1
|
Sadowski M, Zawieja E, Chmurzynska A. The impact of N-acetylcysteine on lactate, biomarkers of oxidative stress, immune response, and muscle damage: A systematic review and meta-analysis. J Cell Mol Med 2024; 28:e70198. [PMID: 39632267 PMCID: PMC11617117 DOI: 10.1111/jcmm.70198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
N-acetylcysteine (NAC) is a compound whose mechanism of action is intricately linked to the provision of cysteine for glutathione synthesis. It has been used in medicine and has also made significant inroads into sports, as it can modify the levels of several biomarkers, including those of oxidative processes, inflammation and muscle damage after exercise. Because the effectiveness of NAC supplementation is unclear, the primary objective of the present study was to perform a meta-analysis elucidating how NAC supplementation alters the concentrations of GSH (glutathione), GSSG (glutathione disulfide), TBARS (thiobarbituric acid reactive substances), IL-6 (interleukin 6), TNF-α (tumour necrosis factor alpha), CK (creatine kinase), lactate, and muscle soreness after physical exertion. Suitable studies were searched for from February to September 2023, and the results of those included (n = 20) indicate that NAC supplementation significantly diminishes both muscle soreness (p = 0.03; the mean difference (MD) of NAC's effect was -0.43 with a 95% confidence interval (CI), -0.81, -0.04) and lactate concentrations after exercise (p = 0.03; the MD -0.56 mmol/L; 95% CI, -1.07, -0.06). A substantial decrease was observed in concentrations of IL-6 (p = 0.03; the standardized MD (SMD) was -1.71; 95% CI, -3.26, -0.16) and TBARS (p = 0.02; SMD was -1.03, 95% CI, -1.90, -0.15). Furthermore, an elevation in GSH concentration was observed following supplementation. However, we saw no significant effect of NAC on TNF-α, CK or GSSG concentrations. NAC supplementation holds promise for attenuating muscle soreness, lactate, TBARS and IL-6 concentrations and increasing GSH level following physical exertion.
Collapse
Affiliation(s)
- Marcin Sadowski
- Department of Human Nutrition and DieteticsPoznań University of Life SciencesPoznańPoland
| | - Emilia Zawieja
- Department of Human Nutrition and DieteticsPoznań University of Life SciencesPoznańPoland
| | - Agata Chmurzynska
- Department of Human Nutrition and DieteticsPoznań University of Life SciencesPoznańPoland
| |
Collapse
|
2
|
Larsen S. Acute antioxidant supplementation and performance - Should this be considered. Free Radic Biol Med 2024; 224:301-309. [PMID: 39147073 DOI: 10.1016/j.freeradbiomed.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
It is well known that a training intervention leads to mitochondrial adaptations with increased skeletal muscle mitochondrial biogenesis and function. Studies have recently indicated that skeletal muscle mitochondrial function is important for athletic performance. During exercise reactive oxygen species are released from skeletal muscle potentially leading to adaptations but maybe also to fatigue. Focus has been on how chronic antioxidant supplementation affects a training adaptation, where some studies are reporting an abolished adaptation. Whether acute antioxidant supplementation could have a positive effect on fatigue and performance is interesting and highly relevant in sports where athletes are competing over several consecutive days or on the same day, with preliminary competitions in the morning and finals in the afternoon, where it is important for the athletes to recover fast. This review provides an overview of the effects of acute antioxidant supplementation and whether it leads to improved performance and/or faster recovery in humans.
Collapse
Affiliation(s)
- Steen Larsen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, Poland; Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|
3
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Fernández-Lázaro D, Domínguez-Ortega C, Busto N, Santamaría-Peláez M, Roche E, Gutiérez-Abejón E, Mielgo-Ayuso J. Influence of N-Acetylcysteine Supplementation on Physical Performance and Laboratory Biomarkers in Adult Males: A Systematic Review of Controlled Trials. Nutrients 2023; 15:nu15112463. [PMID: 37299425 DOI: 10.3390/nu15112463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
N-acetylcysteine (NAC) is used as a sports supplement for its ability to modulate exercise-induced oxidative damage through its antioxidant actions and maintenance of glutathione homeostasis, positioning NAC as a strategy to improve physical performance. We aimed to evaluate the current evidence on the benefits of NAC supplementation on physical performance and laboratory biomarkers in adult men. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically reviewed studies indexed in the Web of Science, Scopus, and PubMed to assess the effects of NAC on physical performance, laboratory biomarkers, and adverse effects in adult men. Original articles published up to 30 April 2023 with a controlled trial design comparing NAC supplementation with a control group were included. The modified McMaster Critical Review Form for Quantitative Studies was used as an assessment tool and the Cochrane Risk of Bias was applied. Of the 777 records identified in the search, 16 studies met the inclusion and exclusion criteria. Overall, most of the trials reported beneficial effects of NAC supplementation and no serious adverse events were reported. Participants supplemented with NAC showed significant improvements in exercise performance, antioxidant capacity, and glutathione homeostasis. However, there was no clear evidence of beneficial effects of NAC supplementation on haematological markers, inflammatory response, and muscle behaviour. NAC supplementation appears to be safe and may regulate glutathione homeostasis, have antioxidant effects, and improve exercise performance. However, further studies are needed to clarify the relevance of its use.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
| | - Carlos Domínguez-Ortega
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Hematology Service of "Santa Bárbara Hospital", Castile and Leon Health (SACyL), 42003 Soria, Spain
- Hematology Service of "Latorre Hospital", 42004 Soria, Spain
| | - Natalia Busto
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Mirian Santamaría-Peláez
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| | - Enrique Roche
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernandez, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute (ISCIII), 28029 Madrid, Spain
| | - Eduardo Gutiérez-Abejón
- Pharmacological Big Data Laboratory, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Pharmacy Directorate, Castilla y León Health Council, 47007 Valladolid, Spain
| | - Juan Mielgo-Ayuso
- Research Group "Nutrition and Physical Activity", Spanish Nutrition Society "SEÑ", 28010 Madrid, Spain
- Department of Health Sciences, Faculty of Health Sciences, University of Burgos, 09001 Burgos, Spain
| |
Collapse
|
5
|
Nejati M, Dehghan P, Jamilian P, Zarezadeh M. The effects of N-acetylcysteine on recovery biomarkers: A systematic review and meta-analysis of controlled trials. J Food Biochem 2022; 46:e14116. [PMID: 35261035 DOI: 10.1111/jfbc.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
N-acetylcysteine (NAC) is one of the antioxidant supplements which is thought to improve recovery. Existing studies regarding NAC and recovery presented conflicting results. This systematic review and meta-analysis evaluated the existing trials and determined the efficacy of acute and chronic NAC administration on recovery biomarkers. PubMed, Web of Science, and Scopus were searched up to July 2021. The random effects or fixed effects model was applied in the meta-analysis. Sensitivity and subgroup analyses were performed. In case of the presence of publication bias, standard methods were applied. The meta-analysis comprised 37 papers (1,388 participants). All included studies were in English language. Acute NAC administration indicated no significant effects on lactate, pH, VO2 , and CPK-MB ([SMD = -0.06 mmol/L; 95% CI: -0.40, 0.28; p = .714], [SMD = 0.17; 95% CI: -0.28, 0.62; p = .454], [SMD = -0.11 L/min; 95% CI: -0.63, 0.41; p = .686], and [SMD = -0.19 units/L; 95% CI: -0.62, 0.24; p = .395]). Additionally, no evidence of significant influence of chronic NAC administration on lactate, pH, VO2 , and CK was revealed ([SMD = 0.01 mmol/L; 95% CI: -0.25, 0.27; p = .950], [SMD = -0.51; 95% CI: -1.73, 0.70; p = .424], [SMD = -0.18 L/min; 95% CI: -0.56, 0.20; p = .361], and [SMD = -0.04 units/L; 95% CI: -0.36, 0.29; p = .821]). No considerable effect of NAC on recovery was found. PRACTICAL APPLICATIONS: Previous studies on the influence of NAC administration on recovery biomarkers have presented conflicting results. This systematic review and meta-analysis offers a broad range of detailed information on the influence of chronic and acute NAC supplementation outcomes regarding recovery biomarkers. Overall, the results support that NAC supplementation may not be effective in improving recovery biomarkers. However, subgroup analyses based on NAC dosage indicated the meaningful effect of NAC on CK-MB at the dosage of ≥100 mg/kg.
Collapse
Affiliation(s)
- Marzieh Nejati
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- Nutrition Research Center, Department of Biochemistry and Diet Therapy, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parsa Jamilian
- Keele Medical School, Keele University, Staffordshire, UK
| | - Meysam Zarezadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Clinical Nutrition, School of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
de Sousa MV, Lundsgaard AM, Christensen PM, Christensen L, Randers MB, Mohr M, Nybo L, Kiens B, Fritzen AM. Nutritional optimization for female elite football players-topical review. Scand J Med Sci Sports 2021; 32 Suppl 1:81-104. [PMID: 34865242 DOI: 10.1111/sms.14102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022]
Abstract
Women's football is an intermittent sport characterized by frequent intense actions throughout the match. The high number of matches with limited recovery time played across a long competitive season underlines the importance of nutritional strategies to meet these large physical demands. In order to maximize sport performance and maintain good health, energy intake must be optimal. However, a considerable proportion of female elite football players does not have sufficient energy intake to match the energy expenditure, resulting in low energy availability that might have detrimental physiologic consequences and impair performance. Carbohydrates appear to be the primary fuel covering the total energy supply during match-play, and female elite football players should aim to consume sufficient carbohydrates to meet the requirements of their training program and to optimize the replenishment of muscle glycogen stores between training bouts and matches. However, several macro- and micronutrients are important for ensuring sufficient energy and nutrients for performance optimization and for overall health status in female elite football players. The inadequacy of macro-and micronutrients in the diet of these athletes may impair performance and training adaptations, and increase the risk of health disorders, compromising the player's professional career. In this topical review, we present knowledge and relevant nutritional recommendations for elite female football players for the benefit of sports nutritionists, dietitians, sports scientists, healthcare specialists, and applied researchers. We focus on dietary intake and cover the most pertinent topics in sports nutrition for the relevant physical demands in female elite football players as follows: energy intake, macronutrient and micronutrient requirements and optimal composition of the everyday diet, nutritional and hydration strategies to optimize performance and recovery, potential ergogenic effects of authorized relevant supplements, and future research considerations.
Collapse
Affiliation(s)
- Maysa V de Sousa
- Laboratory of Medical Investigation, LIM-18, Endocrinology Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Anne-Marie Lundsgaard
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Lars Christensen
- Department of Nutrition, Exercise and Sports, Section of Obesity Research, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Randers
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,School of Sport Sciences, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Magni Mohr
- Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark.,Centre of Health Science, Faculty of Health, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, Section of Integrative Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Jessen S, Eibye K, Christensen PM, Hostrup M, Bangsbo J. No additive effect of acetaminophen when co-ingested with caffeine on cycling performance in well-trained young men. J Appl Physiol (1985) 2021; 131:238-249. [PMID: 34013747 DOI: 10.1152/japplphysiol.00108.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the effect of caffeine and acetaminophen on power output during a 6-min performance test, peripheral fatigue, and muscle protein kinase A (PKA) substrate phosphorylation. Fourteen men [age (means ± SD): 26 ± 6 yr; V̇o2max: 63.9 ± 5.0 mL·min-1·kg-1] completed four randomized trials with acetaminophen (1,500 mg), caffeine (5 mg·kg body wt-1), combined caffeine and acetaminophen (caffeine + acetaminophen), or placebo. Mean power output during the 6-min performance test (placebo mean: 312 ± 41 W) was higher with caffeine (+5 W; 95% CI: 1 to 9; P = 0.017) and caffeine + acetaminophen (+6 W; 95% CI: 0 to 12; P = 0.049) than placebo, but not with acetaminophen (+1 W; 95% CI: -4 to 7; P = 0.529). Decline in quadriceps maximal isometric voluntary torque immediately after the performance test was lower (treatment × time; P = 0.035) with acetaminophen (-40 N·m; 95% CI: -53 to -30; P < 0.001) and caffeine + acetaminophen (-44 N·m; 95% CI: -58 to -30; P < 0.001) than placebo (-53 N·m; 95% CI: -71 to -39; P < 0.001) but was similar with caffeine (-54 N·m; 95% CI: -69 to -38; P < 0.001). Muscle phosphocreatine content decreased more during the performance test (treatment × time; P = 0.036) with caffeine + acetaminophen (-55 mmol·kg dry wt-1; 95% CI: -65 to -46; P < 0.001) than placebo (-40 mmol·kg dry wt-1; 95% CI: -52 to -24; P < 0.001). Muscle net lactate accumulation was not different from placebo (+85 mmol·kg dry wt-1; 95% CI: 60 to 110; P < 0.001) for any treatment (treatment × time; P = 0.066), being +75 mmol·kg dry wt-1 (95% CI: 51 to 99; P < 0.001) with caffeine, +76 mmol·kg dry wt-1 (95% CI: 58 to 96; P < 0.001) with acetaminophen, and +103 mmol·kg dry wt-1 (95% CI: 89 to 115; P < 0.001) with caffeine + acetaminophen. Decline in muscle ATP and glycogen content and increase in PKA substrate phosphorylation was not different between treatments (treatment × time; P > 0.1). Thus, acetaminophen provides no additive performance enhancing effect to caffeine during 6-min maximal cycling. In addition, change in PKA activity is likely not a major mechanism of performance improvement with caffeine.NEW & NOTEWORTHY Here, we show that acetaminophen does not provide additive performance improvement to caffeine during a 6-min cycling ergometer performance test, and that acetaminophen does not improve performance on its own. Neither substance affects peripheral fatigue, muscle glycolytic energy production, or phosphorylation of muscle proteins of importance for ion handling. In contrast to previous suggestions, increased epinephrine action on muscle cells does not appear to be a major contributor to the performance enhancement with caffeine.
Collapse
Affiliation(s)
- Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter Møller Christensen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Team Danmark (Danish Elite Sports Organization), Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Devrim-Lanpir A, Hill L, Knechtle B. How N-Acetylcysteine Supplementation Affects Redox Regulation, Especially at Mitohormesis and Sarcohormesis Level: Current Perspective. Antioxidants (Basel) 2021; 10:antiox10020153. [PMID: 33494270 PMCID: PMC7909817 DOI: 10.3390/antiox10020153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/04/2023] Open
Abstract
Exercise frequently alters the metabolic processes of oxidative metabolism in athletes, including exposure to extreme reactive oxygen species impairing exercise performance. Therefore, both researchers and athletes have been consistently investigating the possible strategies to improve metabolic adaptations to exercise-induced oxidative stress. N-acetylcysteine (NAC) has been applied as a therapeutic agent in treating many diseases in humans due to its precursory role in the production of hepatic glutathione, a natural antioxidant. Several studies have investigated NAC’s possible therapeutic role in oxidative metabolism and adaptive response to exercise in the athletic population. However, still conflicting questions regarding NAC supplementation need to be clarified. This narrative review aims to re-evaluate the metabolic effects of NAC on exercise-induced oxidative stress and adaptive response developed by athletes against the exercise, especially mitohormetic and sarcohormetic response.
Collapse
Affiliation(s)
- Aslı Devrim-Lanpir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Istanbul Medeniyet University, Istanbul 34862, Turkey;
| | - Lee Hill
- Division of Gastroenterology and Nutrition, Department of Pediatrics, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Beat Knechtle
- Medbase St. Gallen am Vadianplatz, 9001 St. Gallen, Switzerland
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: ; Tel.: +41-0-71-226-93-00
| |
Collapse
|