju University, Jeonju 55069, Korea
| |
Collapse
|
16
|
Honert EC, Ostermair F, von Tscharner V, Nigg BM. Changes in ankle work, foot work, and tibialis anterior activation throughout a long run. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:330-338. [PMID: 33662603 PMCID: PMC9189696 DOI: 10.1016/j.jshs.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/19/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The ankle and foot together contribute to over half of the positive and negative work performed by the lower limbs during running. Yet, little is known about how foot kinetics change throughout a run. The amount of negative foot work may decrease as tibialis anterior (TA) electromyography (EMG) changes throughout longer-duration runs. Therefore, we examined ankle and foot work as well as TA EMG changes throughout a changing-speed run. METHODS Fourteen heel-striking subjects ran on a treadmill for 58 min. We collected ground reaction forces, motion capture, and EMG. Subjects ran at 110%, 100%, and 90% of their 10-km running speed and 2.8 m/s multiple times throughout the run. Foot work was evaluated using the distal rearfoot work, which provides a net estimate of all work contributors within the foot. RESULTS Positive foot work increased and positive ankle work decreased throughout the run at all speeds. At the 110% 10-km running speed, negative foot work decreased and TA EMG frequency shifted lower throughout the run. The increase in positive foot work may be attributed to increased foot joint work performed by intrinsic foot muscles. Changes in negative foot work and TA EMG frequency may indicate that the TA plays a role in negative foot work in the early stance of a run. CONCLUSION This study is the first to examine how the kinetic contributions of the foot change throughout a run. Future studies should investigate how increases in foot work affect running performance.
Collapse
Affiliation(s)
- Eric C Honert
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| | - Florian Ostermair
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada; Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; Department of Sports Science and Sports, Friedrich Alexander University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Vinzenz von Tscharner
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
17
|
Hébert-Losier K, Finlayson SJ, Driller MW, Dubois B, Esculier JF, Beaven CM. Metabolic and performance responses of male runners wearing 3 types of footwear: Nike Vaporfly 4%, Saucony Endorphin racing flats, and their own shoes. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:275-284. [PMID: 33264686 PMCID: PMC9189709 DOI: 10.1016/j.jshs.2020.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/02/2020] [Accepted: 10/22/2020] [Indexed: 06/01/2023]
Abstract
PURPOSE We compared running economy (RE) and 3-km time-trial (TT) variables of runners wearing Nike Vaporfly 4% (VP4), Saucony Endorphin lightweight racing flats (FLAT), and their habitual running (OWN) footwear. METHODS Eighteen male recreational runners (age = 33.5 ± 11.9 year (mean ± SD), peak oxygen uptake (VO2peak) = 55.8 ± 4.4 mL/kg·min) attended 4 sessions approximately 7 days apart. The first session consisted of a VO2peak test to inform subsequent RE speeds set at 60%, 70%, and 80% of the speed eliciting VO2peak. In subsequent sessions, treadmill RE and 3-km TTs were assessed in the 3 footwear conditions in a randomized, counterbalanced crossover design. RESULTS Oxygen consumption (mL/kg·min) was less in VP4 (from 4.3% to 4.4%, p ≤ 0.002) and FLAT (from 2.7% to 3.4%, p ≤ 0.092) vs. OWN across intensities, with a non-significant difference between VP4 and FLAT (1.0%-1.7%, p ≥ 0.292). Findings related to energy cost (W/kg) and energetics cost of transport (J/kg·m) were comparable. VP4 3-km TT performance (11:07.6 ± 0:56.6 mm:ss) was enhanced vs. OWN by 16.6 s (2.4%, p = 0.005) and vs. FLAT by 13.0 s (1.8%, p = 0.032). The 3-km times between OWN and FLAT (0.5%, p = 0.747) were similar. Most runners (n = 11, 61%) ran their fastest TT in VP4. CONCLUSION Overall, VP4 improved laboratory-based RE measures in male recreational runners at relative speeds compared to OWN, but the RE improvements in VP4 were not significant vs. FLAT. More runners exhibited better treadmill TT performances in VP4 (61%) vs. FLAT (22%) and OWN (17%). The variability in RE (-10.3% to 13.3%) and TT (-4.7% to 9.3%) improvements suggests that responses to different types of shoes are individualized and warrant further investigation.
Collapse
Affiliation(s)
- Kim Hébert-Losier
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Mount Maunganui, Tauranga 3116, New Zealand.
| | - Steven J Finlayson
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Mount Maunganui, Tauranga 3116, New Zealand
| | - Matthew W Driller
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Mount Maunganui, Tauranga 3116, New Zealand; Sport and Exercise Science, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
| | - Blaise Dubois
- Research & Development, the Running Clinic, Lac-Beauport, QC G3B 2J8, Canada
| | | | - Christopher Martyn Beaven
- Division of Health, Engineering, Computing and Science, Te Huataki Waiora School of Health, University of Waikato, Mount Maunganui, Tauranga 3116, New Zealand
| |
Collapse
|
18
|
Healey LA, Hoogkamer W. Longitudinal bending stiffness does not affect running economy in Nike Vaporfly Shoes. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:285-292. [PMID: 34280602 PMCID: PMC9189697 DOI: 10.1016/j.jshs.2021.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/23/2021] [Accepted: 06/03/2021] [Indexed: 05/31/2023]
Abstract
PURPOSE This study aimed to determine the independent effect of the curved carbon-fiber plate in the Nike Vaporfly 4% shoe on running economy and running biomechanics. METHODS Fifteen healthy male runners completed a metabolic protocol and a biomechanics protocol. In both protocols participants wore 2 different shoes, an intact Nike Vaporfly 4% (VFintact) and a cut Nike Vaporfly 4% (VFcut). The VFcut had 6 medio-lateral cuts through the carbon-fiber plate in the forefoot to reduce the effectiveness of the plate. In the metabolic protocol, participants ran at 14 km/h for 5 min, twice with each shoe, on a force-measuring treadmill while we measured metabolic rate. In the biomechanics protocol, participants ran across a runway with embedded force plates at 14 km/h. We calculated running economy, kinetics, and lower limb joint mechanics. RESULTS Running economy did not significantly differ between shoe conditions (on average, 0.55% ± 1.77% (mean ± SD)) worse in the VFcut compared to the VFintact; 95% confidence interval (-1.44% to 0.40%). Biomechanical differences were only found in the metatarsophalangeal (MTP) joint with increased MTP dorsiflexion angle, angular velocity, and negative power in the VFcut. Contact time was 1% longer in the VFintact. CONCLUSION Cutting the carbon-fiber plate and reducing the longitudinal bending stiffness did not have a significant effect on the energy savings in the Nike Vaporfly 4%. This suggests that the plate's stiffening effect on the MTP joint plays a limited role in the reported energy savings, and instead savings are likely from a combination and interaction of the foam, geometry, and plate.
Collapse
Affiliation(s)
- Laura A Healey
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA 01003-9258, USA.
| | - Wouter Hoogkamer
- Integrative Locomotion Laboratory, Department of Kinesiology, University of Massachusetts, Amherst, MA 01003-9258, USA
| |
Collapse
|
19
|
Cigoja S, Fletcher JR, Nigg BM. Can changes in midsole bending stiffness of shoes affect the onset of joint work redistribution during a prolonged run? JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:293-302. [PMID: 33359799 PMCID: PMC9189708 DOI: 10.1016/j.jshs.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 11/27/2020] [Indexed: 05/14/2023]
Abstract
PURPOSE This study aimed to investigate if changing the midsole bending stiffness of athletic footwear can affect the onset of lower limb joint work redistribution during a prolonged run. METHODS Fifteen trained male runners (10-km time of <44 min) performed 10-km runs at 90% of their individual speed at lactate threshold (i.e., when change in lactate exceeded 1 mmol/L during an incremental running test) in a control and stiff shoe condition on 2 occasions. Lower limb joint kinematics and kinetics were measured using a motion capture system and a force-instrumented treadmill. Data were acquired every 500 m. RESULTS Prolonged running resulted in a redistribution of positive joint work from distal to proximal joints in both shoe conditions. Compared to the beginning of the run, less positive work was performed at the ankle (approximately 9%; p ≤ 0.001) and more positive work was performed at the knee joint (approximately 17%; p ≤ 0.001) at the end of the run. When running in the stiff shoe condition, the onset of joint work redistribution at the ankle and knee joints occurred at a later point during the run. CONCLUSION A delayed onset of joint work redistribution in the stiff condition may result in less activated muscle volume, because ankle plantar flexor muscles have shorter muscles fascicles and smaller cross-sectional areas compared to knee extensor muscles. Less active muscle volume could be related to previously reported decreases in metabolic cost when running in stiff footwear. These results contribute to the notion that footwear with increased stiffness likely results in reductions in metabolic cost by delaying joint work redistribution from distal to proximal joints.
Collapse
Affiliation(s)
- Sasa Cigoja
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Jared R Fletcher
- Department of Health and Physical Education, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Benno M Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
20
|
Agresta C, Giacomazzi C, Harrast M, Zendler J. Running Injury Paradigms and Their Influence on Footwear Design Features and Runner Assessment Methods: A Focused Review to Advance Evidence-Based Practice for Running Medicine Clinicians. Front Sports Act Living 2022; 4:815675. [PMID: 35356094 PMCID: PMC8959543 DOI: 10.3389/fspor.2022.815675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Many runners seek health professional advice regarding footwear recommendations to reduce injury risk. Unfortunately, many clinicians, as well as runners, have ideas about how to select running footwear that are not scientifically supported. This is likely because much of the research on running footwear has not been highly accessible outside of the technical footwear research circle. Therefore, the purpose of this narrative review is to update clinical readers on the state of the science for assessing runners and recommending running footwear that facilitate the goals of the runner. We begin with a review of basic footwear construction and the features thought to influence biomechanics relevant to the running medicine practitioner. Subsequently, we review the four main paradigms that have driven footwear design and recommendation with respect to injury risk reduction: Pronation Control, Impact Force Modification, Habitual Joint (Motion) Path, and Comfort Filter. We find that evidence in support of any paradigm is generally limited. In the absence of a clearly supported paradigm, we propose that in general clinicians should recommend footwear that is lightweight, comfortable, and has minimal pronation control technology. We further encourage clinicians to arm themselves with the basic understanding of the known effects of specific footwear features on biomechanics in order to better recommend footwear on a patient-by-patient basis.
Collapse
Affiliation(s)
- Cristine Agresta
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
- *Correspondence: Cristine Agresta
| | - Christina Giacomazzi
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | - Mark Harrast
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, United States
| | | |
Collapse
|
21
|
Van Alsenoy K, Ryu JH, Girard O. Acute intense fatigue does not modify the effect of EVA and TPU custom foot orthoses on running mechanics, running economy and perceived comfort. Eur J Appl Physiol 2022; 122:1179-1187. [PMID: 35201416 PMCID: PMC9012714 DOI: 10.1007/s00421-022-04903-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/29/2022] [Indexed: 12/30/2022]
Abstract
We determined whether fatigue modifies the effect of custom foot orthoses manufactured from ethyl-vinyl acetate (EVA) and expanded thermoplastic polyurethane (TPU) materials, both compared to standardized footwear (CON), on running mechanics, running economy, and perceived comfort. Eighteen well-trained, males ran on an instrumented treadmill for 6 min at the speed corresponding to their first ventilatory threshold (13.8 ± 1.1 km/h) in three footwear conditions (CON, EVA, and TPU). Immediately after completion of a repeated-sprints exercise (8 × 5 s treadmill sprints, rest = 25 s), these run tests were replicated. Running mechanics, running economy and perceived comfort were determined. Two-way repeated measures ANOVA [condition (CON, EVA, and TPU) × fatigue (fresh and fatigued)] were conducted. Flight time shortened (P = 0.026), peak braking (P = 0.016) and push-off (P = 0.032) forces decreased and vertical stiffness increased (P = 0.014) from before to after the repeated-sprint exercise, independent of footwear condition. There was a global fatigue-induced deterioration in running economy (- 1.6 ± 0.4%; P < 0.001). There was no significant condition × fatigue [except mean loading rate (P = 0.046)] for the large majority of biomechanical, cardio-respiratory [except minute ventilation (P = 0.020) and breathing frequency (P = 0.019)] and perceived comfort variables. Acute intense fatigue does not modify the effect of custom foot orthoses with different resilience characteristics on running mechanics, running economy and perceived comfort.
Collapse
Affiliation(s)
- Ken Van Alsenoy
- Aspetar, Orthopaedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar.
- Centre for Health, Activity and Rehabilitation Research (CHEARR), Queen Margaret University, Edinburgh, UK.
| | | | - Olivier Girard
- Aspetar, Orthopaedic and Sports Medicine Hospital, FIFA Medical Centre of Excellence, Doha, Qatar.
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
22
|
Rodrigo-Carranza V, González-Mohíno F, Santos-Concejero J, González-Ravé JM. The effects of footwear midsole longitudinal bending stiffness on running economy and ground contact biomechanics: A systematic review and meta-analysis. Eur J Sport Sci 2021; 22:1508-1521. [PMID: 34369282 DOI: 10.1080/17461391.2021.1955014] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aimed to address the effects of increased longitudinal bending stiffness (LBS) on running economy (RE) and running biomechanics. A systematic search on four electronic databases (Pubmed, WOS, Medline and Scopus) was conducted on 26 May 2021. Twelve studies met the inclusion criteria and were included. Standardised mean difference with 95% confidence intervals (CI) between footwear with increased LBS vs. non-increased LBS conditions and effect sizes were calculated. To assess the potential effects of moderator variables (type and length plate, increased LBS, shoe mass and running speed) on the main outcome variable (i.e. RE), subgroup analyses were performed. Increased LBS improved RE (SMD = -0.43 [95% CI -0.58, -0.28], Z = 5.60, p < 0.001) compared to non-increased LBS. Significant increases of stride length (SMD = 0.29 [95% CI 0.10, 0.49], Z = 2.93, p = 0.003) and contact time (SMD = 0.17 [95% CI 0.03, 0.31], Z = 2.32, p = 0.02) were found when LBS was increased. RE improved to a greater degree at higher running speeds with footwear with increased LBS. RE improved 3.45% with curve plate compared to no-plate condition without improvements with flat plate shoes. When shoe mass was matched between footwear with increased LBS vs. non-increased LBS conditions, RE improved (3.15%). However, when shoe mass was not controlled (experimental condition with ∼35 grams extra), a significant small improvement was found. These RE improvements appear along with an increase of stride length and contact time. Shoe mass, type of plate (flat or curve) and running speed should be taken into consideration when designing a shoe aimed at improving long-distance running performance.
Collapse
Affiliation(s)
- Víctor Rodrigo-Carranza
- Faculty of Sport Sciences, Sport Training Laboratory, University of Castilla-La Mancha, Toledo, Spain
| | - Fernando González-Mohíno
- Faculty of Sport Sciences, Sport Training Laboratory, University of Castilla-La Mancha, Toledo, Spain.,Facultad de Ciencias de la Vida y de la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - José María González-Ravé
- Faculty of Sport Sciences, Sport Training Laboratory, University of Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
23
|
Isherwood J, Rimmer E, Fu F, Xie Z, Sterzing T. Biomechanical and perceptual cushioning sensitivity based on mechanical running shoe properties. FOOTWEAR SCIENCE 2021. [DOI: 10.1080/19424280.2021.1913243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Joshua Isherwood
- Xtep Sports Science & Engineering Laboratory, Xtep (China) Co. Ltd, Xiamen, China
| | - Esther Rimmer
- Xtep Sports Science & Engineering Laboratory, Xtep (China) Co. Ltd, Xiamen, China
| | - Fengqin Fu
- Xtep Sports Science & Engineering Laboratory, Xtep (China) Co. Ltd, Xiamen, China
| | - Zhihao Xie
- Xtep Sports Science & Engineering Laboratory, Xtep (China) Co. Ltd, Xiamen, China
| | - Thorsten Sterzing
- Xtep Sports Science & Engineering Laboratory, Xtep (China) Co. Ltd, Xiamen, China
| |
Collapse
|
24
|
Energetics and Biomechanics of Running Footwear with Increased Longitudinal Bending Stiffness: A Narrative Review. Sports Med 2021; 51:873-894. [DOI: 10.1007/s40279-020-01406-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 10/21/2022]
|
25
|
Increasing the midsole bending stiffness of shoes alters gastrocnemius medialis muscle function during running. Sci Rep 2021; 11:749. [PMID: 33436965 PMCID: PMC7804138 DOI: 10.1038/s41598-020-80791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
In recent years, increasing the midsole bending stiffness (MBS) of running shoes by embedding carbon fibre plates in the midsole resulted in many world records set during long-distance running competitions. Although several theories were introduced to unravel the mechanisms behind these performance benefits, no definitive explanation was provided so far. This study aimed to investigate how the function of the gastrocnemius medialis (GM) muscle and Achilles tendon is altered when running in shoes with increased MBS. Here, we provide the first direct evidence that the amount and velocity of GM muscle fascicle shortening is reduced when running with increased MBS. Compared to control, running in the stiffest condition at 90% of speed at lactate threshold resulted in less muscle fascicle shortening (p = 0.006, d = 0.87), slower average shortening velocity (p = 0.002, d = 0.93) and greater estimated Achilles tendon energy return (p ≤ 0.001, d = 0.96), without a significant change in GM fascicle work (p = 0.335, d = 0.40) or GM energy cost (p = 0.569, d = 0.30). The findings of this study suggest that running in stiff shoes allows the ankle plantarflexor muscle-tendon unit to continue to operate on a more favourable position of the muscle's force-length-velocity relationship by lowering muscle shortening velocity and increasing tendon energy return.
Collapse
|
26
|
Beck ON, Golyski PR, Sawicki GS. Adding carbon fiber to shoe soles may not improve running economy: a muscle-level explanation. Sci Rep 2020; 10:17154. [PMID: 33051532 PMCID: PMC7555508 DOI: 10.1038/s41598-020-74097-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
In an attempt to improve their distance-running performance, many athletes race with carbon fiber plates embedded in their shoe soles. Accordingly, we sought to establish whether, and if so how, adding carbon fiber plates to shoes soles reduces athlete aerobic energy expenditure during running (improves running economy). We tested 15 athletes as they ran at 3.5 m/s in four footwear conditions that varied in shoe sole bending stiffness, modified by carbon fiber plates. For each condition, we quantified athlete aerobic energy expenditure and performed biomechanical analyses, which included the use of ultrasonography to examine soleus muscle dynamics in vivo. Overall, increased footwear bending stiffness lengthened ground contact time (p = 0.048), but did not affect ankle (p ≥ 0.060), knee (p ≥ 0.128), or hip (p ≥ 0.076) joint angles or moments. Additionally, increased footwear bending stiffness did not affect muscle activity (all seven measured leg muscles (p ≥ 0.146)), soleus active muscle volume (p = 0.538; d = 0.241), or aerobic power (p = 0.458; d = 0.04) during running. Hence, footwear bending stiffness does not appear to alter the volume of aerobic energy consuming muscle in the soleus, or any other leg muscle, during running. Therefore, adding carbon fiber plates to shoe soles slightly alters whole-body and calf muscle biomechanics but may not improve running economy.
Collapse
Affiliation(s)
- Owen N Beck
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Pawel R Golyski
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
27
|
Girard O, Morin JB, Ryu JH, Van Alsenoy K. Custom foot orthoses improve performance, but do not modify the biomechanical manifestation of fatigue, during repeated treadmill sprints. Eur J Appl Physiol 2020; 120:2037-2045. [PMID: 32607818 PMCID: PMC7419364 DOI: 10.1007/s00421-020-04427-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/19/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE We determined the effect of custom foot orthotics manufactured from ethyl-vinyl acetate (EVA) and expanded thermoplastic polyurethane (TPU) materials, both compared to a control condition (CON; shoes only) during repeated sprints on running mechanical alterations. METHODS Eighteen males performed eight, 5-s sprints with 25-s recovery on an instrumented sprint treadmill in three footwear conditions (EVA, TPU and CON). Mechanical data consisted of continuous (step-by-step) measurement of running kinetics and kinematics, which were averaged for each sprint for further analysis. RESULTS Distance ran in 5 s decreased from first to last sprint (P < 0.001), yet with higher sprints 1-8 values for both EVA (P = 0.004) and TPU (P = 0.018) versus CON. Regardless of footwear condition, mean horizontal forces, step frequency, vertical and leg stiffness decreased from sprint 1 to sprint 8 (all P < 0.001). Duration of the propulsive phase was globally shorter for both EVA (P = 0.002) and TPU (P = 0.021) versus CON, while braking phase duration was similar (P = 0.919). In the horizontal direction, peak propulsive (P < 0.001), but not braking (P = 0.172), forces also decreased from sprint 1 to sprint 8, independently of conditions. CONCLUSION Compared to shoe only, wearing EVA or TPU custom foot orthotics improved repeated treadmill sprint ability, yet provided similar fatigue-induced changes in mechanical outcomes.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, Perth, WA, Australia. .,Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.
| | | | | | - Ken Van Alsenoy
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar.,Centre for Health, Activity and Rehabilitation Research (CHEAR), Queen Margaret University, Edinburgh, Musselburgh, Scotland, UK
| |
Collapse
|
28
|
Nigg BM, Cigoja S, Nigg SR. Effects of running shoe construction on performance in long distance running. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1778799] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Benno M. Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Sasa Cigoja
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Sandro R. Nigg
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
29
|
Hoitz F, Mohr M, Asmussen M, Lam WK, Nigg S, Nigg B. The effects of systematically altered footwear features on biomechanics, injury, performance, and preference in runners of different skill level: a systematic review. FOOTWEAR SCIENCE 2020. [DOI: 10.1080/19424280.2020.1773936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Fabian Hoitz
- Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Maurice Mohr
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Michael Asmussen
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Health and Physical Education, Mount Royal University, Calgary, Alberta, Canada
| | - Wing-Kai Lam
- Li Ning Sports Science Research Center, Beijing, China
| | - Sandro Nigg
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Benno Nigg
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Day E, Hahn M. Optimal footwear longitudinal bending stiffness to improve running economy is speed dependent. FOOTWEAR SCIENCE 2019. [DOI: 10.1080/19424280.2019.1696897] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Evan Day
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Michael Hahn
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
31
|
|