1
|
Zhang Z, Zhu L, Wang Z, Hua N, Hu S, Chen Y. Can the new adipokine asprosin be a metabolic troublemaker for cardiovascular diseases? A state-of-the-art review. Prog Lipid Res 2023; 91:101240. [PMID: 37473965 DOI: 10.1016/j.plipres.2023.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Adipokines play a significant role in cardiometabolic diseases. Asprosin, a newly discovered adipokine, was first identified as a glucose-raising protein hormone. Asprosin also stimulates appetite and regulates glucose and lipid metabolism. Its identified receptors so far include Olfr734 and Ptprd. Clinical studies have found that asprosin may be associated with cardiometabolic diseases. Asprosin may have diagnostic and therapeutic potential in obesity, diabetes, metabolic syndrome and atherosclerotic cardiovascular diseases. Herein, the structure, receptors, and functions of asprosin and its relationship with cardiometabolic diseases are summarized based on recent findings.
Collapse
Affiliation(s)
- Zhengbin Zhang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Liwen Zhu
- Department of Cardiology, The Fourth Medical Centre, Chinese PLA General Hospital, 51 Fucheng Road, Beijing 100048, China
| | - Ziqian Wang
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Chinese PLA Medical School, 28 Fuxing Road, Beijing 100853, China
| | - Ning Hua
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China; Department of Cardiology, The Eighth Medical Centre, Chinese PLA General Hospital, 17 Heishanhu Road, Beijing 100091, China
| | - Shunying Hu
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Centre, Chinese PLA General Hospital, 6 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
2
|
Mirr M, Braszak-Cymerman A, Ludziejewska A, Kręgielska-Narożna M, Bogdański P, Bryl W, Owecki M. Serum Asprosin Correlates with Indirect Insulin Resistance Indices. Biomedicines 2023; 11:1568. [PMID: 37371663 DOI: 10.3390/biomedicines11061568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/06/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Insulin resistance is a major contributor to the development of type 2 diabetes and can be assessed using indirect indicators calculated from non-invasive tests. Asprosin is a recently discovered adipokine with a postulated effect on glycemic regulation. This study aimed to investigate the correlation between serum asprosin levels and insulin resistance indices. The correlation between circulating asprosin and obesity indices was also investigated. MATERIALS AND METHODS A total of 50 non-diabetic patients with obesity and 50 healthy volunteers were studied. Laboratory data, including circulating asprosin and anthropometric data, were collected. The following insulin resistance indices were calculated: triglyceride-glucose index (TyG), TyG-neck circumference (TyG-NC), TyG-neck circumference to height ratio (TyG-NHtR), TyG-waist circumference (TyG-WC), TyG-waist to height ratio (TyG-WHtR), TyG-body mass index (TyG-BMI), and the ratio between triglycerides and high-density cholesterol (TG/HDLc). The obtained data were analyzed separately for males and females. RESULTS Asprosin concentrations were significantly higher in obese patients (p < 0.001). Asprosin concentrations positively correlated with body mass index (p < 0.001, r = 0.8 in females and r = 0.8 in males), waist circumference (p < 0.001, r = 0.73 in females and r = 0.81 in males), and all tested indices of insulin resistance. The strongest correlation was observed for TyG-BMI (p < 0.001, r = 0.78 in females and r = 0.81 in males). Circulating asprosin was higher in females (p < 0.001). CONCLUSIONS Asprosin can be considered a marker of obesity and insulin resistance.
Collapse
Affiliation(s)
- Małgorzata Mirr
- Department of Public Health, Poznan University of Medical Sciences, Rokietnicka St. 4, 60-806 Poznań, Poland
- The Doctoral School of the Poznan University of Medical Sciences, Bukowska St. 70, 60-812 Poznań, Poland
| | - Anna Braszak-Cymerman
- Department of Internal Diseases, Metabolic Disorders and Hypertension, Poznan University of Medical Sciences, Szamarzewskiego St. 84, 60-569 Poznań, Poland
| | - Aleksandra Ludziejewska
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Szamarzewskiego St. 84, 60-569 Poznań, Poland
| | - Matylda Kręgielska-Narożna
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego St. 84, 60-569 Poznań, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego St. 84, 60-569 Poznań, Poland
| | - Wiesław Bryl
- Department of Internal Diseases, Metabolic Disorders and Hypertension, Poznan University of Medical Sciences, Szamarzewskiego St. 84, 60-569 Poznań, Poland
| | - Maciej Owecki
- Department of Public Health, Poznan University of Medical Sciences, Rokietnicka St. 4, 60-806 Poznań, Poland
| |
Collapse
|
3
|
Charles S, Liu Y, Kimita W, Ko J, Bharmal SH, Petrov MS. Effect of D-β-hydroxybutyrate-( R)-1,3 butanediol on plasma levels of asprosin and leptin: results from a randomised controlled trial. Food Funct 2023; 14:759-768. [PMID: 36594212 DOI: 10.1039/d2fo02405e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: D-β-Hydroxybutyrate-(R)-1,3 butanediol - a non-racemic ketone monoester for ingestion - has emerged as an effective way to achieve acute nutritional ketosis. Whether white adipose tissue plays a role in effects of acute nutritional ketosis is largely unknown. Objective: To investigate the effects of acute nutritional ketosis on plasma levels of asprosin and leptin and if they are affected by abdominal fat phenotypes. Methods: The design was a randomised crossover trial. Participants received either the D-β-hydroxybutyrate-(R)-1,3 butanediol monoester (KEβHB) drink or placebo drink. Blood samples were collected at baseline, 30, 60, 90, 120, and 150 minutes. 3.0 Tesla magnetic resonance imaging was used to measure visceral and subcutaneous fat volumes (VFV and SFV, respectively), intra-hepatic fat deposition (IHFD), and intra-pancreatic fat deposition (IPFD). Results: A total of 18 adults were randomised, with no drop-outs. There were no significant differences in plasma levels of asprosin and leptin (p = 0.808 and p = 0.907, respectively) between the KEβHB and placebo drinks. There was no effect of time, treatment, or interaction between time and treatment on asprosin and leptin. After stratification by the VFV/SFV ratio, IHFD, and IPFD, there were no differences in asprosin and leptin between the KEβHB and placebo drinks. Conclusion: Plasma levels of asprosin and leptin were not significantly affected by acute nutritional ketosis. Abdominal fat phenotypes did not significantly affect circulating levels of the two hormones. White adipose tissue does not appear to play a role in altering hormone levels during acute nutritional ketosis. The clinical trial registry number is NCT03889210 (https://clinicaltrials.gov).
Collapse
Affiliation(s)
- Sanjali Charles
- School of Medicine, University of Auckland, Auckland, New Zealand.
| | - Yutong Liu
- School of Medicine, University of Auckland, Auckland, New Zealand.
| | - Wandia Kimita
- School of Medicine, University of Auckland, Auckland, New Zealand.
| | - Juyeon Ko
- School of Medicine, University of Auckland, Auckland, New Zealand.
| | - Sakina H Bharmal
- School of Medicine, University of Auckland, Auckland, New Zealand.
| | - Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Farrag M, Ait Eldjoudi D, González-Rodríguez M, Cordero-Barreal A, Ruiz-Fernández C, Capuozzo M, González-Gay MA, Mera A, Lago F, Soffar A, Essawy A, Pino J, Farrag Y, Gualillo O. Asprosin in health and disease, a new glucose sensor with central and peripheral metabolic effects. Front Endocrinol (Lausanne) 2023; 13:1101091. [PMID: 36686442 PMCID: PMC9849689 DOI: 10.3389/fendo.2022.1101091] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Adipose tissue malfunction leads to altered adipokine secretion which might consequently contribute to an array of metabolic diseases spectrum including obesity, diabetes mellitus, and cardiovascular disorders. Asprosin is a novel diabetogenic adipokine classified as a caudamin hormone protein. This adipokine is released from white adipose tissue during fasting and elicits glucogenic and orexigenic effects. Although white adipose tissue is the dominant source for this multitask adipokine, other tissues also may produce asprosin such as salivary glands, pancreatic B-cells, and cartilage. Significantly, plasma asprosin levels link to glucose metabolism, lipid profile, insulin resistance (IR), and β-cell function. Indeed, asprosin exhibits a potent role in the metabolic process, induces hepatic glucose production, and influences appetite behavior. Clinical and preclinical research showed dysregulated levels of circulating asprosin in several metabolic diseases including obesity, type 2 diabetes mellitus (T2DM), polycystic ovarian syndrome (PCOS), non-alcoholic fatty liver (NAFLD), and several types of cancer. This review provides a comprehensive overview of the asprosin role in the etiology and pathophysiological manifestations of these conditions. Asprosin could be a promising candidate for both novel pharmacological treatment strategies and diagnostic tools, although developing a better understanding of its function and signaling pathways is still needed.
Collapse
Affiliation(s)
- Mariam Farrag
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- Euro-Mediterranean Master in neuroscience and Biotechnology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Djedjiga Ait Eldjoudi
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - María González-Rodríguez
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Program in Drug Research and Development, Santiago de Compostela, Spain
| | - Alfonso Cordero-Barreal
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
- International PhD School of the University of Santiago de Compostela (EDIUS), Doctoral Program in Medicine Clinical Research, Santiago de Compostela, Spain
| | - Maurizio Capuozzo
- National Health Service, Local Health Authority ASL 3 Napoli Sud, Department of Pharmacy, Naples, Italy
| | - Miguel Angel González-Gay
- Hospital Universitario Marqués de Valdecilla, Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, IDIVAL, University of Cantabria, Santander, Cantabria, Spain
| | - Antonio Mera
- SERGAS, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude), IDIS (Instituto de Investigación Sanitaria de Santiago), Molecular and Cellular Cardiology Lab, Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ahmed Soffar
- Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Amina Essawy
- Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Yousof Farrag
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude), NEIRID Lab (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Research Laboratory 9, IDIS (Instituto de Investigación Sanitaria de Santiago), Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Differential Regulation of Genes by the Glucogenic Hormone Asprosin in Ovarian Cancer. J Clin Med 2022; 11:jcm11195942. [PMID: 36233808 PMCID: PMC9573256 DOI: 10.3390/jcm11195942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Ovarian cancer (OvCa) is one of the most lethal forms of gynaecological malignancy. Altered energy metabolism and increased aerobic glycolysis in OvCa are hallmarks that demand attention. The glucogenic hormone asprosin is often dysregulated in metabolic disorders such as insulin resistance, diabetes (type 2 and gestational), and preeclampsia. Despite association with metabolic disorders, its role in energy metabolism within the tumour microenvironment is yet to be explored. Here, we study the role of asprosin in OvCa using transcriptomics and expand on functional studies with clinical samples. Methods: RNA sequencing, functional gene enrichment analysis, Western blotting and ImageStream. Results: Following treatment with 100 nM of asprosin, the serous OvCa cell line, SKOV-3, displayed 160 and 173 gene regulatory changes, at 4 and 12 h respectively, when compared with control samples (p < 0.05 and Log2FC > 1). In addition to energy metabolism and glucose-related pathways, asprosin was shown to alter pathways associated with cell communication, TGF-β signalling, and cell proliferation. Moreover, asprosin was shown to induce phosphorylation of ERK1/2 in the same in vitro model. Using liquid biopsies, we also report for novel expression of asprosin’s predicted receptors OR4M1 and TLR4 in cancer-associated circulating cells; with significant reduction seen between pre-chemotherapy and end of first line chemotherapy, in addition to patients under maintenance with bevacizumab +/− olaparib for OR4M1. Conclusions: In relation to OvCa, asprosin appears to regulate numerous signalling pathways in-vitro. The prognostic potential of OR4M1 in liquid biopsies should also be explored further.
Collapse
|
6
|
Guzman A, Kurgan N, Moniz SC, McCarthy SF, Sale C, Logan-Sprenger H, Elliott-Sale KJ, Hazell TJ, Klentrou P. Menstrual Cycle Related Fluctuations in Circulating Markers of Bone Metabolism at Rest and in Response to Running in Eumenorrheic Females. Calcif Tissue Int 2022; 111:124-136. [PMID: 35429247 DOI: 10.1007/s00223-022-00970-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/10/2022] [Indexed: 11/02/2022]
Abstract
This study examined potential fluctuations in bone metabolic markers across the menstrual cycle both at rest and after a 30-min bout of continuous running at 80% of V̇O2max. Resting and post-exercise (0, 30, 90 min) sclerostin, parathyroid hormone (PTH), carboxy-terminal cross-linking telopeptide of type I collagen (β-CTXI), and procollagen type 1 N propeptide (PINP) were assessed in 10 eumenorrheic women (age: 21 ± 3 y, BMI: 23.2 ± 3.0 kg.m2) during the mid- to late-follicular (FP: day 8.0 ± 1.4) and mid-luteal (LP: day 22.0 ± 2.5) phases of the menstrual cycle. Ovulation was determined using ovulation kits and daily measurement of oral body temperature upon awakening. Menstrual cycle phase was subsequently confirmed by measurement of plasma estradiol and progesterone. On average, resting estradiol concentrations increased from 46.3 ± 8.9 pg·mL-1 in the FP to 67.3 ± 23.4 pg·mL-1 in the LP (p = 0.015), and resting progesterone increased from 4.12 ± 2.36 ng·mL-1 in the FP to 11.86 ± 4.49 ng·mL-1 in the LP (p < 0.001). At rest, there were no differences between menstrual cycle phases in sclerostin (FP: 260.1 ± 135.0 pg·mL-1; LP: 303.5 ± 99.9 pg·mL-1; p = 0.765), PTH (FP: 0.96 ± 0.64 pmol·L-1; LP: 0.79 ± 0.44 pmol·L-1; p = 0.568), β-CTXI (FP: 243.1 ± 158.0 ng·L-1; LP: 202.4 ± 92.3 ng·L-1; p = 0.198), and PINP (FP: 53.6 ± 8.9 μg·L-1; LP: 66.2 ± 20.2 μg·L-1; p = 0.093). Main effects for time (p < 0.05) were shown in sclerostin, PTH, β-CTXI and PINP, without phase or interaction effects. Sclerostin increased from pre- to immediately post-exercise (45%; p = 0.007), and so did PTH (43%; p = 0.011), both returning to resting concentrations 30 min post-exercise. β-CTXI decreased from pre- to post-exercise (20%; p = 0.027) and was still below its pre-exercise concentrations at 90 min post-exercise (17%; p = 0.013). PINP increased immediately post-exercise (29%; p < 0.001), returning to resting concentrations at 30 min post-exercise. These results demonstrate no effect of menstrual cycle phase on resting bone marker concentrations or on the bone metabolic marker response to intense exercise.
Collapse
Affiliation(s)
- Anne Guzman
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Sara C Moniz
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Craig Sale
- SHAPE Research Centre, Nottingham Trent University, Nottingham, UK
| | | | | | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
7
|
Liu L, Liu Y, Huang M, Zhang M, Zhu C, Chen X, Bennett S, Xu J, Zou J. The Effects of Asprosin on Exercise-Intervention in Metabolic Diseases. Front Physiol 2022; 13:907358. [PMID: 35899030 PMCID: PMC9311488 DOI: 10.3389/fphys.2022.907358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Fibrillin is the major constituent of extracellular microfibrils, which are distributed throughout connective tissues. Asprosin is derived from the C-terminal region of the FBN1 gene, which encodes profibrillin that undergoes cleavage by furin protein. In response to fasting with low dietary glucose, asprosin is released as a secreted factor from white adipose tissue, and is transported to the liver for the mediation of glucose release into the blood circulation. Through binding to OLFR734, an olfactory G-protein-coupled receptor in liver cells, asprosin induces a glucogenic effect to regulate glucose homeostasis. Bioinformatics analyses revealed that the FBN1 gene is abundantly expressed in human skeletal muscle-derived mesoangioblasts, osteoblast-like cells, and mesenchymal stem cells, indicating that the musculoskeletal system might play a role in the regulation of asprosin expression. Interestingly, recent studies suggest that asprosin is regulated by exercise. This timely review discusses the role of asprosin in metabolism, its receptor signalling, as well as the exercise regulation of asprosin. Collectively, asprosin may have a vital regulatory effect on the improvement of metabolic disorders such as diabetes mellitus and obesity via exercise.
Collapse
Affiliation(s)
- Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuhao Liu
- Department of Orthopaedic, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Mei Huang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Miao Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Chenyu Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xi Chen
- School of Sports Science, Wenzhou Medical University, Wenzhou, China
| | - Samuel Bennett
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Jun Zou, ; Jiake Xu,
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Jun Zou, ; Jiake Xu,
| |
Collapse
|
8
|
Moradi N, Fouani FZ, Vatannejad A, Bakhti Arani A, Shahrzad S, Fadaei R. Serum levels of Asprosin in patients diagnosed with coronary artery disease (CAD): a case-control study. Lipids Health Dis 2021; 20:88. [PMID: 34419063 PMCID: PMC8380384 DOI: 10.1186/s12944-021-01514-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/01/2021] [Indexed: 01/02/2023] Open
Abstract
Background Coronary artery disease (CAD) is considered as a multi-faceted chronic inflammatory disease involving reduced blood supply to the myocardium as a result of accumulating lipids in the atrial walls. Visceral adiposity with disrupted release of adipokines play a key role in its pathogenesis. Asprosin is a newly identified fasting-induced glucogenic adipokine that has been related with metabolic disorders such as type II diabetes mellitus and polycystic ovary syndrome. The preset study sought to assess circulating asprosin in context of CAD. Methods In this study, serum levels of asprosin were determined in 88 CAD patients and 88 non-CAD healthy controls. Serum IL-6, TNF-α, asprosin and adiponectin were assessed using ELISA kits. Results: Serum asprosin was found to be higher in CAD patients when compared to non-CAD subjects (7.84 ± 2.08 versus 5.02 ± 1.29 μg/mL, p < 0.001). Similarly, serum TNF-α, and IL-6 elevated in CAD group significantly (p < 0.001). However, circulating adiponectin diminished in CAD group when compared with non-CAD subjects (p < 0.001). Moreover, serum asprosin levels directly correlated with BMI, FBG, HOMA-IR, TG and TC. Logistic regression analyses showed that asprosin levels were associated with increased risk of developing CAD (odds ratio: 3.01, 95% CI: 2.16, 4.20 and p < 0.001), after adjusting for potential confounders (age, sex and BMI). Conclusions The present study findings suggested a possible relation of serum asprosin with the pathogenesis of CAD, in particular through insulin resistance and dyslipidemia.
Collapse
Affiliation(s)
- Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatima Zahraa Fouani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Abbas Bakhti Arani
- Department of Cardiology, Dr Shariatee training and research Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Shahrzad
- Department of Cardiology, Dr Shariatee training and research Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Mazur-Bialy AI. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients 2021; 13:nu13020620. [PMID: 33673009 PMCID: PMC7918151 DOI: 10.3390/nu13020620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Asprosin is a recently discovered protein released during fasting conditions mainly by adipocytes from white adipose tissue. As a glucogenic peptide, it stimulates the release of glucose from hepatic cells by binding to the OLFR734 receptor and leading to the activation of the G protein-cAMP-PKA pathway. As it crosses the blood–brain barrier, it also acts as an orexigenic peptide that stimulates food intake through activation of AgRP neurons in the hypothalamus; thus, asprosin participates in maintaining the body’s energy homeostasis. Moreover, studies have shown that asprosin levels are pathologically elevated in obesity and related diseases. However, the administration of anti-asprosin antibodies can both normalize its concentration and reduce food intake in obese mice, which makes it an interesting factor to combat obesity and related diseases. Current research also draws attention to the relationship between asprosin and fertility, especially in men. Asprosin improves age- and obesity-related decrease in fertility potential by improving sperm motility. It should also be mentioned that plasma asprosin levels can be differentially modulated by physical activity; intense anaerobic exercise increases asprosin level, while aerobic exercise decreases it. However, further research is necessary to confirm the exact mechanisms of asprosin activity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Agnieszka Irena Mazur-Bialy
- Department of Biomechanics and Kinesiology, Faculty of Health Science, Institute of Physiotherapy, Jagiellonian University Medical College, Skawińska 8, 31-066 Krakow, Poland
| |
Collapse
|