1
|
Zhang E, Li H, Liu C, Zhou H, Liu B, Feng C. Clinical value of circulating tumour cells in evaluating the efficacy of continuous hepatic arterial infusion among colorectal cancer patients. J Chemother 2024:1-9. [PMID: 38711365 DOI: 10.1080/1120009x.2024.2333650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
Few studies have been conducted to evaluate the efficacy of HAIC using circulating tumour cells (CTCs). In this study, a total of 100 patients who received HAIC treatment and CTC detection were selected. The results showed that after HAIC treatment, the levels of CTC, carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) decreased. Postoperative progression-free survival (PFS) rates between patients with positive and negative preoperative CTC results, and for CA19-9, CEA were significantly different. The positive rate of CTCs was 61% before chemotherapy and 23% after chemotherapy, and the correlation coefficient between the two was 0.385. Those whose CTC values increased after chemotherapy had shorter PFS rates. CTCs are an independent predictor of recurrence. Patients with CTC-positive results are more susceptible to recurrence. The CTC count in peripheral blood has a close bearing on the postoperative chemotherapy efficacy of patients with CRC and affects patients' PFS.
Collapse
Affiliation(s)
- Erying Zhang
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Haifei Li
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Caiyun Liu
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Haikun Zhou
- Department of Surgery Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Bo Liu
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| | - Chengbao Feng
- Department of Medical Oncology, No. 2 Hospital of Baoding, Baoding City, People's Republic of China
| |
Collapse
|
2
|
David P, Mittelstädt A, Kouhestani D, Anthuber A, Kahlert C, Sohn K, Weber GF. Current Applications of Liquid Biopsy in Gastrointestinal Cancer Disease-From Early Cancer Detection to Individualized Cancer Treatment. Cancers (Basel) 2023; 15:cancers15071924. [PMID: 37046585 PMCID: PMC10093361 DOI: 10.3390/cancers15071924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Worldwide, gastrointestinal (GI) cancers account for a significant amount of cancer-related mortality. Tests that allow an early diagnosis could lead to an improvement in patient survival. Liquid biopsies (LBs) due to their non-invasive nature as well as low risk are the current focus of cancer research and could be a promising tool for early cancer detection. LB involves the sampling of any biological fluid (e.g., blood, urine, saliva) to enrich and analyze the tumor's biological material. LBs can detect tumor-associated components such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and circulating tumor cells (CTCs). These components can reflect the status of the disease and can facilitate clinical decisions. LBs offer a unique and new way to assess cancers at all stages of treatment, from cancer screenings to prognosis to management of multidisciplinary therapies. In this review, we will provide insights into the current status of the various types of LBs enabling early detection and monitoring of GI cancers and their use in in vitro diagnostics.
Collapse
Affiliation(s)
- Paul David
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anke Mittelstädt
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Dina Kouhestani
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anna Anthuber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Kahlert
- Department of Surgery, Carl Gustav Carus University Hospital, 01307 Dresden, Germany
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital of Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, University Hospital of Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
3
|
Tao J, Zhu L, Yakoub M, Reißfelder C, Loges S, Schölch S. Cell-Cell Interactions Drive Metastasis of Circulating Tumor Microemboli. Cancer Res 2022; 82:2661-2671. [PMID: 35856896 DOI: 10.1158/0008-5472.can-22-0906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Circulating tumor cells are the cellular mediators of distant metastasis in solid malignancies. Their metastatic potential can be augmented by clustering with other tumor cells or nonmalignant cells, forming circulating tumor microemboli (CTM). Cell-cell interactions are key regulators within CTM that convey enhanced metastatic properties, including improved cell survival, immune evasion, and effective extravasation into distant organs. However, the cellular and molecular mechanism of CTM formation, as well as the biology of interactions between tumor cells and immune cells, platelets, and stromal cells in the circulation, remains to be determined. Here, we review the current literature on cell-cell interactions in homotypic and heterotypic CTM and provide perspectives on therapeutic strategies to attenuate CTM-mediated metastasis by targeting cell-cell interactions.
Collapse
Affiliation(s)
- Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mina Yakoub
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Vasseur A, Kiavue N, Bidard F, Pierga J, Cabel L. Clinical utility of circulating tumor cells: an update. Mol Oncol 2021; 15:1647-1666. [PMID: 33289351 PMCID: PMC8169442 DOI: 10.1002/1878-0261.12869] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
The prognostic role of circulating tumor cells (CTCs) has been clearly demonstrated in many types of cancer. However, their roles in diagnostic and treatment strategies remain to be defined. In this review, we present an overview of the current clinical validity of CTCs in nonmetastatic and metastatic cancer, and the main studies or concepts investigating the clinical utility of CTCs. In particular, we focus on breast, lung, colorectal, and prostate cancer. Two major topics concerning the clinical utility of CTC are discussed: treatment based on CTC count or CTC variations, and treatment based on the molecular characteristics of CTCs. Although some of these studies are inconclusive, many are still ongoing, and their results could help to define the role of CTCs in the management of cancers. A summary of published or ongoing phase II-III trials is also presented.
Collapse
Affiliation(s)
- Antoine Vasseur
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - Nicolas Kiavue
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
| | - François‐Clément Bidard
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- UVSQParis‐Saclay UniversityFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| | - Jean‐Yves Pierga
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
- Paris UniversityFrance
| | - Luc Cabel
- Department of Medical OncologyParis and Saint‐Cloud Institut CurieFrance
- Circulating Tumor Biomarkers laboratoryInserm CIC‐BT 1428Institut CurieParisFrance
| |
Collapse
|
5
|
Prospective Comparison of the Prognostic Relevance of Circulating Tumor Cells in Blood and Disseminated Tumor Cells in Bone Marrow of a Single Patient's Cohort With Esophageal Cancer. Ann Surg 2021; 273:299-305. [PMID: 31188197 DOI: 10.1097/sla.0000000000003406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Aim of this prospective study was to evaluate the prognostic significance of disseminated tumor cells (DTCs) and circulating tumor cells (CTCs) in 1 cohort of patients with esophageal cancer (EC). BACKGROUND Hematogenous tumor cell dissemination is a key event in tumor progression, and clinical significance of DTCs and CTCs are controversially discussed in the literature. However, evaluation of both biomarker in 1 patient's cohort has not been described before. METHODS In this prospective, single-center study, 76 patients with preoperatively nonmetastatic staged EC were included. The CellSearch system was used to enumerate CTCs. Bone marrow was aspirated from the iliac crest and cells were enriched by Ficoll density gradient centrifugation. DTCs were immunostained with the pan-keratin antibody A45-B/B3. RESULTS Fifteen of 76 patients (19.7%) harbored CTCs, whereas in 13 of 76 patients (17.1%), DTCs could be detected. In only 3 patients (3.9%), CTCs and DTCs were detected simultaneously, whereas concordant results (DTC/CTC negative and DTC/CTC positive) were found in 54 patients (71.1%). Surprisingly, only patients with CTCs showed significant shorter overall and relapse-free survival (P = 0.038 and P = 0.004, respectively). Multivariate analyses revealed that only the CTC status was an independent predictor of overall and relapse-free survival (P = 0.007 and P < 0.001, respectively). CONCLUSIONS This is the first study analyzing CTC and DTC status in 1 cohort of nonmetastatic patients with EC. In this early disease stage, only the CTC status was an independent, prognostic marker suitable and easy to use for clinical staging of patients with EC.
Collapse
|
6
|
Viator JA, Hazur M, Sajewski A, Tarhini A, Sanders ME, Edgar RH. Photoacoustic detection of circulating melanoma cells in late stage patients. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2020; 13:2050023. [PMID: 34163541 PMCID: PMC8218985 DOI: 10.1142/s1793545820500236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Melanoma is the deadliest skin cancer and is responsible for over 7000 deaths in the US annually. The spread of cancer, or metastasis, is responsible for these deaths, as secondary tumors interrupt normal organ function. Circulating tumor cells, or those cells that spread throughout the body from the primary tumor, are thought to be responsible for metastasis. We developed an optical method, photoacoustic flow cytometry, in order to detect and enumerate circulating melanoma cells (CMCs) from blood samples of patients. We tested the blood of Stage IV melanoma patients to show the ability of the photoacoustic flow cytometer to detect these rare cells in blood. We then tested the system on archived blood samples from Stage III melanoma patients with known outcomes to determine if detection of CMCs can predict future metastasis. We detected between 0 and 66 CMCs in Stage IV patients. For the Stage III study, we found that of those samples with CMCs, 2 remained disease free and 5 developed metastasis. Of those without CMCs, 6 remained disease free and 1 developed metastasis. We believe that photoacoustic detection of CMCs provides valuable information for the prediction of metastasis and we postulate a system for more accurate prognosis.
Collapse
Affiliation(s)
- John A Viator
- Department of Engineering, Duquesne University, 600 Forbes Avenue Pittsburgh, Pennsylvania 15282, USA
| | - Marc Hazur
- Department of Engineering, Duquesne University, 600 Forbes Avenue Pittsburgh, Pennsylvania 15282, USA
| | - Andrea Sajewski
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street Pittsburgh, PA 15260, USA
| | - Ahmad Tarhini
- Moffitt Comprehensive Cancer Center and Research Institute, 10920 McKinley Drive Tampa, Florida 33612, USA
| | - Martin E Sanders
- Acousys Biodevices Inc, 1777 Highland Drive Ann Arbor, Michigan 48108, USA
| | - Robert H Edgar
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street Pittsburgh, PA 15260, USA
| |
Collapse
|
7
|
Abstract
Circulating tumor cells (CTCs) in the blood have been used as diagnostic markers in patients with colorectal cancer (CRC). In this study, we evaluated a CTC detection system based on cell size to assess CTCs and their potential as early diagnostic and prognostic biomarkers for CRC.
Collapse
|
8
|
Comparative Analysis of Blood and Bone Marrow for the Detection of Circulating and Disseminated Tumor Cells and Their Prognostic and Predictive Value in Esophageal Cancer Patients. J Clin Med 2020; 9:jcm9082674. [PMID: 32824841 PMCID: PMC7464950 DOI: 10.3390/jcm9082674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 01/21/2023] Open
Abstract
Hematogenic tumor cell spread is a key event in metastasis. However, the clinical significance of circulating tumor cells (CTC) in the blood and disseminated tumor cells (DTC) in bone marrow is still not fully understood. Here, the presence of DTC and CTC in esophageal cancer (EC) patients and its correlation with clinical parameters was investigated to evaluate the CTC/DTC prognostic value in EC. This study included 77 EC patients with complete surgical tumor resection. CTC and DTC were analyzed in blood and bone marrow using nested CK20 reverse transcription-nested polymerase chain reaction (RT-PCR) and findings were correlated with clinical data. Twenty-seven of 76 patients (36.5%) showed CK20 positivity in the blood, 19 of 61 patients (31.1%) in bone marrow, and 40 (51.9%) of 77 patients were positive in either blood or bone marrow or both. In multivariate analyses, only the DTC status emerged as independent predictor of overall and tumor specific survival. Our study revealed that, while the presence of CTC in blood is not associated with a worse prognosis, DTC detection in the bone marrow is a highly specific and independent prognostic marker in EC patients. Larger cohort studies could unravel how this finding can be translated into improved therapy management in EC.
Collapse
|
9
|
Zhu L, Hissa B, Győrffy B, Jann JC, Yang C, Reissfelder C, Schölch S. Characterization of Stem-like Circulating Tumor Cells in Pancreatic Cancer. Diagnostics (Basel) 2020; 10:E305. [PMID: 32429174 PMCID: PMC7278018 DOI: 10.3390/diagnostics10050305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/26/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most frequent cause of death from cancer. Circulating tumor cells (CTCs) with stem-like characteristics lead to distant metastases and thus contribute to the dismal prognosis of PDAC. Our purpose is to investigate the role of stemness in CTCs derived from a genetically engineered mouse model of PDAC and to further explore the potential molecular mechanisms. The publically available RNA sequencing dataset GSE51372 was analyzed, and CTCs with (CTC-S) or without (CTC-N) stem-like features were discriminated based on a principal component analysis (PCA). Differentially expressed genes, weighted gene co-expression network analysis (WGCNA), and further functional enrichment analyses were performed. The prognostic role of the candidate gene (CTNNB1) was assessed in a clinical PDAC patient cohort. Overexpression of the pluripotency marker Klf4 (Krüppel-like factor 4) in CTC-S cells positively correlates with Ctnnb1 (β-Catenin) expression, and their interaction presumably happens via protein-protein binding in the nucleus. As a result, the adherens junction pathway is significantly enriched in CTC-S. Furthermore, the overexpression of Ctnnb1 is a negative prognostic factor for progression-free survival (PFS) and relapse-free survival (RFS) in human PDAC cohort. Overexpression of Ctnnb1 may thus promote the metastatic capabilities of CTCs with stem-like properties via adherens junctions in murine PDAC.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
| | - Barbara Hissa
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary;
- TTK Cancer Biomarker Research Group, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Johann-Christoph Jann
- Department of Medicine III, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany;
| | - Cui Yang
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
| | - Christoph Reissfelder
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Schölch
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (L.Z.); (B.H.); (C.Y.); (C.R.)
- German Cancer Consortium (DKTK) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Gauging the Impact of Cancer Treatment Modalities on Circulating Tumor Cells (CTCs). Cancers (Basel) 2020; 12:cancers12030743. [PMID: 32245166 PMCID: PMC7140032 DOI: 10.3390/cancers12030743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The metastatic cascade consists of multiple complex steps, but the belief that it is a linear process is diminishing. In order to metastasize, cells must enter the blood vessels or body cavities (depending on the cancer type) via active or passive mechanisms. Once in the bloodstream and/or lymphatics, these cancer cells are now termed circulating tumor cells (CTCs). CTC numbers as well as CTC clusters have been used as a prognostic marker with higher numbers of CTCs and/or CTC clusters correlating with an unfavorable prognosis. However, we have very limited knowledge about CTC biology, including which of these cells are ultimately responsible for overt metastatic growth, but due to the fact that higher numbers of CTCs correlate with a worse prognosis; it would seem appropriate to either limit CTCs and/or their dissemination. Here, we will discuss the different cancer treatments which may inadvertently promote the mobilization of CTCs and potential CTC therapies to decrease metastasis.
Collapse
|
11
|
Toh JWT, Lim SH, MacKenzie S, de Souza P, Bokey L, Chapuis P, Spring KJ. Association Between Microsatellite Instability Status and Peri-Operative Release of Circulating Tumour Cells in Colorectal Cancer. Cells 2020; 9:cells9020425. [PMID: 32059485 PMCID: PMC7072224 DOI: 10.3390/cells9020425] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
Abstract
Microsatellite instability (MSI) in colorectal cancer (CRC) is a marker of immunogenicity and is associated with an increased abundance of tumour infiltrating lymphocytes (TILs). In this subgroup of colorectal cancer, it is unknown if these characteristics translate into a measurable difference in circulating tumour cell (CTC) release into peripheral circulation. This is the first study to compare MSI status with the prevalence of circulating CTCs in the peri-operative colorectal surgery setting. For this purpose, 20 patients who underwent CRC surgery with curative intent were enrolled in the study, and peripheral venous blood was collected at pre- (t1), intra- (t2), immediately post-operative (t3), and 14–16 h post-operative (t4) time points. Of these, one patient was excluded due to insufficient blood sample. CTCs were isolated from 19 patients using the IsofluxTM system, and the data were analysed using the STATA statistical package. CTC number was presented as the mean values, and comparisons were made using the Student t-test. There was a trend toward increased CTC presence in the MSI-high (H) CRC group, but this was not statistically significant. In addition, a Poisson regression was performed adjusting for stage (I-IV). This demonstrated no significant difference between the two MSI groups for pre-operative time point t1. However, time points t2, t3, and t4 were associated with increased CTC presence for MSI-H CRCs. In conclusion, there was a trend toward increased CTC release pre-, intra-, and post-operatively in MSI-H CRCs, but this was only statistically significant intra-operatively. When adjusting for stage, MSI-H was associated with an increase in CTC numbers intra-operatively and post-operatively, but not pre-operatively.
Collapse
Affiliation(s)
- James W. T. Toh
- Medical Oncology, Ingham Institute of Applied Research, School of Medicine, Western Sydney University and SWS Clinical School, UNSW Sydney 2170, NSW, Australia
- Division of Colorectal Surgery, Department of Surgery, Westmead Hospital, Sydney 2145, Australia
- Department of Colorectal Surgery, Concord Hospital and Discipline of Surgery, Sydney Medical School, University of Sydney, Sydney 2137, Australia
- Correspondence: (J.W.T.T.); (K.J.S.); Tel.: +61-2-8738-9032 (K.J.S.)
| | - Stephanie H. Lim
- Medical Oncology, Ingham Institute of Applied Research, School of Medicine, Western Sydney University and SWS Clinical School, UNSW Sydney 2170, NSW, Australia
| | - Scott MacKenzie
- Liverpool Clinical School, Western Sydney University, Sydney 2170, Australia
| | - Paul de Souza
- Medical Oncology, Ingham Institute of Applied Research, School of Medicine, Western Sydney University and SWS Clinical School, UNSW Sydney 2170, NSW, Australia
- Liverpool Clinical School, Western Sydney University, Sydney 2170, Australia
| | - Les Bokey
- Liverpool Clinical School, Western Sydney University, Sydney 2170, Australia
| | - Pierre Chapuis
- Department of Colorectal Surgery, Concord Hospital and Discipline of Surgery, Sydney Medical School, University of Sydney, Sydney 2137, Australia
| | - Kevin J. Spring
- Medical Oncology, Ingham Institute of Applied Research, School of Medicine, Western Sydney University and SWS Clinical School, UNSW Sydney 2170, NSW, Australia
- Liverpool Clinical School, Western Sydney University, Sydney 2170, Australia
- Correspondence: (J.W.T.T.); (K.J.S.); Tel.: +61-2-8738-9032 (K.J.S.)
| |
Collapse
|
12
|
Huang M, Ji Y, Yan J, Qi T, Zhang SF, Li T, Lü S, Liu Y, Liu M. A nano polymer conjugate for dual drugs sequential release and combined treatment of colon cancer and thrombotic complications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110697. [PMID: 32204009 DOI: 10.1016/j.msec.2020.110697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
Thrombotic complications turn into the second leading cause of death in colon cancer patients due to the hypercoagulable state caused by malignancy. Therefore, it is necessary to treat colon cancer and its thrombosis complications simultaneously. Herein, a nano polymer conjugate based on disulfide cross-linked low-generation peptide dendrimers was developed to treat colon cancer and its thrombotic complications. First, two-generation polyglutamic acid dendrimer was bonded to nattokinase (NK) and then cross-linkers containing disulfide linkages were used to obtain polymer conjugates (NK-G2)n. Then doxorubicin (Dox) was encapsulated. The system can release drugs sequentially due to the dissociation of the polymer conjugates. In vitro thrombolytic experiments exhibited a significant thrombolysis ability of (NK-G2)n. The toxicity and cellular uptake tests on HCT116 cells showed that Dox loaded polymer conjugates had good endocytosis ability and anti-cancer effect. Therefore, this drug delivery system will be a promising strategy to the combined treatment of colon cancer and thrombotic complications.
Collapse
Affiliation(s)
- Mengjie Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yanzheng Ji
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jia Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Taomei Qi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shao-Fei Zhang
- Institute of Agroforestry and Technology, Longnan Teacher's College, Longnan 742500, China
| | - Tao Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Yongming Liu
- The First School of Clinic Medicine, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
13
|
Nanduri LK, Hissa B, Weitz J, Schölch S, Bork U. The prognostic role of circulating tumor cells in colorectal cancer. Expert Rev Anticancer Ther 2019; 19:1077-1088. [PMID: 31778322 DOI: 10.1080/14737140.2019.1699065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Metastasis is the main cause of cancer-associated death in colorectal cancer (CRC). The presence of circulating tumor cells (CTC) in the blood is associated with an increased risk of recurrence and poor prognosis. The clinical significance of CTCs as a novel biomarker has been extensively studied in the last decade. It has been shown that CTC detection applies to early cancer detection. The presence of CTCs is associated with metastatic spread and poor survival and is also useful as a marker for therapy response.Areas covered: We summarize the role of CTC in CRC, their clinical significance, current methods for CTC detection and challenges as well as future perspectives of CTC research.Expert commentary: The clinical significance of CTC in CRC patients is well established. Although insightful, the available marker-based approaches hampered our understanding of the CTCs and their biology, as such approaches do not take into account the heterogeneity of these cell populations. New technologies should expand the marker-based detection to multi biomarker-based approaches together with recent technological advances in microfluidics for single cell enrichment and analysis.
Collapse
Affiliation(s)
- Lahiri Kanth Nanduri
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Hissa
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Bork
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Promising Colorectal Cancer Biomarkers for Precision Prevention and Therapy. Cancers (Basel) 2019; 11:cancers11121932. [PMID: 31817090 PMCID: PMC6966638 DOI: 10.3390/cancers11121932] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) has been ranked as the third most prevalent cancer worldwide. Indeed, it represents 10.2% of all cancer cases. It is also the second most common cause of cancer mortality, and accounted for about 9.2% of all cancer deaths in 2018. Early detection together with a correct diagnosis and staging remains the most effective clinical strategy in terms of disease recovery. Thanks to advances in diagnostic techniques, and improvements of surgical adjuvant and palliative therapies, the mortality rate of CRC has decreased by more than 20% in the last decade. Cancer biomarkers for the early detection of CRC, its management, treatment and follow-up have contributed to the decrease in CRC mortality. Herein, we provide an overview of molecular biomarkers from tumor tissues and liquid biopsies that are approved for use in the CRC clinical setting for early detection, follow-up, and precision therapy, and of biomarkers that have not yet been officially validated and are, nowadays, under investigation.
Collapse
|
15
|
Wang D, Yang Y, Jin L, Wang J, Zhao X, Wu G, Zhang J, Kou T, Yao H, Zhang Z. Prognostic models based on postoperative circulating tumor cells can predict poor tumor recurrence-free survival in patients with stage II-III colorectal cancer. J Cancer 2019; 10:4552-4563. [PMID: 31528219 PMCID: PMC6746136 DOI: 10.7150/jca.30512] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 06/07/2019] [Indexed: 12/24/2022] Open
Abstract
Background: It is urgent to develop robust prognostic biomarkers for non-metastatic colorectal cancer (CRC) patients undergoing surgery. The current study aimed to explore and compare the clinical significance of preoperative and postoperative blood tumor biomarkers including circulating tumor cells (CTCs), and develop prognostic models based on tumor biomarkers in patients with stage II-III CRC receiving surgery. Methods: A prospective study was performed to enroll 130 patients with stage II-III CRC receiving surgery between January 2015 and December 2017. Preoperative and postoperative blood tumor biomarkers including CTCs were detected and their prognostic value in predicting tumor recurrence-free survival (RFS) in stage II-III CRC were identified by Kaplan-Meier curves and Cox proportional hazard regression models. Results: CTCs counts within three postoperative days were significantly higher than preoperative CTCs (pre-CTCs). No significant association of pre-CTCs with clinical characteristics and tumor biomarkers was observed while positive postoperative CTCs (post-CTCs) were associated with female, older onset age, high TNM stage, tumor recurrence, and preoperative CEA. Kaplan-Meier curve with log-rank test and univariate Cox proportional hazard regression analysis suggested high N stage, TNM stage, positive pre-carbohydrate antigen (CA) 125, pre-CA19-9, post-CA125, post-CA19-9, post-CA72-4, post-carcinoembryonic antigen (CEA), and post-CTCs were correlated with poor RFS. In multivariate analysis, only TNM stage (adjusted HR=3.786, 95% CI=1.330-10.780; P=0.013), post-CA72-4 (adjusted HR=5.675, 95% CI=2.064-15.604; P=0.001), and post-CTCs (adjusted HR=2.739, 95% CI=1.042-7.200; P=0.041) were significantly correlated with poor RFS. We then developed prognostic models combining post-CTCs and post-CA72-4 with TNM stage or not to stratify the patients into different risk groups. These prognostic models exert a similar good performance in predicting tumor RFS in stage II-III CRC patients. Conclusions: Postoperative CTCs were prior to preoperative CTCs in predicting tumor recurrence survival in non-metastatic CRC patients undergoing surgery. We also developed CTCs-based prognostic models to predict tumor recurrence in stage II-III CRC, which might be used to identify the patients with high risk of recurrence and guide aggressive treatment to improve the clinical outcomes of those patients.
Collapse
Affiliation(s)
- Dong Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Yingchi Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Lan Jin
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Jin Wang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Xiaomu Zhao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Guocong Wu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Jinghui Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Tiankuo Kou
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center of Digestive Diseases, No. 95 Yongan Road, Xi-Cheng District, Beijing, 100050, China
| |
Collapse
|
16
|
Isolated Metastases to Multiple Genital Organs: a Curious Case of Metachronous Spread of Carcinoma Colon. Indian J Surg Oncol 2019; 10:321-323. [DOI: 10.1007/s13193-018-0855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022] Open
|
17
|
Berkovich L, Ghinea R, Greemland I, Majdop S, Shpitz B, Mishaeli M, Avital S. Inhibition of TNFα in peritoneal fluids of patients following colorectal resection attenuates the postoperative stress-related increase in colon cancer cell migration: A prospective, in vitro study. Surg Oncol 2018; 27:479-484. [DOI: 10.1016/j.suronc.2018.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/09/2018] [Accepted: 05/26/2018] [Indexed: 01/13/2023]
|
18
|
Cantharidin suppresses HCT116 colorectal carcinoma cell proliferation and migration by changing the cytoskeleton structure. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
19
|
Burz C, Pop VV, Buiga R, Daniel S, Samasca G, Aldea C, Lupan I. Circulating tumor cells in clinical research and monitoring patients with colorectal cancer. Oncotarget 2018; 9:24561-24571. [PMID: 29849961 PMCID: PMC5966258 DOI: 10.18632/oncotarget.25337] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer remains a frequent disease to which screening and target therapy exist, but despite this is still marked by a high mortality rate. Even though radical surgery may be performed in many cases, patients relapse with metastatic disease. Circulating tumor cells were incriminated for tumor recurrence, that's why vigorous research started on their field. Owning prognostic and predictive value, it was revealed their usefulness in disease monitoring. Moreover, they may serve as liquid biopsies for genetic tests in cases where tissue biopsy is contraindicated or cannot be performed. In spite of these advantages, they were not included in clinical guidelines, despite CellSearch and many other detection methods were developed to ease the identification of circulating tumor cells. This review highlights the implication of circulating tumor cells in metastasis cascade, intrinsic tumor cells mechanisms and correlations with clinical parameters along with their utility for medical practice and detection techniques.
Collapse
Affiliation(s)
- Claudia Burz
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Vlad-Vasile Pop
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania
| | - Rares Buiga
- Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Sur Daniel
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Gabriel Samasca
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Emergency Hospital for Children, Cluj-Napoca, Romania
| | - Cornel Aldea
- Emergency Hospital for Children, Cluj-Napoca, Romania
| | - Iulia Lupan
- Babeş-Bolyai University, Department of Molecular Biology and Biotehnology, Cluj-Napoca, Romania.,Institute of Interdisciplinary Research in Bio-Nano-Sciences, Cluj-Napoca, Romania
| |
Collapse
|
20
|
Rahbari NN, Schölch S, Bork U, Kahlert C, Schneider M, Rahbari M, Büchler MW, Weitz J, Reissfelder C. Prognostic value of circulating endothelial cells in metastatic colorectal cancer. Oncotarget 2018; 8:37491-37501. [PMID: 28415583 PMCID: PMC5514924 DOI: 10.18632/oncotarget.16397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is urgent need for improved staging in patients with metastatic colorectal cancer (mCRC). In this study, we evaluated the prognostic value of circulating endothelial cells (CEC) in comparison with circulating tumor cells (CTC) in patients with mCRC amenable for potentially curative surgery. METHODS A total of 140 patients were enrolled prospectively. CTC and CEC were measured with the CellSearch System (Veridex, NJ, USA). Cut-off values were determined using ROC analyses. Prognostic factors were identified by Cox proportional hazards models. RESULTS ROC analyses revealed ≥ 21 CEC as cut-off levels for detection, which was present in 68 (49%). CEC detection was associated with female gender (p = 0.03) only, whereas CTC detection was associated with presence of the primary tumor (p = 0.007), metastasis size (p < 0.001), bilobar liver metastases (p = 0.02), CEA (p < 0.001) and CA 19-9 levels (p < 0.001). On multivariate analysis only CEC detection (HR 1.81; p = 0.03) and preoperative CA19-9 levels (HR 2.28, p = 0.005) were revealed as independent predictors of poor survival. CONCLUSIONS CEC are of stronger prognostic value than CTC. Further studies are required to validate these results and to evaluate CEC as predictive biomarker for systemic therapy alone as well as in combination with other markers such as CA19-9.
Collapse
Affiliation(s)
- Nuh N Rahbari
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Bork
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| | - Christoph Kahlert
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Mohammad Rahbari
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| | - Markus W Büchler
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| | - Christoph Reissfelder
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
García SA, Swiersy A, Radhakrishnan P, Branchi V, Kanth Nanduri L, Győrffy B, Betzler AM, Bork U, Kahlert C, Reißfelder C, Rahbari NN, Weitz J, Schölch S. LDB1 overexpression is a negative prognostic factor in colorectal cancer. Oncotarget 2018; 7:84258-84270. [PMID: 27713177 PMCID: PMC5356660 DOI: 10.18632/oncotarget.12481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/30/2016] [Indexed: 12/16/2022] Open
Abstract
Background Colorectal cancer (CRC) is the third most common cancer in western countries and is driven by the Wnt signaling pathway. LIM-domain-binding protein 1 (LDB1) interacts with the Wnt signaling pathway and has been connected to malignant diseases. We therefore aimed to evaluate the role of LDB1 in CRC. Results Overexpression of LDB1 in CRC is associated with strikingly reduced overall and metastasis free survival in all three independent patient cohorts. The expression of LDB1 positively correlates with genes involved in the Wnt signaling pathway (CTNNB1, AXIN2, MYC and CCND1). Overexpression of LDB1 in CRC cell lines induced Wnt pathway upregulation as well as increased invasivity and proliferation. Upon separate analysis, the role of LDB1 proved to be more prominent in proximal CRC, whereas distal CRC seems to be less influenced by LDB1. Materials and Methods The expression of LDB1 was measured via RT-qPCR in 59 clinical tumor and normal mucosa samples and correlated to clinical end-points. The role of LDB1 was examined in two additional large patient cohorts from publicly available microarray and RNAseq datasets. Functional characterization was done by lentiviral overexpression of LDB1 in CRC cell lines and TOP/FOP, proliferation and scratch assays. Conclusions LDB1 has a strong role in CRC progression, confirmed in three large, independent patient cohorts. The in vitro data confirm an influence of LDB1 on the Wnt signaling pathway and tumor cell proliferation. LDB1 seems to have a more prominent role in proximal CRC, which confirms the different biology of proximal and distal CRC.
Collapse
Affiliation(s)
- Sebastián A García
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.,Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Anka Swiersy
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Praveen Radhakrishnan
- Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Vittorio Branchi
- Department of General, Gastrointestinal, Thoracic and Vascular Surgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Lahiri Kanth Nanduri
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Magyar Tudósok körútja 2., H-1117, Budapest, Hungary.,Semmelweis University, 2nd Department of Pediatrics, Bókay u. 53-54., H-1083, Budapest, Hungary
| | - Alexander M Betzler
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ulrich Bork
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.,Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Christoph Kahlert
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.,Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Christoph Reißfelder
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.,Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Nuh N Rahbari
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.,Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.,Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.,Department of General, Gastrointestinal and Transplantation Surgery, University Hospital Heidelberg, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Hong KS, Jeon EY, Chung SS, Kim KH, Lee RA. Epidermal growth factor-mediated Rab25 pathway regulates integrin β1 trafficking in colon cancer. Cancer Cell Int 2018. [PMID: 29515334 PMCID: PMC5836438 DOI: 10.1186/s12935-018-0526-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Integrins play a critical role in carcinogenesis. Integrin β1 localization is regulated by the guanosine-5′-triphosphate hydrolase Rab25 and integrin β1 levels are elevated in the serum of colon cancer patients; thus, the present study examined the effects of epidermal growth factor (EGF) and Rab25 on integrin β1 localization in colon cancer cells. Methods HCT116 human colon cancer cells were treated with increasing concentrations of EGF, and cell proliferation and protein expression were monitored by MTT and western blot analyses, respectively. Cell fractionation was performed to determine integrin β1 localization in the membrane and cytosol. Integrin β1 extracellular shedding was monitored by enzyme-linked immunosorbent assays (ELISAs) with culture supernatants from stimulated cells. HCT116 cells were transfected with Rab25-specific siRNA to determine the significance of Rab25 in integrin β1 trafficking in the presence of EGF. Results Total integrin β1 expression increased in response to EGF and subsequently decreased at 24 h post-stimulation. A similar decrease was observed in purified membrane fractions, whereas no changes were observed in cytosolic levels. ELISAs using media from stimulated cell cultures demonstrated increased integrin β1 levels corresponding to the decrease observed in membrane fractions, suggesting that EGF induces integrin receptor shedding. EGF stimulation in Rab25-knockdown cells resulted in integrin β1 accumulation in the membrane, suggesting that Rab25 promotes integrin endocytosis. Conclusions Integrin β1 is shed from colon cancer cells in response to EGF stimulation in a Rab25-dependent manner. These results further the present understanding of the role of integrin β1 in colon cancer progression.
Collapse
Affiliation(s)
- Kyung Sook Hong
- 1Department of Surgery and Critical Care Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Eun-Young Jeon
- 2Ewha Medical Research Institute, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soon Sup Chung
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Kwang Ho Kim
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Ryung-Ah Lee
- 3Department of Surgery, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Tumor microenvironment promotes prostate cancer cell dissemination via the Akt/mTOR pathway. Oncotarget 2018; 9:9206-9218. [PMID: 29507684 PMCID: PMC5823632 DOI: 10.18632/oncotarget.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis causes high mortality in various malignancies, including prostate cancer (PCa). Accumulating data has suggested that cancer cells spread from the primary tumor to distant sites at early stage, which is characterized by disseminated tumor cells (DTCs). However, lack of direct evidence of partial localized PCa cells occurring epithelial-to-mesenchymal transition (EMT) and disseminating to distant sites (e.g bone marrow). In this study, we used luciferase labeled PCa cells to establish an EMT mouse model and to detect whether DTCs spread into the bone marrow. We observed tumor cells existing in mouse bone marrow when tumor grew subcutaneously at palpable stage. Studies also showed that ex vivo tumor cells exhibited increased proliferative, migratory, invasive and angiogenesis abilities. When compared ex vivo tumor cells with parental cells, hallmarks of EMT including E-cadherin, Vimentin, Snail, and ZO-1 were altered significantly. Specifically, the ex vivo tumor cells showed more mesenchymal properties. Angiogenesis markers, including VEGFR2, VEGFR3, MCP-3, I-TAC, I309, uPAR and GROα, were also increased in the ex vivo tumor cells. Intriguingly, MCP-1 expression was dramatically increased in those cells. Mechanistic analyses indicated that AP1 mediates PCa EMT and the appearance of DTCs via the Akt/mTOR pathway. This study may provide potential therapeutic targets and diagnostic biomarkers of PCa progression and metastasis.
Collapse
|
24
|
Abstract
In most solid tumors, it is distant metastases rather than the primary tumor which limit the prognosis. Distant metastases are caused by circulating tumor cells (CTCs) which actively invade the blood stream, attach to the endothelium in the target organ, invade the surrounding parenchyma, and form new tumors. Among many other capabilities such as migration or immune escape, CTCs require tumor-forming capacities and can therefore be considered stem cell-like cells. This chapter describes the enrichment and isolation of live CTCs from clinical blood samples for molecular characterization and other downstream applications.
Collapse
Affiliation(s)
- Sebastián A García
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Circulating tumor cells exhibit stem cell characteristics in an orthotopic mouse model of colorectal cancer. Oncotarget 2017; 7:27232-42. [PMID: 27029058 PMCID: PMC5053645 DOI: 10.18632/oncotarget.8373] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
The prognosis of colorectal cancer (CRC) is closely linked to the occurrence of distant metastases, which putatively develop from circulating tumor cells (CTCs) shed into circulation by the tumor. As far more CTCs are shed than eventually metastases develop, only a small subfraction of CTCs harbor full tumorigenic potential. The aim of this study was to further characterize CRC-derived CTCs to eventually identify the clinically relevant subfraction of CTCs.We established an orthotopic mouse model of CRC which reliably develops metastases and CTCs. We were able to culture the resulting CTCs in vitro, and demonstrated their tumor-forming capacity when re-injected into mice. The CTCs were then subjected to qPCR expression profiling, revealing downregulation of epithelial and proliferation markers. Genes associated with cell-cell adhesion (claudin-7, CD166) were significantly downregulated, indicating a more metastatic phenotype of CTCs compared to bulk tumor cells derived from hepatic metastases. The stem cell markers DLG7 and BMI1 were significantly upregulated in CTC, indicating a stem cell-like phenotype and increased capacity of tumor formation and self-renewal. In concert with their in vitro and in vivo tumorigenicity, these findings indicate stem cell properties of mouse-derived CTCs.In conclusion, we developed an orthotopic mouse model of CRC recapitulating the process of CRC dissemination. CTCs derived from this model exhibit stem-cell like characteristics and are able to form colonies in vitro and tumors in vivo. Our results provide new insight into the biology of CRC-derived CTCs and may provide new therapeutic targets in the metastatic cascade of CRC.
Collapse
|
26
|
Kochall S, Thepkaysone ML, García SA, Betzler AM, Weitz J, Reissfelder C, Schölch S. Isolation of Circulating Tumor Cells in an Orthotopic Mouse Model of Colorectal Cancer. J Vis Exp 2017. [PMID: 28745637 DOI: 10.3791/55357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the advantages of easy applicability and cost-effectiveness, subcutaneous mouse models have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Orthotopic mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in hollow organs such as the large bowel. In order to produce uniform tumors which reliably grow and metastasize, standardized techniques of tumor cell preparation and injection are critical. We have developed an orthotopic mouse model of colorectal cancer (CRC) which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor cells from either primary tumors, 2-dimensional (2D) cell lines or 3-dimensional (3D) organoids are injected into the cecum and, depending on the metastatic potential of the injected tumor cells, form highly metastatic tumors. In addition, CTCs can be found regularly. We here describe the technique of tumor cell preparation from both 2D cell lines and 3D organoids as well as primary tumor tissue, the surgical and injection techniques as well as the isolation of CTCs from the tumor-bearing mice, and present tips for troubleshooting.
Collapse
Affiliation(s)
- Susan Kochall
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - May-Linn Thepkaysone
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Sebastián A García
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Alexander M Betzler
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ)
| | - Christoph Reissfelder
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ);
| |
Collapse
|
27
|
Betzler AM, Kochall S, Blickensdörfer L, Garcia SA, Thepkaysone ML, Nanduri LK, Muders MH, Weitz J, Reissfelder C, Schölch S. A Genetically Engineered Mouse Model of Sporadic Colorectal Cancer. J Vis Exp 2017. [PMID: 28715385 DOI: 10.3791/55952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the advantages of easy applicability and cost-effectiveness, colorectal cancer mouse models based on tumor cell injection have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Genetically engineered mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in large organs such as the colon in which only a single tumor is desired. As a result, an immunocompetent, genetically engineered mouse model of colorectal cancer was developed which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor development is initiated by surgical, segmental infection of the distal colon with adeno-cre virus in compound conditionally mutant mice. The tumors can be easily detected and monitored via colonoscopy. We here describe the surgical technique of segmental adeno-cre infection of the colon, the surveillance of the tumor via high-resolution colonoscopy and present the resulting colorectal tumors.
Collapse
Affiliation(s)
- Alexander M Betzler
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Susan Kochall
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Linda Blickensdörfer
- Department of General, Gastrointestinal and Transplant Surgery, University of Heidelberg
| | - Sebastian A Garcia
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - May-Linn Thepkaysone
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Lahiri K Nanduri
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Michael H Muders
- Department of Pathology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ)
| | - Christoph Reissfelder
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ);
| |
Collapse
|
28
|
Oh BY, Kim J, Lee WY, Kim HC. A New Size-based Platform for Circulating Tumor Cell Detection in Colorectal Cancer Patients. Clin Colorectal Cancer 2017; 16:214-219. [PMID: 28209483 DOI: 10.1016/j.clcc.2017.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Circulating tumor cells (CTCs) might play a significant role in cancer progression and metastasis. However, the ability to detect CTCs is limited, especially in cells undergoing epithelial-mesenchymal transition. In this study, we evaluated a new size-based CTC detection platform and its clinical efficacy in colorectal cancer. PATIENTS AND METHODS Blood samples were obtained from 76 patients with colorectal cancer and 20 healthy control subjects for CTC analysis. CTCs were enriched using a high-density microporous chip filter and were detected using a 4-color staining protocol including 4',6-diamidino-2-phenylindole (DAPI) for nucleated cells, CD45 monoclonal antibody (mAb) as a leukocyte marker, and epithelial cell adhesion molecule (EpCAM) mAb or cytokeratin (CK) mAb as an epithelial cell marker. CTC positivity was defined as DAPI-positive (DAPI+)/CD45-/EpCAM+ or CK+ cells and clinical outcomes of patients were analyzed according to CTC counts. RESULTS CTCs were detected in 50 patients using this size-based filtration platform. CTC+ patients were more frequently identified with a high level of carcinoembryonic antigen and advanced stage cancer (P = .038 and P = .017, respectively). CTC counts for patients with stage IV cancer (12.47 ± 24.00) were significantly higher than those for patients with cancers that were stage I to III (2.84 ± 5.29; P = .005) and healthy control subjects (0.25 ± 0.55; P < .001). In addition, progression-free survival tended to be lower in CTC+ patients compared with CTC- patients (P = .092). In patients with stage I to III cancer, recurrence occurred only in CTC+ patients. CONCLUSION CTC positivity was found to correlate with clinical features of colorectal cancer patients. Our results suggest that this new size-based platform has potential for determining prognosis and therapeutic response in colorectal cancer patients.
Collapse
Affiliation(s)
- Bo Young Oh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jhingook Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
29
|
Martin OA, Anderson RL, Narayan K, MacManus MP. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat Rev Clin Oncol 2016; 14:32-44. [PMID: 27550857 DOI: 10.1038/nrclinonc.2016.128] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite progressive improvements in the management of patients with locoregionally confined, advanced-stage solid tumours, distant metastasis remains a very common - and usually fatal - mode of failure after attempted curative treatment. Surgery and radiotherapy are the primary curative modalities for these patients, often combined with each other and/or with chemotherapy. Distant metastasis occurring after treatment can arise from previously undetected micrometastases or, alternatively, from persistent locoregional disease. Another possibility is that treatment itself might sometimes cause or promote metastasis. Surgical interventions in patients with cancer, including biopsies, are commonly associated with increased concentrations of circulating tumour cells (CTCs). High CTC numbers are associated with an unfavourable prognosis in many cancers. Radiotherapy and systemic antitumour therapies might also mobilize CTCs. We review the preclinical and clinical data concerning cancer treatments, CTC mobilization and other factors that might promote metastasis. Contemporary treatment regimens represent the best available curative options for patients who might otherwise die from locally confined, advanced-stage cancers; however, if such treatments can promote metastasis, this process must be understood and addressed therapeutically to improve patient survival.
Collapse
Affiliation(s)
- Olga A Martin
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Robin L Anderson
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Kailash Narayan
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| | - Michael P MacManus
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, Victoria 3000, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan street, Melbourne, Victoria 3000, Australia
| |
Collapse
|
30
|
Caceres G, Puskas JA, Magliocco AM. Circulating Tumor Cells: A Window Into Tumor Development and Therapeutic Effectiveness. Cancer Control 2016; 22:167-76. [PMID: 26068761 DOI: 10.1177/107327481502200207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are an important diagnostic tool for understanding the metastatic process and the development of cancer. METHODS This review covers the background, relevance, and potential limitations of CTCs as a measurement of cancer progression and how information derived from CTCs may affect treatment efficacy. It also highlights the difficulties of characterizing these rare cells due to the limited cell surface molecules unique to CTCs and each particular type of cancer. RESULTS The analysis of cancer in real time, through the measure of the number of CTCs in a " liquid" biopsy specimen, gives us the ability to monitor the therapeutic efficacy of treatments and possibly the metastatic potential of a tumor. CONCLUSIONS Through novel and innovative techniques yielding encouraging results, including microfluidic techniques, isolating and molecularly analyzing CTCs are becoming a reality. CTCs hold promise for understanding how tumors work and potentially aiding in their demise.
Collapse
Affiliation(s)
- Gisela Caceres
- Department of Anatomic Pathology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
31
|
Zheng Y, Guo J, Zhou J, Lu J, Chen Q, Zhang C, Qing C, Koeffler HP, Tong Y. FoxM1 transactivates PTTG1 and promotes colorectal cancer cell migration and invasion. BMC Med Genomics 2015; 8:49. [PMID: 26264222 PMCID: PMC4534164 DOI: 10.1186/s12920-015-0126-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 07/31/2015] [Indexed: 12/13/2022] Open
Abstract
Background Metastasis is the major cause of cancer-related death. Forkhead Box M1 (FoxM1) is a master regulator of tumor metastasis. This study aims to identify new FoxM1 targets in regulating tumor metastasis using bioinformatics tools as well as biological experiments. Methods Illumina microarray was used to profile WT and PTTG1 knockout HCT116 cells. R2 Genomics Analysis was used to identify PTTG1 as a potential FoxM1 targeted gene. Luciferase reporter array, EMSA and Chromatin Immunoprecipitation (ChIP) were used to determine the binding of FoxM1 to PTTG1 promoter. Boyden chamber assay was used to evaluate the effects of FoxM1-PTTG1 on cell migration and invasion. Splenic-injection induced liver metastasis model was used to evaluate the effects of FoxM1-PTTG1 on liver metastasis of colorectal cancer. Results Analyses of multiple microarray datasets derived from human colorectal cancer indicated that correlation levels of FoxM1 and pituitary tumor transforming gene (PTTG1) are highly concordant (R = 0.68 ~ 0.89, p = 2.1E-226 ~ 9.6E-86). FoxM1 over-expression increased and knock-down decreased PTTG1 expression. Luciferase reporter assay identified that the −600 to −300 bp region of PTTG1 promoter is important for FoxM1 to enhance PTTG1 promoter activity. EMSA and ChIP assays confirmed that FoxM1 directly binds to PTTG1 promoter at the −391 to −385 bp region in colorectal cancer cells. Boyden chamber assay indicated that both FoxM1 and PTTG1 regulate migration and invasion of HCT116 and SW620 colorectal cancer cells. Further in vivo assays indicated that PTTG1 knock out decreased the liver metastasis of FoxM1 over-expressing HCT116 cells. Microarray analyses identified 662 genes (FDR < 0.05) differentially expressed between WT and PTTG1−/− HCT116 cells. Among them, dickkopf homolog 1 (DKK1), a known WNT pathway inhibitor, was suppressed by PTTG1 and FoxM1. Conclusions PTTG1 is a FoxM1 targeted gene. FoxM1 binds to PTTG1 promoter to enhance PTTG1 transcription, and FoxM1-PTTG1 pathway promotes colorectal cancer migration and invasion. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0126-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Zheng
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jinjun Guo
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jin Zhou
- Division of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, USA.
| | - Jinjian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Qi Chen
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Cui Zhang
- Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| | - Chen Qing
- School of Pharmaceutical Science, Kunming Medical University, 1168 Western Chunrong Road,Yuhua Street, Chenggong New City, Kunming, China.
| | - H Philip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Yunguang Tong
- Department of Medicine, Cedars-Sinai Medical Center, UCLA School of Medicine, Room 3021, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA. .,Department of Pathology, Xinxiang Medical University, 601 East Jinsui Ave, Xinxiang, Henan, China.
| |
Collapse
|
32
|
Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng 2015; 43:2361-73. [PMID: 25777294 DOI: 10.1007/s10439-015-1298-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/10/2015] [Indexed: 12/27/2022]
Abstract
Current in vitro models for tumor growth and metastasis are poor facsimiles of in vivo cancer physiology and thus, are not optimal for anti-cancer drug development. Three dimensional (3D) tissue organoid systems, which utilize human cells in a tailored microenvironment, have the potential to recapitulate in vivo conditions and address the drawbacks of current tissue culture dish 2D models. In this study, we created liver-based cell organoids in a rotating wall vessel bioreactor. The organoids were further inoculated with colon carcinoma cells in order to create liver-tumor organoids for in vitro modeling of liver metastasis. Immunofluorescent staining revealed notable phenotypic differences between tumor cells in 2D and inside the organoids. In 2D they displayed an epithelial phenotype, and only after transition to the organoids did the cells present with a mesenchymal phenotype. The cell surface marker expression results suggested that WNT pathway might be involved in the phenotypic changes observed between cells in 2D and organoid conditions, and may lead to changes in cell proliferation. Manipulating the WNT pathway with an agonist and antagonist showed significant changes in sensitivity to the anti-proliferative drug 5-fluoruracil. Collectively, the results show the potential of in vitro 3D liver-tumor organoids to serve as a model for metastasis growth and for testing the response of tumor cells to current and newly discovered drugs.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC, 27157-1094, USA.
| |
Collapse
|
33
|
Bork U, Grützmann R, Rahbari NN, Schölch S, Distler M, Reissfelder C, Koch M, Weitz J. Prognostic relevance of minimal residual disease in colorectal cancer. World J Gastroenterol 2014; 20:10296-10304. [PMID: 25132746 PMCID: PMC4130837 DOI: 10.3748/wjg.v20.i30.10296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/18/2013] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Presence of occult minimal residual disease in patients with colorectal cancer (CRC) has a strong prognostic impact on survival. Minimal residual disease plays a major role in disease relapse and formation of metastases in CRC. Analysis of circulating tumor cells (CTC) in the blood is increasingly used in clinical practice for disease monitoring of CRC patients. In this review article the role of CTC, disseminated tumor cells (DTC) in the bone marrow and micrometastases and isolated tumor cells (ITC) in the lymph nodes will be discussed, including literature published until September 2013. Occult disease is a strong prognostic marker for patient survival in CRC and defined by the presence of CTC in the blood, DTC in the bone marrow and/or micrometastases and ITC in the lymph nodes. Minimal residual disease could be used in the future to identify patient groups at risk, who might benefit from individualized treatment options.
Collapse
|
34
|
van Noort V, Schölch S, Iskar M, Zeller G, Ostertag K, Schweitzer C, Werner K, Weitz J, Koch M, Bork P. Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling. Cancer Res 2014; 74:5690-9. [PMID: 25038229 DOI: 10.1158/0008-5472.can-13-3540] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drug-induced gene-expression profiles that invert disease profiles have recently been illustrated to be a starting point for drug repositioning. In this study, we validate this approach and focus on prediction of novel drugs for colorectal cancer, for which there is a pressing need to find novel antimetastatic compounds. We computationally predicted three novel and still unknown compounds against colorectal cancer: citalopram (an antidepressant), troglitazone (an antidiabetic), and enilconazole (a fungicide). We verified the compounds by in vitro assays of clonogenic survival, proliferation, and migration and in a subcutaneous mouse model. We found evidence that the mode of action of these compounds may be through inhibition of TGFβ signaling. Furthermore, one compound, citalopram, reduced tumor size as well as the number of circulating tumor cells and metastases in an orthotopic mouse model of colorectal cancer. This study proposes citalopram as a potential therapeutic option for patients with colorectal cancer, illustrating the potential of systems pharmacology.
Collapse
Affiliation(s)
- Vera van Noort
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany. Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg, Leuven, Belgium
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Murat Iskar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany
| | - Kristina Ostertag
- Department of General, Gastrointestinal and Transplant Surgery, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Christine Schweitzer
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Kristin Werner
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Moritz Koch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. Moritz.Koch@uniklinikum
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse, Heidelberg, Germany. Max-Delbrück-Centre (MDC) for Molecular Medicine, Berlin, Germany. Moritz.Koch@uniklinikum
| |
Collapse
|
35
|
Leong SPL, Tseng WW. Micrometastatic cancer cells in lymph nodes, bone marrow, and blood: Clinical significance and biologic implications. CA Cancer J Clin 2014; 64:195-206. [PMID: 24500995 DOI: 10.3322/caac.21217] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 01/09/2023] Open
Abstract
Cancer metastasis may be regarded as a progressive process from its inception in the primary tumor microenvironment to distant sites by way of the lymphovascular system. Although this type of tumor dissemination often occurs in an orderly fashion via the sentinel lymph node (SLN), acting as a possible gateway to the regional lymph nodes, bone marrow, and peripheral blood and ultimately to distant metastatic sites, this is not a general rule as tumor cells may enter the blood and spread to distant sites, bypassing the SLN. Methods of detecting micrometastatic cancer cells in the SLN, bone marrow, and peripheral blood of patients have been established. Patients with cancer cells in their SLN, bone marrow, or peripheral blood have worse clinical outcomes than patients with no evidence of spread to these compartments. The presence of these cells also has important biologic implications for disease progression and the clinician's understanding of the process of cancer metastasis. Further characterization of these micrometastatic cancer cells at each stage and site of metastasis is needed to design novel selective therapies for a more "personalized" treatment.
Collapse
Affiliation(s)
- Stanley P L Leong
- Chief of Cutaneous Oncology, Associate Director of the Melanoma Program, Center for Melanoma Research and Treatment, California Pacific Medical Center and Sutter Pacific Medical Foundation, Senior Scientist, California Pacific Medical Center Research Institute, San Francisco, CA
| | | |
Collapse
|
36
|
Oh BY, Kim KH, Chung SS, Hong KS, Lee RA. Role of β1-Integrin in Colorectal Cancer: Case-Control Study. Ann Coloproctol 2014; 30:61-70. [PMID: 24851215 PMCID: PMC4022754 DOI: 10.3393/ac.2014.30.2.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022] Open
Abstract
Purpose In the metastatic process, interactions between circulating tumor cells (CTCs) and the extracellular matrix or surrounding cells are required. β1-Integrin may mediate these interactions. The aim of this study was to investigate whether β1-integrin is associated with the detection of CTCs in colorectal cancer. Methods We enrolled 30 patients with colorectal cancer (experimental group) and 30 patients with benign diseases (control group). Blood samples were obtained from each group, carcinoembryonic antigen (CEA) mRNA for CTCs marker and β1-integrin mRNA levels were estimated by using reverse transcription-polymerase chain reaction, and the results were compared between the two groups. In the experimental group, preoperative results were compared with postoperative results for each marker. In addition, we analyzed the correlation between the expressions of β1-integrin and CEA. Results CEA mRNA was detected more frequently in colorectal cancer patients than in control patients (P = 0.008). CEA mRNA was significantly reduced after surgery in the colorectal cancer patients (P = 0.032). β1-Integrin mRNA was detected more in colorectal cancer patients than in the patients with benign diseases (P < 0.001). In colorectal cancer patients, expression of β1-integrin mRNA was detected more for advanced-stage cancer than for early-stage cancer (P = 0.033) and was significantly decreased after surgery (P < 0.001). In addition, expression of β1-integrin mRNA was significantly associated with that of CEA mRNA in colorectal cancer patients (P = 0.001). Conclusion In conclusion, β1-integrin is a potential factor for forming a prognosis following surgical resection in colorectal cancer patients. β1-Integrin may be a candidate for use as a marker for early detection of micrometastatic tumor cells and for monitoring the therapeutic response in colorectal cancer patients.
Collapse
Affiliation(s)
- Bo-Young Oh
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kwang Ho Kim
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Soon Sup Chung
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Kyoung Sook Hong
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| | - Ryung-Ah Lee
- Department of Surgery, Ewha Womans University School of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Steinert G, Schölch S, Niemietz T, Iwata N, García SA, Behrens B, Voigt A, Kloor M, Benner A, Bork U, Rahbari NN, Büchler MW, Stoecklein NH, Weitz J, Koch M. Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res 2014; 74:1694-704. [PMID: 24599131 DOI: 10.1158/0008-5472.can-13-1885] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prognosis of colorectal cancer is closely linked to the occurrence of distant metastases. Systemic dissemination is most likely caused by circulating tumor cells (CTC). Despite the fundamental role of CTC within the metastatic cascade, technical obstacles have so far prevented detailed genomic and, in particular, phenotypic analyses of CTC, which may provide molecular targets to delay or prevent distant metastases. We show here a detailed genomic analysis of single colorectal cancer-derived CTC by array comparative genomic hybridization (aCGH), mutational profiling, and microsatellite instability (MSI) analysis. Furthermore, we report the first gene expression analysis of manually selected colorectal cancer-derived CTC by quantitative real-time PCR (qRT-PCR) to investigate transcriptional changes, enabling CTC to survive in circulation and form distant metastases. aCGH confirmed the tumor cell identity of CellSearch-isolated colorectal cancer-derived CTC. Mutational and MSI analyses revealed mutational profiles of CTC to be similar, but not identical to the corresponding tumor tissue. Several CTC exhibited mutations in key genes such as KRAS or TP53 that could not be detected in the tumor. Gene expression analyses revealed both a pronounced upregulation of CD47 as a potential immune-escape mechanism and a significant downregulation of several other pathways, suggesting a dormant state of viable CTC. Our results suggest mutational heterogeneity between tumor tissue and CTC that should be considered in future trials on targeted therapy and monitoring of response. The finding of upregulated immune-escape pathways, which may be responsible for survival of CTC in circulation, could provide a promising target to disrupt the metastatic cascade in colorectal cancer. Cancer Res; 74(6); 1694-704. ©2014 AACR.
Collapse
Affiliation(s)
- Gunnar Steinert
- Authors' Affiliations: Department of General, Gastrointestinal and Transplant Surgery; Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg; German Cancer Research Center, Division of Biostatistics, Heidelberg; Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of General, Visceral and Paediatric Surgery, Medical Faculty, University Hospital, Heinrich Heine University, Düsseldorf, Germany; and Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ong BA, Vega KJ, Houchen CW. Intestinal stem cells and the colorectal cancer microenvironment. World J Gastroenterol 2014; 20:1898-1909. [PMID: 24587669 PMCID: PMC3934460 DOI: 10.3748/wjg.v20.i8.1898] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/03/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) remains a highly fatal condition in part due to its resilience to treatment and its propensity to spread beyond the site of primary occurrence. One possible avenue for cancer to escape eradication is via stem-like cancer cells that, through phenotypic heterogeneity, are more resilient than other tumor constituents and are key contributors to cancer growth and metastasis. These proliferative tumor cells are theorized to possess many properties akin to normal intestinal stem cells. Not only do these CRC “stem” cells demonstrate similar restorative ability, they also share many cell pathways and surface markers in common, as well as respond to the same key niche stimuli. With the improvement of techniques for epithelial stem cell identification, our understanding of CRC behavior is also evolving. Emerging evidence about cellular plasticity and epithelial mesenchymal transition are shedding light onto metastatic CRC processes and are also challenging fundamental concepts about unidirectional epithelial proliferation. This review aims to reappraise evidence supporting the existence and behavior of CRC stem cells, their relationship to normal stem cells, and their possible dependence on the stem cell niche.
Collapse
|
39
|
The Clinical Potential of Circulating Tumor Cells and Circulating Tumor-Associated Cellular Elements in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Torino F, Bonmassar E, Bonmassar L, De Vecchis L, Barnabei A, Zuppi C, Capoluongo E, Aquino A. Circulating tumor cells in colorectal cancer patients. Cancer Treat Rev 2013; 39:759-72. [PMID: 23375250 DOI: 10.1016/j.ctrv.2012.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/11/2022]
|
41
|
Wang B, Wang W, Niu W, Liu E, Liu X, Wang J, Peng C, Liu S, Xu L, Wang L, Niu J. SDF-1/CXCR4 axis promotes directional migration of colorectal cancer cells through upregulation of integrin αvβ6. Carcinogenesis 2013; 35:282-91. [PMID: 24085800 DOI: 10.1093/carcin/bgt331] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Colorectal cancer (CRC) displays a predilection for metastasis to liver. Although stromal cell-derived factor-1 (SDF-1)/CXCR4 plays an important role in the liver metastasis, the molecular mechanism still remains obscure. We previously reported that integrin αvβ6 was implicated in the progression of CRC. However, no data are currently available on the cross talk between CXCR4 and αvβ6. In the present study, we first demonstrated the cross talk between CXCR4 and αvβ6 and their role in liver metastasis of CRC. We analyzed 159 human CRC samples and found that expression of CXCR4 and αvβ6 was significantly associated with liver metastasis, and interestingly expression of αvβ6 significantly correlated with expression of CXCR4. Both CXCR4 and αvβ6 were highly expressed in metastatic CRC cell lines HT-29 and WiDr, whereas both of them were exiguous in non-metastatic cell line Caco-2. Furthermore, inhibition of αvβ6 significantly decreased SDF-1α-induced cell migration in vitro. SDF-1/CXCR4 could upregulate αvβ6 expression through phosphorylation of ERK and activation of Ets-1 transcription factor. In conclusion, we demonstrate that SDF-1/CXCR4 induces directional migration and liver metastasis of CRC cells by upregulating αvβ6 through ERK/Ets-1 pathway. These data support combined inhibition of CXCR4 and αvβ6 to prevent development of liver metastasis of CRC.
Collapse
Affiliation(s)
- Ben Wang
- Department of Hepatobiliary Surgery
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schneider M, Welsch T, Kremer M, Büchler MW. A cycle of success: the interdependence of surgery and science. Langenbecks Arch Surg 2012; 397:493-4. [PMID: 22457029 DOI: 10.1007/s00423-012-0937-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|