1
|
Heffner HE, Koay G, Heffner RS. Hearing in helmeted guineafowl (Numida meleagris): audiogram from 2 Hz to 10 kHz and localization acuity for brief noise bursts. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:65-73. [PMID: 37280367 DOI: 10.1007/s00359-023-01645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023]
Abstract
Behavioral hearing thresholds and noise localization acuity were determined using a conditioned avoidance/suppression procedure for three Helmeted guineafowl (Numida meleagris). The guineafowl responded to frequencies as low as 2 Hz at 82.5 dB SPL, and as high as 8 kHz at 84.5 dB SPL. At a level of 60 dB SPL, their hearing range spanned 8.12 octaves (24.6 Hz-6.86 kHz). Like most birds, they do not hear sounds above 8 kHz. However, the guineafowl demonstrated good low-frequency hearing (frequencies below 32 Hz), showing thresholds that are more sensitive than both the peafowl and pigeon, both of which hear infrasound. It thus appears that infrasound perception may be more common than previously thought and may have implications for species that inhabit areas with wind energy facilities. The guineafowls' minimum audible angle for a 100-ms broadband noise burst was 13.8 °, at the median for birds and near the mean for mammals. Unlike in mammals, the small sample of bird species and limited representation of lifestyles do not yet allow for meaningful interpretations of the selective pressures or mechanisms that underlie their abilities to locate sound sources.
Collapse
Affiliation(s)
- Henry E Heffner
- Department of Psychology, University of Toledo, Toledo, OH, USA
| | - Gimseong Koay
- Department of Psychology, University of Toledo, Toledo, OH, USA
| | - Rickye S Heffner
- Department of Psychology, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
2
|
Martonos CO, Gudea AI, Ratiu IA, Stan FG, Bolfă P, Little WB, Dezdrobitu CC. Anatomical, Histological, and Morphometrical Investigations of the Auditory Ossicles in Chlorocebus aethiops sabaeus from Saint Kitts Island. BIOLOGY 2023; 12:biology12040631. [PMID: 37106831 PMCID: PMC10135957 DOI: 10.3390/biology12040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/25/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023]
Abstract
Otological studies rely on a lot of data drawn from animal studies. A lot of pathological or evolutionary questions may find answers in studies on primates, providing insights into the morphological, pathological, and physiological aspects of systematic biological studies. Our study on auditory ossicles moves from a pure morphological (macroscopic and microscopic) investigation of auditory ossicles to the morphometrical evaluation of several individuals as well as to some interpretative data regarding some functional aspects drawn from these investigations. Particularities from this perspective blend with metric data and point toward comparative elements that might also serve as an important reference in further morphologic and comparative studies.
Collapse
Affiliation(s)
- Cristian Olimpiu Martonos
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Alexandru Ion Gudea
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana A Ratiu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Florin Gheorghe Stan
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Pompei Bolfă
- School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - William Brady Little
- School of Veterinary Medicine, Ross University, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | | |
Collapse
|
3
|
Peacock J, Benson MA, Greene NT, Tollin DJ, Young BA. The acoustical effect of the neck frill of the frill-necked lizard (Chlamydosaurus kingii). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:437. [PMID: 35931550 DOI: 10.1121/10.0012221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Animals localise sound by making use of acoustical cues resulting from space and frequency dependent filtering of sound by the head and body. Sound arrives at each ear at different times, with different intensities, and with varying spectral content, all of which are affected by the animal's head and the relative sound source position. Location cues in mammals benefit from structures (pinnae) that modify these cues and provide information that helps resolve the cone of confusion and provide cues to sound source elevation. Animals without pinnae must rely on other mechanisms to solve localisation problems. Most non-mammals lack pinna-like structures, but some possess other anatomical features that could influence hearing. One such animal is the frill-necked lizard (Chlamydosaurus kingii). The species' elaborate neck frill has been speculated to act as an aid to hearing, but no acoustical measurements have been reported. In this study, we characterise the frill's influence on the acoustical information available to the animal. Results suggest that the change in binaural cues is not sufficiently large to impact localisation behavior within the species' likely audiometric range; however, the frill does increase gain for sounds directly in front of the animal similar to a directional microphone.
Collapse
Affiliation(s)
- John Peacock
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Monica A Benson
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Nathaniel T Greene
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Daniel J Tollin
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Bruce A Young
- Kirksville College of Osteopathic Medicine, A. T. Still University, Kirksville, Missouri 63501, USA
| |
Collapse
|
4
|
|
5
|
Harper T, Rougier GW. Petrosal morphology and cochlear function in Mesozoic stem therians. PLoS One 2019; 14:e0209457. [PMID: 31412094 PMCID: PMC6693738 DOI: 10.1371/journal.pone.0209457] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/07/2019] [Indexed: 11/19/2022] Open
Abstract
Here we describe the bony anatomy of the inner ear and surrounding structures seen in three plesiomorphic crown mammalian petrosal specimens. Our study sample includes the triconodont Priacodon fruitaensis from the Upper Jurassic of North America, and two isolated stem therian petrosal specimens colloquially known as the Höövör petrosals, recovered from Aptian-Albian sediments in Mongolia. The second Höövör petrosal is here described at length for the first time. All three of these petrosals and a comparative sample of extant mammalian taxa have been imaged using micro-CT, allowing for detailed anatomical descriptions of the osteological correlates of functionally significant neurovascular features, especially along the abneural wall of the cochlear canal. The high resolution imaging provided here clarifies several hypotheses regarding the mosaic evolution of features of the cochlear endocast in early mammals. In particular, these images demonstrate that the membranous cochlear duct adhered to the bony cochlear canal abneurally to a secondary bony lamina before the appearance of an opposing primary bony lamina or tractus foraminosus. Additionally, while corroborating the general trend of reduction of venous sinuses and plexuses within the pars cochlearis seen in crownward mammaliaforms generally, the Höövör petrosals show the localized enlargement of a portion of the intrapetrosal venous plexus. This new vascular feature is here interpreted as the bony accommodation for the vein of cochlear aqueduct, a structure that is solely, or predominantly, responsible for the venous drainage of the cochlear apparatus in extant therians. Given that our fossil stem therian inner ear specimens appear to have very limited high-frequency capabilities, the development of these modern vascular features of the cochlear endocast suggest that neither the initiation or enlargement of the stria vascularis (a unique mammalian organ) was originally associated with the capacity for high-frequency hearing or precise sound-source localization.
Collapse
Affiliation(s)
- Tony Harper
- Center for Functional Anatomy and Evolution, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Guillermo W. Rougier
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
6
|
Mason MJ, Bennett NC, Pickford M. The middle and inner ears of the Palaeogene golden moleNamachloris: A comparison with extant species. J Morphol 2017; 279:375-395. [DOI: 10.1002/jmor.20779] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/24/2017] [Accepted: 11/08/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Matthew J. Mason
- University of Cambridge, Department of Physiology, Development & Neuroscience; Downing Street; Cambridge CB2 3EG United Kingdom
| | - Nigel C. Bennett
- Department of Zoology and Entomology; University of Pretoria; Pretoria 0002 South Africa
| | - Martin Pickford
- Sorbonne Universités, CR2P, UMR 7207 du CNRS, Département Histoire de la Terre, Muséum National d'Histoire Naturelle et Université Pierre et Marie Curie; France
| |
Collapse
|
7
|
Tucker AS. Major evolutionary transitions and innovations: the tympanic middle ear. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0483. [PMID: 27994124 PMCID: PMC5182415 DOI: 10.1098/rstb.2015.0483] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 01/08/2023] Open
Abstract
One of the most amazing transitions and innovations during the evolution of mammals was the formation of a novel jaw joint and the incorporation of the original jaw joint into the middle ear to create the unique mammalian three bone/ossicle ear. In this review, we look at the key steps that led to this change and other unusual features of the middle ear and how developmental biology has been providing an understanding of the mechanisms involved. This starts with an overview of the tympanic (air-filled) middle ear, and how the ear drum (tympanic membrane) and the cavity itself form during development in amniotes. This is followed by an investigation of how the ear is connected to the pharynx and the relationship of the ear to the bony bulla in which it sits. Finally, the novel mammalian jaw joint and versatile dentary bone will be discussed with respect to evolution of the mammalian middle ear.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Abigail S Tucker
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27 Guy's Hospital, London Bridge, London SE1 9RT, UK
| |
Collapse
|
8
|
van Hemmen JL, Christensen-Dalsgaard J, Carr CE, Narins PM. Animals and ICE: meaning, origin, and diversity. BIOLOGICAL CYBERNETICS 2016; 110:237-246. [PMID: 27838890 PMCID: PMC6020042 DOI: 10.1007/s00422-016-0702-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
ICE stands for internally coupled ears. More than half of the terrestrial vertebrates, such as frogs, lizards, and birds, as well as many insects, are equipped with ICE that utilize an air-filled cavity connecting the two eardrums. Its effect is pronounced and twofold. On the basis of a solid experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction iTD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source.
Collapse
Affiliation(s)
- J Leo van Hemmen
- Physik Department T35 and BCCN-Munich, Technische Universität München, 85747, Garching bei München, Germany.
| | | | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, MD, 20742-4415, USA
| | - Peter M Narins
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
9
|
Carr CE, Christensen-Dalsgaard J, Bierman H. Coupled ears in lizards and crocodilians. BIOLOGICAL CYBERNETICS 2016; 110:291-302. [PMID: 27734148 PMCID: PMC6003244 DOI: 10.1007/s00422-016-0698-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/17/2016] [Indexed: 05/22/2023]
Abstract
Lizard ears are coupled across the pharynx, and are very directional. In consequence all auditory responses should be directional, without a requirement for computation of sound source location. Crocodilian ears are connected through sinuses, and thus less tightly coupled. Coupling may improve the processing of low-frequency directional signals, while higher frequency signals appear to be progressively uncoupled. In both lizards and crocodilians, the increased directionality of the coupled ears leads to an effectively larger head and larger physiological range of ITDs. This increased physiological range is reviewed in the light of current theories of sound localization.
Collapse
Affiliation(s)
- Catherine E Carr
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA.
| | | | - Hilary Bierman
- Department of Biology, University of Maryland College Park, College Park, MD, 20742, USA
| |
Collapse
|