1
|
Boyle BR, Berghella AP, Blanco-Suarez E. Astrocyte Regulation of Neuronal Function and Survival in Stroke Pathophysiology. ADVANCES IN NEUROBIOLOGY 2024; 39:233-267. [PMID: 39190078 DOI: 10.1007/978-3-031-64839-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The interactions between astrocytes and neurons in the context of stroke play crucial roles in the disease's progression and eventual outcomes. After a stroke, astrocytes undergo significant changes in their morphology, molecular profile, and function, together termed reactive astrogliosis. Many of these changes modulate how astrocytes relate to neurons, inducing mechanisms both beneficial and detrimental to stroke recovery. For example, excessive glutamate release and astrocytic malfunction contribute to excitotoxicity in stroke, eventually causing neuronal death. Astrocytes also provide essential metabolic support and neurotrophic signals to neurons after stroke, ensuring homeostatic stability and promoting neuronal survival. Furthermore, several astrocyte-secreted molecules regulate synaptic plasticity in response to stroke, allowing for the rewiring of neural circuits to compensate for damaged areas. In this chapter, we highlight the current understanding of the interactions between astrocytes and neurons in response to stroke, explaining the varied mechanisms contributing to injury progression and the potential implications for future therapeutic interventions.
Collapse
Affiliation(s)
- Bridget R Boyle
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrea P Berghella
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elena Blanco-Suarez
- Department of Neuroscience, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Neurological Surgery, Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Shan Y, Zhao J, Zheng Y, Guo S, Schrodi SJ, He D. Understanding the function of the GABAergic system and its potential role in rheumatoid arthritis. Front Immunol 2023; 14:1114350. [PMID: 36825000 PMCID: PMC9941139 DOI: 10.3389/fimmu.2023.1114350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a highly disabling chronic autoimmune disease. Multiple factors contribute to the complex pathological process of RA, in which an abnormal autoimmune response, high survival of inflammatory cells, and excessive release of inflammatory factors lead to a severe chronic inflammatory response. Clinical management of RA remains limited; therefore, exploring and discovering new mechanisms of action could enhance clinical benefits for patients with RA. Important bidirectional communication occurs between the brain and immune system in inflammatory diseases such as RA, and circulating immune complexes can cause neuroinflammatory responses in the brain. The gamma-aminobutyric acid (GABA)ergic system is a part of the nervous system that primarily comprises GABA, GABA-related receptors, and GABA transporter (GAT) systems. GABA is an inhibitory neurotransmitter that binds to GABA receptors in the presence of GATs to exert a variety of pathophysiological regulatory effects, with its predominant role being neural signaling. Nonetheless, the GABAergic system may also have immunomodulatory effects. GABA/GABA-A receptors may inhibit the progression of inflammation in RA and GATs may promote inflammation. GABA-B receptors may also act as susceptibility genes for RA, regulating the inflammatory response of RA via immune cells. Furthermore, the GABAergic system may modulate the abnormal pain response in RA patients. We also summarized the latest clinical applications of the GABAergic system and provided an outlook on its clinical application in RA. However, direct studies on the GABAergic system and RA are still lacking; therefore, we hope to provide potential therapeutic options and a theoretical basis for RA treatment by summarizing any potential associations.
Collapse
Affiliation(s)
- Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Steven J. Schrodi
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China,Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China,*Correspondence: Shicheng Guo, ; Steven J. Schrodi, ; Dongyi He,
| |
Collapse
|
3
|
Bakaeva Z, Lizunova N, Tarzhanov I, Boyarkin D, Petrichuk S, Pinelis V, Fisenko A, Tuzikov A, Sharipov R, Surin A. Lipopolysaccharide From E. coli Increases Glutamate-Induced Disturbances of Calcium Homeostasis, the Functional State of Mitochondria, and the Death of Cultured Cortical Neurons. Front Mol Neurosci 2022; 14:811171. [PMID: 35069113 PMCID: PMC8767065 DOI: 10.3389/fnmol.2021.811171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Lipopolysaccharide (LPS), a fragment of the bacterial cell wall, specifically interacting with protein complexes on the cell surface, can induce the production of pro-inflammatory and apoptotic signaling molecules, leading to the damage and death of brain cells. Similar effects have been noted in stroke and traumatic brain injury, when the leading factor of death is glutamate (Glu) excitotoxicity too. But being an amphiphilic molecule with a significant hydrophobic moiety and a large hydrophilic region, LPS can also non-specifically bind to the plasma membrane, altering its properties. In the present work, we studied the effect of LPS from Escherichia coli alone and in combination with the hyperstimulation of Glu-receptors on the functional state of mitochondria and Ca2+ homeostasis, oxygen consumption and the cell survival in primary cultures from the rats brain cerebellum and cortex. In both types of cultures, LPS (0.1–10 μg/ml) did not change the intracellular free Ca2+ concentration ([Ca2+]i) in resting neurons but slowed down the median of the decrease in [Ca2+]i on 14% and recovery of the mitochondrial potential (ΔΨm) after Glu removal. LPS did not affect the basal oxygen consumption rate (OCR) of cortical neurons; however, it did decrease the acute OCR during Glu and LPS coapplication. Evaluation of the cell culture survival using vital dyes and the MTT assay showed that LPS (10 μg/ml) and Glu (33 μM) reduced jointly and separately the proportion of live cortical neurons, but there was no synergism or additive action. LPS-effects was dependent on the type of culture, that may be related to both the properties of neurons and the different ratio between neurons and glial cells in cultures. The rapid manifestation of these effects may be the consequence of the direct effect of LPS on the rheological properties of the cell membrane.
Collapse
Affiliation(s)
- Zanda Bakaeva
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Department of General Biology and Physiology, Kalmyk State University named after B.B. Gorodovikov, Elista, Russia
- *Correspondence: Zanda Bakaeva, ,
| | - Natalia Lizunova
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Department of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Ivan Tarzhanov
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Institute of Pharmacy, The Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitrii Boyarkin
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Svetlana Petrichuk
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Vsevolod Pinelis
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Andrey Fisenko
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
| | - Alexander Tuzikov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Rinat Sharipov
- Laboratory of Fundamental and Applied Problems of Pain, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander Surin
- Laboratory of Neurobiology, “National Medical Research Center of Children’s Health”, Russian Ministry of Health, Moscow, Russia
- Laboratory of Fundamental and Applied Problems of Pain, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
4
|
Neiva R, Caulino-Rocha A, Ferreirinha F, Lobo MG, Correia-de-Sá P. Non-genomic Actions of Methylprednisolone Differentially Influence GABA and Glutamate Release From Isolated Nerve Terminals of the Rat Hippocampus. Front Mol Neurosci 2020; 13:146. [PMID: 32848604 PMCID: PMC7419606 DOI: 10.3389/fnmol.2020.00146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 07/14/2020] [Indexed: 12/31/2022] Open
Abstract
Corticosteroids exert a dual role in eukaryotic cells through their action via (1) intracellular receptors (slow genomic responses), or (2) membrane-bound receptors (fast non-genomic responses). Highly vulnerable regions of the brain, like the hippocampus, express high amounts of corticosteroid receptors, yet their actions on ionic currents and neurotransmitters release are still undefined. Here, we investigated the effect of methylprednisolone (MP) on GABA and glutamate (Glu) release from isolated nerve terminals of the rat hippocampus. MP favored both spontaneous and depolarization-evoked [14C]Glu release from rat hippocampal nerve terminals, without affecting [3H]GABA outflow. Facilitation of [14C]Glu release by MP is mediated by a Na+-dependent Ca2+-independent non-genomic mechanism relying on the activation of membrane-bound glucocorticoid (GR) and mineralocorticoid (MR) receptors sensitive to their antagonists mifepristone and spironolactone, respectively. The involvement of Na+-dependent high-affinity EAAT transport reversal was inferred by blockage of MP-induced [14C]Glu release by DL-TBOA. Depolarization-evoked [3H]GABA release in the presence of MP was partially attenuated by the selective P2X7 receptor antagonist A-438079, but this compound did not affect the release of [14C]Glu. Data indicate that MP differentially affects GABA and glutamate release from rat hippocampal nerve terminals via fast non-genomic mechanisms putatively involving the activation of membrane-bound corticosteroid receptors. Facilitation of Glu release strengthen previous assumptions that MP may act as a cognitive enhancer in rats, while crosstalk with ATP-sensitive P2X7 receptors may promote a therapeutically desirable GABAergic inhibitory control during paroxysmal epileptic crisis that might be particularly relevant when extracellular Ca2+ levels decrease below the threshold required for transmitter release.
Collapse
Affiliation(s)
- Rafael Neiva
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Ana Caulino-Rocha
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Maria Graça Lobo
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia - Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| |
Collapse
|
5
|
Zhang W, Sun L, Yang X, Wang R, Wang H. Inhibition of NADPH oxidase within midbrain periaqueductal gray decreases pain sensitivity in Parkinson's disease via GABAergic signaling pathway. Physiol Res 2020; 69:711-720. [PMID: 32584140 DOI: 10.33549/physiolres.934478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypersensitive pain response is observed in patients with Parkinson's disease (PD). However, the signal pathways leading to hyperalgesia still need to be clarified. Chronic oxidative stress is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG) is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role NADPH oxidase (NOX) of the PAG in regulating exaggerated pain evoked by PD. PD was induced by central microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle of rats. Then, Western Blot analysis and ELISA were used to determine NOXs and products of oxidative stress (i.e., 8-isoprostaglandin F2alpha and 8-hydroxy-2'-deoxyguanosine). Pain responses to mechanical and thermal stimulation were further examined in control rats and PD rats. In results, among the NOXs, protein expression of NOX4 in the PAG of PD rats was significantly upregulated, thereby the products of oxidative stress were increased. Blocking NOX4 pathway in the PAG attenuated mechanical and thermal pain responses in PD rats and this was accompanied with decreasing production of oxidative stress. In addition, inhibition of NOX4 largely restored the impaired GABA within the PAG. Stimulation of GABA receptors in the PAG of PD rats also blunted pain responses. In conclusions, NOX4 activation of oxidative stress in the PAG of PD rats is likely to impair the descending inhibitory GABAergic pathways in regulating pain transmission and thereby plays a role in the development of pain hypersensitivity in PD. Inhibition of NOX4 has beneficial effects on the exaggerated pain evoked by PD.
Collapse
Affiliation(s)
- W Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China.
| | | | | | | | | |
Collapse
|
6
|
Gorska AM, Eugenin EA. The Glutamate System as a Crucial Regulator of CNS Toxicity and Survival of HIV Reservoirs. Front Cell Infect Microbiol 2020; 10:261. [PMID: 32670889 PMCID: PMC7326772 DOI: 10.3389/fcimb.2020.00261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate (Glu) is the most abundant excitatory neurotransmitter in the central nervous system (CNS). HIV-1 and viral proteins compromise glutamate synaptic transmission, resulting in poor cell-to-cell signaling and bystander toxicity. In this study, we identified that myeloid HIV-1-brain reservoirs survive in Glu and glutamine (Gln) as a major source of energy. Thus, we found a link between synaptic compromise, metabolomics of viral reservoirs, and viral persistence. In the current manuscript we will discuss all these interactions and the potential to achieve eradication and cure using this unique metabolic profile.
Collapse
Affiliation(s)
- Anna Maria Gorska
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, The University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Gao D, Yu H, Li B, Chen L, Li X, Gu W. Cisplatin Toxicology: The Role of Pro-inflammatory Cytokines and GABA Transporters in Cochlear Spiral Ganglion. Curr Pharm Des 2020; 25:4820-4826. [PMID: 31692421 DOI: 10.2174/1381612825666191106143743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
Background:
The current study was conducted to examine the specific activation of pro-inflammatory
cytokines (PICs), namely IL-1β, IL-6 and TNF-α in the cochlear spiral ganglion of rats after ototoxicity induced
by cisplatin. Since γ-aminobutyric acid (GABA) and its receptors are involved in pathophysiological processes of
ototoxicity, we further examined the role played by PICs in regulating expression of GABA transporter type 1
and 3 (GAT-1 and GAT-3), as two essential subtypes of GATs responsible for the regulation of extracellular
GABA levels in the neuronal tissues.
Methods:
ELISA and western blot analysis were employed to examine the levels of PICs and GATs; and auditory
brainstem response was used to assess ototoxicity induced by cisplatin.
Results:
IL-1β, IL-6 and TNF-α as well as their receptors were significantly increased in the spiral ganglion of
ototoxic rats as compared with sham control animals (P<0.05, ototoxic rats vs. control rats). Cisplatin-ototoxicity
also induced upregulation of the protein levels of GAT-1 and GAT-3 in the spiral ganglion (P<0.05 vs. controls).
In addition, administration of inhibitors to IL-1β, IL-6 and TNF-α attenuated amplification of GAT-1 and GAT-3
and improved hearing impairment induced by cisplatin.
Conclusion:
Our data indicate that PIC signals are activated in the spiral ganglion during cisplatin-ototoxicity
which thereby leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA
system is enhanced in the cochlear spiral ganglion. This supports a role for PICs in engagement of the signal
mechanisms associated with cisplatin-ototoxicity, and has pharmacological implications to target specific PICs
for GABAergic dysfunction and vulnerability related to cisplatin-ototoxicity.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Hong Yu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Bo Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Li Chen
- Hospital of Stomatology, Jilin University, Changchun, Jilin 130000, China
| | - Xiaoyu Li
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wenqing Gu
- Department of Otorhinolaryngology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
9
|
Khetani S, Kollath VO, Eastick E, Debert C, Sen A, Karan K, Sanati-Nezhad A. Single-step functionalization of poly-catecholamine nanofilms for ultra-sensitive immunosensing of ubiquitin carboxyl terminal hydrolase-L1 (UCHL-1) in spinal cord injury. Biosens Bioelectron 2019; 145:111715. [DOI: 10.1016/j.bios.2019.111715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
|
10
|
Menegaz D, Hagan DW, Almaça J, Cianciaruso C, Rodriguez-Diaz R, Molina J, Dolan RM, Becker MW, Schwalie PC, Nano R, Lebreton F, Kang C, Sah R, Gaisano HY, Berggren PO, Baekkeskov S, Caicedo A, Phelps EA. Mechanism and effects of pulsatile GABA secretion from cytosolic pools in the human beta cell. Nat Metab 2019; 1:1110-1126. [PMID: 32432213 PMCID: PMC7236889 DOI: 10.1038/s42255-019-0135-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Pancreatic beta cells synthesize and secrete the neurotransmitter γ-aminobutyric acid (GABA) as a paracrine and autocrine signal to help regulate hormone secretion and islet homeostasis. Islet GABA release has classically been described as a secretory vesicle-mediated event. Yet, a limitation of the hypothesized vesicular GABA release from islets is the lack of expression of a vesicular GABA transporter in beta cells. Consequentially, GABA accumulates in the cytosol. Here we provide evidence that the human beta cell effluxes GABA from a cytosolic pool in a pulsatile manner, imposing a synchronizing rhythm on pulsatile insulin secretion. The volume regulatory anion channel (VRAC), functionally encoded by LRRC8A or Swell1, is critical for pulsatile GABA secretion. GABA content in beta cells is depleted and secretion is disrupted in islets from type 1 and type 2 diabetic patients, suggesting that loss of GABA as a synchronizing signal for hormone output may correlate with diabetes pathogenesis.
Collapse
Affiliation(s)
- Danusa Menegaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - D Walker Hagan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Joana Almaça
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chiara Cianciaruso
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rayner Rodriguez-Diaz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Judith Molina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert M Dolan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew W Becker
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Petra C Schwalie
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rita Nano
- Pancreatic Islet Processing Facility, Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Faculty of Medicine, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Chen Kang
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Rajan Sah
- Center for Cardiovascular Research and Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA, USA
| | - Herbert Y Gaisano
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Per-Olof Berggren
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- The Rolf Luft Research Center for Diabetes & Endocrinology, Karolinska Institutet, Stockholm, Sweden
- Division of Integrative Biosciences and Biotechnology, WCU Program, University of Science and Technology, Pohang, Korea
| | - Steinunn Baekkeskov
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Departments of Medicine and Microbiology/Immunology, Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| | - Alejandro Caicedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
11
|
Zhang W, Wang L, Pang X, Zhang J, Guan Y. Role of microRNA-155 in modifying neuroinflammation and γ-aminobutyric acid transporters in specific central regions after post-ischaemic seizures. J Cell Mol Med 2019; 23:5017-5024. [PMID: 31144434 PMCID: PMC6653087 DOI: 10.1111/jcmm.14358] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/14/2019] [Accepted: 04/14/2019] [Indexed: 12/16/2022] Open
Abstract
In the central nervous system, interleukin (IL)‐1β, IL‐6 and tumour necrosis factor (TNF)‐α have a regulatory role in pathophysiological processes of epilepsy. In addition, γ‐aminobutyric acid (GABA) transporter type 1 and type 3 (GAT‐1 and GAT‐3) modulate the levels of extracellular GABA in involvement in the neuroinflammation on epileptogenesis. Thus, in the current report we examined the effects of inhibiting microRNA‐155 (miR‐155) on the levels of IL‐1β, IL‐6 and TNF‐α, and expression of GAT‐1 and GAT‐3 in the parietal cortex, hippocampus and amygdala of rats with nonconvulsive seizure (NCS) following cerebral ischaemia. Real time RT‐PCR, ELISA and Western blot analysis were used to examine the miR‐155, proinflammatory cytokines (PICs) and GAT‐1/GAT‐3 respectively. With induction of NCS, the levels of miR‐155 were amplified in the parietal cortex, hippocampus and amygdala and this was accompanied with increases of IL‐1β, IL‐6 and TNF‐α. In those central areas, expression of GAT‐1 and GAT‐3 was upregulated; and GABA was reduced in rats following NCS. Intracerebroventricular infusion of miR‐155 inhibitor attenuated the elevation of PICs, amplification of GAT‐1 and GAT‐3 and impairment of GABA. Furthermore, inhibition of miR‐155 decreased the number of NCS events following cerebral ischaemia. Inhibition of miR‐155 further improved post‐ischaemia‐evoked NCS by altering neuroinflammation‐GABA signal pathways in the parietal cortex, hippocampus and amygdala. Results suggest the role of miR‐155 in regulating post‐ischaemic seizures via PICs‐GABA mechanisms.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Luping Wang
- Department of Anesthesiology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Xiaochuan Pang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jian Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yi Guan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Xu D, Zhao H, Gao H, Zhao H, Liu D, Li J. Participation of pro-inflammatory cytokines in neuropathic pain evoked by chemotherapeutic oxaliplatin via central GABAergic pathway. Mol Pain 2018; 14:1744806918783535. [PMID: 29900804 PMCID: PMC6047101 DOI: 10.1177/1744806918783535] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Neuropathic pain is observed in patients as chemotherapeutic oxaliplatin is
used to treat metastatic digestive tumors; however, the mechanisms
responsible for hyperalgesia are not well understood. Chronic
neuroinflammation is one of the hallmarks of pathophysiology of neuropathic
pain. Since the midbrain periaqueductal gray is an important component of
the descending inhibitory pathway controlling on central pain transmission,
we examined the role for pro-inflammatory cytokines system of the
periaqueductal gray in regulating mechanical hyperalgesia and cold
hypersensitivity evoked by oxaliplatin. Methods Neuropathic pain was induced by intraperitoneal injection of oxaliplatin in
rats. ELISA and western blot analysis were used to examine pro-inflammatory
cytokine levels and their receptors expression. Results IL-1β, IL-6, and TNF-α were elevated within the periaqueductal gray of
oxaliplatin rats. Protein expression of IL-1β, IL-6, and TNF-α receptors
(namely, IL-1R, IL-6R, and TNFR subtype TNFR1) in the plasma membrane
periaqueductal gray of oxaliplatin rats was upregulated, whereas the total
expression of pro-inflammatory cytokine receptors was not altered. In
oxaliplatin rats, impaired inhibitory gamma-aminobutyric acid within the
periaqueductal gray was accompanied with decreases in withdrawal thresholds
to mechanical stimulus and % time spent on the cold plate. Our data further
showed that the concentrations of gamma-aminobutyric acid were largely
restored by blocking those pro-inflammatory cytokine receptors in
periaqueductal gray of oxaliplatin rats; and mechanical hyperalgesia and
cold hypersensitivity evoked by oxaliplatin were attenuated. Stimulation of
gamma-aminobutyric acid receptors in the periaqueductal gray also blunted
neuropathic pain in oxaliplatin rats. Conclusions Our data suggest that the upregulation of pro-inflammatory cytokines and
membrane pro-inflammatory cytokine receptor in the periaqueductal gray of
oxaliplatin rats is likely to impair the descending inhibitory pathways in
regulating pain transmission and thereby contributes to the development of
neuropathic pain after application of chemotherapeutic oxaliplatin.
Collapse
Affiliation(s)
- Dongsheng Xu
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Zhao
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Han Gao
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huiling Zhao
- 1 Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dandan Liu
- 2 Center of Physical Examination, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jing Li
- 3 Department of Radiology, The First Hospital (Eastern Division) of Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Estrada-Rojo F, Morales-Gomez J, Coballase-Urrutia E, Martinez-Vargas M, Navarro L. Diurnal variation of NMDA receptor expression in the rat cerebral cortex is associated with traumatic brain injury damage. BMC Res Notes 2018; 11:150. [PMID: 29467028 PMCID: PMC5822486 DOI: 10.1186/s13104-018-3258-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Data from our laboratory suggest that recovery from a traumatic brain injury depends on the time of day at which it occurred. In this study, we examined whether traumatic brain injury -induced damage is related to circadian variation in N-methyl-D-aspartate receptor expression in rat cortex. RESULTS We confirmed that traumatic brain injury recovery depended on the time of day at which the damage occurred. We also found that motor cortex N-methyl-D-aspartate receptor subunit NR1 expression exhibited diurnal variation in both control and traumatic brain injury-subjected rats. However, this rhythm is more pronounced in traumatic brain injury-subjected rats, with minimum expression in those injured during nighttime hours. These findings suggest that traumatic brain injury occurrence times should be considered in future clinical studies and when designing neuroprotective strategies for patients.
Collapse
Affiliation(s)
- Francisco Estrada-Rojo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.,Programa de Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Julio Morales-Gomez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | | | - Marina Martinez-Vargas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Luz Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico.
| |
Collapse
|
14
|
Cunha-Reis D, Ribeiro JA, de Almeida RFM, Sebastião AM. VPAC 1 and VPAC 2 receptor activation on GABA release from hippocampal nerve terminals involve several different signalling pathways. Br J Pharmacol 2017; 174:4725-4737. [PMID: 28945273 DOI: 10.1111/bph.14051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Vasoactive intestinal peptide (VIP) is an important modulator of hippocampal synaptic transmission that influences both GABAergic synaptic transmission and glutamatergic cell excitability through activation of VPAC1 and VPAC2 receptors. Presynaptic enhancement of GABA release contributes to VIP modulation of hippocampal synaptic transmission. EXPERIMENTAL APPROACH We investigated which VIP receptors and coupled transduction pathways were involved in VIP enhancement of K+ -evoked [3 H]-GABA release from isolated nerve terminals of rat hippocampus. KEY RESULTS VIP enhancement of [3 H]-GABA release was potentiated in the presence of the VPAC1 receptor antagonist PG 97-269 but converted into an inhibition in the presence of the VPAC2 receptor antagonist PG 99-465, suggesting that activation of VPAC1 receptors inhibits and activation of VPAC2 receptors enhances, GABA release. A VPAC1 receptor agonist inhibited exocytotic voltage-gated calcium channel (VGCC)-dependent [3 H]-GABA release through activation of protein Gi/o , an effect also dependent on PKC activity. A VPAC2 receptor agonist enhanced both exocytotic VGCC-dependent release through protein Gs -dependent, PKA-dependent and PKC-dependent mechanisms and GABA transporter 1-mediated [3 H]-GABA release through a Gs protein-dependent and PKC-dependent mechanism. CONCLUSIONS AND IMPLICATIONS Our results show that VPAC1 and VPAC2 VIP receptors have opposing actions on GABA release from hippocampal nerve terminals through activation of different transduction pathways. As VPAC1 and VPAC2 receptors are located in different layers of Ammon's horn, our results suggest that these VIP receptors underlie different modulation of synaptic transmission to pyramidal cell dendrites and cell bodies, with important consequences for their possible therapeutic application in the treatment of epilepsy.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências e, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências e, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências e, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Barros-Barbosa AR, Oliveira Â, Lobo MG, Cordeiro JM, Correia-de-Sá P. Under stressful conditions activation of the ionotropic P2X7 receptor differentially regulates GABA and glutamate release from nerve terminals of the rat cerebral cortex. Neurochem Int 2017; 112:81-95. [PMID: 29154812 DOI: 10.1016/j.neuint.2017.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 01/08/2023]
Abstract
γ-Aminobutyric acid (GABA) and glutamate (Glu) are the main inhibitory and excitatory neurotransmitters in the central nervous system (CNS), respectively. Fine tuning regulation of extracellular levels of these amino acids is essential for normal brain activity. Recently, we showed that neocortical nerve terminals from patients with epilepsy express higher amounts of the non-desensitizing ionotropic P2X7 receptor. Once activated by ATP released from neuronal cells, the P2X7 receptor unbalances GABAergic vs. glutamatergic neurotransmission by differentially interfering with GABA and Glu uptake. Here, we investigated if activation of the P2X7 receptor also affects [3H]GABA and [14C]Glu release measured synchronously from isolated nerve terminals (synaptosomes) of the rat cerebral cortex. Data show that activation of the P2X7 receptor consistently increases [14C]Glu over [3H]GABA release from cortical nerve terminals, but the GABA/Glu ratio depends on extracellular Ca2+ concentrations. While the P2X7-induced [3H]GABA release is operated by a Ca2+-dependent pathway when external Ca2+ is available, this mechanism shifts towards the reversal of the GAT1 transporter in low Ca2+ conditions. A different scenario is verified regarding [14C]Glu outflow triggered by the P2X7 receptor, since the amino acid seems to be consistently released through the recruitment of connexin-containing hemichannels upon P2X7 activation, both in the absence and in the presence of external Ca2+. Data from this study add valuable information suggesting that ATP, via P2X7 activation, not only interferes with the high-affinity uptake of GABA and Glu but actually favors the release of these amino acids through distinct molecular mechanisms amenable to differential therapeutic control.
Collapse
Affiliation(s)
- Aurora R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Ângela Oliveira
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - M Graça Lobo
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - J Miguel Cordeiro
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
16
|
Role of astrocyte connexin hemichannels in cortical spreading depression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:216-223. [PMID: 28864364 DOI: 10.1016/j.bbamem.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 11/21/2022]
Abstract
Cortical spreading depression (CSD) is an intriguing phenomenon consisting of massive slow brain depolarizations that affects neurons and glial cells. It has been recognized since 1944, but its pathogenesis has only been uncovered during the last decade. Acute brain injuries can be further complicated by CSD in >50% of severe cases. This phenomenon is repetitive and produces a metabolic overload that increments secondary damage. Propagation of CSD is known to be linked to excitotoxicity, but the mechanisms associated with its initiation remain less understood. It has been shown that CSD can be initiated by increases in extracellular [K+] ([K+]e), and animal models use high [K+]e to promote CSD. Connexin hemichannel activity increases due to high [K+]e and low extracellular [Ca2+], conditions that occur after brain injury. Moreover, glial cell gap junction channels are fundamental in controlling extracellular medium composition, particularly in maintaining normal extracellular glutamate and K+ concentrations through "spatial buffering". However, the role of astrocytic gap junctions under tissue stress can change to damage spread in the acute damage zone whereas the reduced communication in adjacent zone would reduce cell dead propagation. Here, we review the main findings associated with CSD, and discuss the possible involvement of astrocytic connexin-based channels in secondary damage propagation. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
17
|
Eskandari S, Willford SL, Anderson CM. Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. ADVANCES IN NEUROBIOLOGY 2017; 16:85-116. [PMID: 28828607 DOI: 10.1007/978-3-319-55769-4_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this review is to highlight recent evidence in support of a 3 Na+: 1 Cl-: 1 GABA coupling stoichiometry for plasma membrane GABA transporters (SLC6A1 , SLC6A11 , SLC6A12 , SLC6A13 ) and how the revised stoichiometry impacts our understanding of the contribution of GABA transporters to GABA homeostasis in synaptic and extrasynaptic regions in the brain under physiological and pathophysiological states. Recently, our laboratory probed the GABA transporter stoichiometry by analyzing the results of six independent measurements, which included the shifts in the thermodynamic transporter reversal potential caused by changes in the extracellular Na+, Cl-, and GABA concentrations, as well as the ratio of charge flux to substrate flux for Na+, Cl-, and GABA under voltage-clamp conditions. The shifts in the transporter reversal potential for a tenfold change in the external concentration of Na+, Cl-, and GABA were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. Charge flux to substrate flux ratios were 0.7 ± 0.1 charges/Na+, 2.0 ± 0.2 charges/Cl-, and 2.1 ± 0.1 charges/GABA. We then compared these experimental results with the predictions of 150 different transporter stoichiometry models, which included 1-5 Na+, 0-5 Cl-, and 1-5 GABA per transport cycle. Only the 3 Na+: 1 Cl-: 1 GABA stoichiometry model correctly predicts the results of all six experimental measurements. Using the revised 3 Na+: 1 Cl-: 1 GABA stoichiometry, we propose that the GABA transporters mediate GABA uptake under most physiological conditions. Transporter-mediated GABA release likely takes place under pathophysiological or extreme physiological conditions.
Collapse
Affiliation(s)
- Sepehr Eskandari
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA.
| | - Samantha L Willford
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| | - Cynthia M Anderson
- Biological Sciences Department, California State Polytechnic University, Pomona, CA, 91768, USA
| |
Collapse
|
18
|
Xu C, Fitting S. Inhibition of GABAergic Neurotransmission by HIV-1 Tat and Opioid Treatment in the Striatum Involves μ-Opioid Receptors. Front Neurosci 2016; 10:497. [PMID: 27877102 PMCID: PMC5099255 DOI: 10.3389/fnins.2016.00497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
Due to combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with high prevalence of mild forms of neurocognitive impairments, also referred to as HIV-associated neurocognitive disorders (HAND). Although opiate drug use can exacerbate HIV-1 Tat-induced neuronal damage, it remains unknown how and to what extent opioids interact with Tat on the GABAergic system. We conducted whole-cell recordings in mouse striatal slices and examined the effects of HIV-1 Tat in the presence and absence of morphine (1 μM) and damgo (1 μM) on GABAergic neurotransmission. Results indicated a decrease in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) by Tat (5–50 nM) in a concentration-dependent manner. The significant Tat-induced decrease in IPSCs was abolished when removing extracellular and/or intracellular calcium. Treatment with morphine or damgo alone significantly decreased the frequency, but not amplitude of IPSCs. Interestingly, morphine but not damgo indicated an additional downregulation of the mean frequency of mIPSCs in combination with Tat. Pretreatment with naloxone (1 μM) and CTAP (1 μM) prevented the Tat-induced decrease in sIPSCs frequency but only naloxone prevented the combined Tat and morphine effect on mIPSCs frequency. Results indicate a Tat- or opioid-induced decrease in GABAergic neurotransmission via μ-opioid receptors with combined Tat and morphine effects involving additional opioid receptor-related mechanisms. Exploring the interactions between Tat and opioids on the GABAergic system may help to guide future research on HAND in the context of opiate drug use.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill Chapel Hill, NC, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
19
|
Shi J, Dong B, Mao Y, Guan W, Cao J, Zhu R, Wang S. Review: Traumatic brain injury and hyperglycemia, a potentially modifiable risk factor. Oncotarget 2016; 7:71052-71061. [PMID: 27626493 PMCID: PMC5342608 DOI: 10.18632/oncotarget.11958] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia after severe traumatic brain injury (TBI) occurs frequently and is associated with poor clinical outcome and increased mortality. In this review, we highlight the mechanisms that lead to hyperglycemia and discuss how they may contribute to poor outcomes in patients with severe TBI. Moreover, we systematically review the proper management of hyperglycemia after TBI, covering topics such as nutritional support, glucose control, moderated hypothermia, naloxone, and mannitol treatment. However, to date, an optimal and safe glycemic target range has not been determined, and may not be safe to implement among TBI patients. Therefore, there is a mandate to explore a reasonable glycemic target range that can facilitate recovery after severe TBI.
Collapse
Affiliation(s)
- Jia Shi
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Dong
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yumin Mao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Wei Guan
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachao Cao
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rongxing Zhu
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Suinuan Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
20
|
Zhuang X, Chen Y, Zhuang X, Chen T, Xing T, Wang W, Yang X. Contribution of Pro-inflammatory Cytokine Signaling within Midbrain Periaqueductal Gray to Pain Sensitivity in Parkinson's Disease via GABAergic Pathway. Front Neurol 2016; 7:104. [PMID: 27504103 PMCID: PMC4959028 DOI: 10.3389/fneur.2016.00104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/17/2016] [Indexed: 12/14/2022] Open
Abstract
Background/aims Hypersensitive pain response is often observed in patients with Parkinson’s disease (PD); however, the mechanisms responsible for hyperalgesia are not well understood. Chronic neuroinflammation is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG) is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role for pro-inflammatory cytokines (PICs) system of PAG in regulating exaggerated pain evoked by PD. Methods We used a rat model of PD to perform the experimental protocols. PD was induced by microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle. Pain responses to mechanical and thermal stimulation were first examined in control rats and PD rats. Then, ELISA and Western Blot analysis were used to determine PIC levels and their receptors expression. Results Protein expression of IL-1β, IL-6, and TNF-α receptors (namely, IL-1R, IL-6R, and TNFR subtype TNFR1) in the plasma membrane PAG of PD rats was upregulated, whereas the total expression of PIC receptors was not significantly altered. The ratio of membrane protein and total protein (IL-1R, IL-6R, and TNFR1) was 1.48 ± 0.15, 1.59 ± 0.18, and 1.67 ± 0.16 in PAG of PD rats (P < 0.05 vs. their respective controls). This was accompanied with increases of PICs of PAG and decreases of GABA (623 ± 21 ng/mg in control rats and 418 ± 18 ng/mg in PD rats; P < 0.05 vs. control rats) and withdrawal thresholds to mechanical and thermal stimuli. Our data further showed that the concentrations of GABA and withdrawal thresholds were largely restored by blocking those PIC receptors in PAG of PD rats. Stimulation of GABA receptors in PAG of PD rats also blunted a decrease in withdrawal thresholds. Conclusion Our data suggest that upregulation of the membrane PIC receptor in the PAG of PD rats is likely to impair the descending inhibitory pathways in regulating pain transmission and thereby plays a role in the development of hypersensitive pain response in PD.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital , Liaocheng , China
| | - Yanxiu Chen
- Department of Neurology, Liaocheng People's Hospital , Liaocheng , China
| | - Xianpeng Zhuang
- Department of CT, Liaocheng Fourth People's Hospital , Liaocheng , China
| | - Tuanzhi Chen
- Department of Neurology, Liaocheng People's Hospital , Liaocheng , China
| | - Tao Xing
- Department of Neurosurgery, Liaocheng People's Hospital , Liaocheng , China
| | - Weifei Wang
- Department of Neurology, Liaocheng People's Hospital , Liaocheng , China
| | - Xiafeng Yang
- Department of Neurology, Liaocheng People's Hospital , Liaocheng , China
| |
Collapse
|
21
|
Dorsett CR, McGuire JL, Niedzielko TL, DePasquale EAK, Meller J, Floyd CL, McCullumsmith RE. Traumatic Brain Injury Induces Alterations in Cortical Glutamate Uptake without a Reduction in Glutamate Transporter-1 Protein Expression. J Neurotrauma 2016; 34:220-234. [PMID: 27312729 DOI: 10.1089/neu.2015.4372] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We hypothesize that the primary mechanism for removal of glutamate from the extracellular space is altered after traumatic brain injury (TBI). To evaluate this hypothesis, we initiated TBI in adult male rats using a 2.0 atm lateral fluid percussion injury (LFPI) model. In the ipsilateral cortex and hippocampus, we found no differences in expression of the primary glutamate transporter in the brain (GLT-1) 24 h after TBI. In contrast, we found a decrease in glutamate uptake in the cortex, but not the hippocampus, 24 h after injury. Because glutamate uptake is potently regulated by protein kinases, we assessed global serine-threonine protein kinase activity using a kinome array platform. Twenty-five kinome array peptide substrates were differentially phoshorylated between LFPI and controls in the cortex, whereas 19 peptide substrates were differentially phosphorylated in the hippocampus (fold change ≥ ± 1.15). We identified several kinases as likely to be involved in acute TBI, including protein kinase B (Akt) and protein kinase C (PKC), which are well-characterized modulators of GLT-1. Exploratory studies using an inhibitor of Akt suggest selective activation of kinases in LFPI versus controls. Ingenuity pathway analyses of implicated kinases from our network model found apoptosis and cell death pathways as top functions in acute LFPI. Taken together, our data suggest diminished activity of glutamate transporters in the prefrontal cortex, with no changes in protein expression of the primary glutamate transporter GLT-1, and global alterations in signaling networks that include serine-threonine kinases that are known modulators of glutamate transport activity.
Collapse
Affiliation(s)
- Christopher R Dorsett
- 1 Biological and Biomedical Sciences Doctoral Program, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Jennifer L McGuire
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Tracy L Niedzielko
- 3 Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Erica A K DePasquale
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| | - Jaroslaw Meller
- 4 Departments of Environmental Health, Electrical Engineering & Computing Systems, and Biomedical Informatics, University of Cincinnati College of Medicine , Cincinnati, Ohio.,5 Department of Biomedical Informatics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Candace L Floyd
- 3 Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham , Birmingham, Alabama
| | - Robert E McCullumsmith
- 2 Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
22
|
Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease. Neuropharmacology 2016; 110:574-585. [PMID: 27346208 DOI: 10.1016/j.neuropharm.2016.06.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/27/2016] [Accepted: 06/16/2016] [Indexed: 01/10/2023]
Abstract
Myelin is essential for the mammalian brain to function efficiently. Whilst many factors have been associated with regulating the differentiation of oligodendroglia and myelination, glutamate signalling might be particularly important for learning-dependent myelination. The majority of myelinated projection neurons are glutamatergic. Oligodendrocyte precursor cells receive glutamatergic synaptic inputs from unmyelinated axons and oligodendrocyte lineage cells express glutamate receptors which enable them to monitor and respond to changes in neuronal activity. Yet, what role glutamate plays for oligodendroglia is not fully understood. Here, we review glutamate signalling and its effects on oligodendrocyte lineage cells, and myelination in health and disease. Furthermore, we discuss whether glutamate signalling between neurons and oligodendroglia might lay the foundation to activity-dependent white matter plasticity. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
|
23
|
Kirischuk S, Héja L, Kardos J, Billups B. Astrocyte sodium signaling and the regulation of neurotransmission. Glia 2015; 64:1655-66. [DOI: 10.1002/glia.22943] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Sergei Kirischuk
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology; Mainz Germany
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Brian Billups
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University; Acton ACT Australia
| |
Collapse
|
24
|
Barros-Barbosa AR, Lobo MG, Ferreirinha F, Correia-de-Sá P, Cordeiro JM. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes. Neuroscience 2015; 306:74-90. [PMID: 26299340 DOI: 10.1016/j.neuroscience.2015.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/09/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
Sodium-dependent high-affinity amino-acid transporters play crucial roles in terminating synaptic transmission in the central nervous system (CNS). However, there is lack of information about the mechanisms underlying the regulation of amino-acid transport by fast-acting neuromodulators, like ATP. Here, we investigated whether activation of the ATP-sensitive P2X7 receptor modulates Na(+)-dependent high-affinity γ-aminobutyric acid (GABA) and glutamate uptake into nerve terminals (synaptosomes) of the rat cerebral cortex. Radiolabeled neurotransmitter accumulation was evaluated by liquid scintillation spectrometry. The cell-permeant sodium-selective fluorescent indicator, SBFI-AM, was used to estimate Na(+) influx across plasma membrane. 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP, 3-300 μM), a prototypic P2X7 receptor agonist, concentration-dependently decreased [(3)H]GABA (14%) and [(14)C]glutamate (24%) uptake; BzATP decreased transport maximum velocity (Vmax) without affecting the Michaelis constant (Km) values. The selective P2X7 receptor antagonist, A-438079 (3 μM), prevented inhibition of [(3)H]GABA and [(14)C]glutamate uptake by BzATP (100 μM). The inhibitory effect of BzATP coincided with its ability to increase intracellular Na(+) and was mimicked by Na(+) ionophores, like gramicidin and monensin. Increases in intracellular Na(+) (with veratridine or ouabain) or substitution of extracellular Na(+) by N-methyl-D-glucamine (NMDG)(+) all decreased [(3)H]GABA and [(14)C]glutamate uptake and attenuated BzATP effects. Uptake inhibition by BzATP (100 μM) was also attenuated by calmidazolium, which selectively inhibits Na(+) currents through the P2X7 receptor pore. In conclusion, disruption of the Na(+) gradient by P2X7 receptor activation downmodulates high-affinity GABA and glutamate uptake into rat cortical synaptosomes. Interference with amino-acid transport efficacy may constitute a novel target for therapeutic management of cortical excitability.
Collapse
Affiliation(s)
- A R Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - M G Lobo
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - F Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| | - J M Cordeiro
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
25
|
Pandit S, Jo JY, Lee SU, Lee YJ, Lee SY, Ryu PD, Lee JU, Kim HW, Jeon BH, Park JB. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure. J Neurophysiol 2015; 114:914-26. [PMID: 26063771 DOI: 10.1152/jn.00080.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023] Open
Abstract
γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure.
Collapse
Affiliation(s)
- Sudip Pandit
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Yoon Jo
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Ung Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Young Jae Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jung Un Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Hyun-Woo Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea;
| |
Collapse
|
26
|
Yang Y, Xu-Friedman MA. Different pools of glutamate receptors mediate sensitivity to ambient glutamate in the cochlear nucleus. J Neurophysiol 2015; 113:3634-45. [PMID: 25855696 DOI: 10.1152/jn.00693.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 04/08/2015] [Indexed: 01/14/2023] Open
Abstract
Ambient glutamate plays an important role in pathological conditions, such as stroke, but its role during normal activity is not clear. In addition, it is not clear how ambient glutamate acts on glutamate receptors with varying affinities or subcellular localizations. To address this, we studied "endbulb of Held" synapses, which are formed by auditory nerve fibers onto bushy cells (BCs) in the anteroventral cochlear nucleus. When ambient glutamate was increased by applying the glutamate reuptake inhibitor TFB-TBOA, BCs depolarized as a result of activation of N-methyl-D-aspartate receptors (NMDARs) and group I metabotropic glutamate receptors (mGluRs). Application of antagonists against NMDARs (in 0 Mg(2+)) or mGluRs caused hyperpolarization, indicating that these receptors were bound by a tonic source of glutamate. AMPA receptors did not show these effects, consistent with their lower glutamate affinity. We also evaluated the subcellular localization of the receptors activated by ambient glutamate. The mGluRs were not activated by synaptic stimulation and thus appear to be exclusively extrasynaptic. By contrast, NMDARs in both synaptic and extrasynaptic compartments were activated by ambient glutamate, as shown using the use-dependent antagonist MK-801. Levels of ambient glutamate appeared to be regulated in a spike-independent manner, and glia likely play a major role. These low levels of ambient glutamate likely have functional consequences, as even low concentrations of TBOA caused significant increases in BC spiking following synaptic stimulation. These results indicate that normal resting potential appears to be poised in the region of maximal sensitivity to small changes in ambient glutamate.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
27
|
Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters. J Membr Biol 2015; 248:795-810. [DOI: 10.1007/s00232-015-9797-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|
28
|
Rovegno M, Soto PA, Sáez PJ, Naus CC, Sáez JC, von Bernhardi R. Connexin43 hemichannels mediate secondary cellular damage spread from the trauma zone to distal zones in astrocyte monolayers. Glia 2015; 63:1185-99. [PMID: 25731866 DOI: 10.1002/glia.22808] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/05/2015] [Indexed: 11/11/2022]
Abstract
The mechanism of secondary damage spread after brain trauma remains unsolved. In this work, we redirected the attention to astrocytic communication pathways. Using an in vitro trauma model that consists of a scratch injury applied to an astrocyte monolayer, we found a significant and transient induction of connexin43 (Cx43) hemichannel activity in regions distal from the injury, which was maximal ∼1 h after scratch. Two connexin hemichannel blockers, La(3+) and the peptide Gap26, abolished the increased activity, which was also absent in Cx43 KO astrocytes. In addition, the scratch-induced increase of hemichannel activity was prevented by inhibition of P2 purinergic receptors. Changes in hemichannel activity took place with a particular spatial distribution, with cells located at ∼17 mm away from the scratch presenting the highest activity (dye uptake). In contrast, the functional state of gap junction channels (dye coupling) was not significantly affected. Cx43 hemichannel activity was also enhanced by the acute extracellular application of 60 mM K(+) . The increase in hemichannel activity was associated with an increment in apoptotic cells at 24 h after scratch that was totally prevented by Gap26 peptide. These findings suggest that Cx43 hemichannels could be a new approach to prevent or reduce the secondary cell damage of brain trauma.
Collapse
Affiliation(s)
- Maximiliano Rovegno
- Laboratorio de Neurociencias, Departamento de Neurología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
29
|
Role for pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic acid-induced status epilepticus. Neurochem Res 2015; 40:621-7. [PMID: 25708016 DOI: 10.1007/s11064-014-1504-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/05/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
In general, pro-inflammatory cytokines (PICs) contribute to regulation of epilepsy-associated pathophysiological processes in the central nerve system. In this report, we examined the specific activation of PICs, namely IL-1β, IL-6 and TNF-α in rat brain after kainic acid (KA)-induced status epilepticus (SE). Also, we examined the role played by PICs in regulating expression of GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively), which are the two important subtypes of GATs responsible for the regulation of extracellular GABA levels in the brain. Our results show that IL-1β, IL-6 and TNF-α were significantly increased in the parietal cortex, hippocampus and amygdala of KA-rats as compared with sham control animals (P < 0.05, KA rats vs. control rats). KA-induced SE also significantly increased (P < 0.05 vs. controls) the protein expression of GAT-1 and GAT-3 in those brain regions. In addition, central administration of antagonists to IL-1β and TNF-α receptors significantly attenuated amplified GAT-1 and GAT-3 (P < 0.05 vs. vehicle control for each antagonist group). However, antagonist to IL-6 receptor failed to attenuate enhancement in expression of GAT-1 and GAT-3 induced by KA-induced SE. Overall, our data demonstrate that PIC pathways are activated in the specific brain regions during SE which thereby selectively leads to upregulation of GABA transporters. As a result, it is likely that de-inhibition of GABA system is increased in the brain. This support a role for PICs in engagement of the adaptive mechanisms associated with epileptic activity, and has pharmacological implications to target specific PICs for neuronal dysfunction and vulnerability related to epilepsy.
Collapse
|
30
|
Bolshakov AP, Rozov AV. Mechanisms of facilitation and depression in CNS synapses: Presynaptic and postsynaptic components. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.
Collapse
|
32
|
Sharopov S, Chen R, Sun H, Kolbaev SN, Kirischuk S, Luhmann HJ, Kilb W. Inhibition of different GABA transporter systems is required to attenuate epileptiform activity in the CA3 region of the immature rat hippocampus. Epilepsy Res 2013; 108:182-9. [PMID: 24359690 DOI: 10.1016/j.eplepsyres.2013.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/30/2013] [Accepted: 11/21/2013] [Indexed: 11/27/2022]
Abstract
GABA transporters (GATs) are an essential element of the GABAergic system, which regulate excitability in the central nervous system and are thus used as targets for anticonvulsive therapy. However, in the immature nervous system the functions of the GABAergic system and the expression profile of GATs are distinct from the adult situation, obscuring to predict how different GAT isoforms influence epileptiform activity. Therefore we analyzed the effects of subtype specific GAT inhibitors on repetitive epileptiform discharges using field potential and whole-cell patch-clamp recordings in the CA3 region of hippocampal slices of immature (postnatal days 4-7) rats. These experiments revealed that inhibition of GAT-1 with either tiagabine (30 μM) or NO-711 (10 μM) exhibited only a minor anticonvulsive effect on repetitive epileptiform discharges. Blockade of GAT-2/3 with SNAP-5114 (40 μM) had no anticonvulsive effect, but significantly prolonged the decay of spontaneous GABAergic postsynaptic currents. In contrast, the combined application of 10 μM NO-711 and 40 μM SNAP-5114 blocked epileptiform activity in 33% of all slices and reduced the occurrence of epileptiform discharges by 54% in the remaining slices. In addition, the input resistance decreased by 10.5 ± 1.0% under this condition. These results indicate that both GAT-1 and GAT-2/3 are functional in the immature hippocampus and that only the combined inhibition of GAT 1-3 is sufficient to promote a considerable anticonvulsive effect. We conclude from these results that both GAT-1 and GAT-2/3 act synergistically to regulate the excitability in the immature hippocampus.
Collapse
Affiliation(s)
- Salim Sharopov
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120 Mainz, Germany
| | - Rongqing Chen
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120 Mainz, Germany
| | - Haiyan Sun
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120 Mainz, Germany
| | - Sergei N Kolbaev
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120 Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55120 Mainz, Germany.
| |
Collapse
|
33
|
Murugan M, Ling EA, Kaur C. Dysregulated glutamate uptake by astrocytes causes oligodendroglia death in hypoxic perventricular white matter damage. Mol Cell Neurosci 2013; 56:342-54. [PMID: 23859823 DOI: 10.1016/j.mcn.2013.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/31/2023] Open
Abstract
Excess glutamate mediates damage to oligodendroglia, resulting in myelination disturbances characteristic of hypoxic periventricular white matter (PWM) damage. We sought to examine if hypoxia altered the expression of astroglial excitatory amino acid transporters (EAAT1, EAAT2 and EAAT3) in the PWM, and, if so, whether it activated astroglial N-methyl D-aspartate receptors (NMDAR) which might lead to apoptosis of oligodendroglia. EAAT expression in the PWM of neonatal rats was measured at different time points after hypoxic exposure; it was attenuated at 7 and 14 d following hypoxia. Hypoxia prevented the uptake of glutamate by astroglial EAATs causing increased levels of extracellular glutamate. Excess glutamate augmented the expression of functional astroglial NMDAR. Following hypoxia, an increase in gap junction proteins between astroglia and oligodendroglia aided in the spreading of NMDAR-mediated excitotoxic calcium signals into the latter cell type triggering its apoptosis. Hence, dysregulated glutamate homeostasis is believed to contribute to hypoxia-induced death of oligodendroglia leading to neonatal PWM damage.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | |
Collapse
|
34
|
Liu CH, Jiao H, Guo ZH, Peng Y, Wang WZ. Up-regulated GLT-1 resists glutamate toxicity and attenuates glutamate-induced calcium loading in cultured neurocytes. Basic Clin Pharmacol Toxicol 2012; 112:19-24. [PMID: 22998524 DOI: 10.1111/bcpt.12011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/03/2012] [Indexed: 11/28/2022]
Abstract
Glutamate transporter-1 (GLT-1) plays a dual role in glutamate transportation: both normally devotion to the clearance of glutamate and during some pathological conditions extruding glutamate to the extracellular space. Therefore, it is uncertain whether increased expression of GLT-1 will actually be helpful against glutamate excitotoxicity. In this study, GLT-1 up-regulation was induced by ceftriaxone, and L-glutamate was added to induce glutamate toxicity in primary cultured rat cortical cells. The results showed that up-regulated GLT-1 induced by 1 μM ceftriaxone for 2 days markedly increased cell viability, decreased apoptotic cell death and alleviated ultrastructural damage induced by 50 μM glutamate 15 min. as well as promoted L-[(3) H]-glutamate uptake in cultured cells. GLT-1 up-regulation had no effect on the intracellular free calcium concentration ([Ca(2+) ](i) ) in the resting situation, while relieved intracellular calcium overloading by reducing the elevation and promoting the recovery of [Ca(2+) ](i) following stimulation of 50 μM glutamate for 2 min. Applying 100 μM dihydrokainic acid (GLT-1 antagonist) 30 sec. before glutamate eliminated the above effect of GLT-1 up-regulation on [Ca(2+) ](i) . In conclusion, GLT-1 up-regulation induced by ceftriaxone plays a positive glutamate transporting role against glutamate toxicity in primary cultured rat cortical cells.
Collapse
Affiliation(s)
- Chun-hua Liu
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|
35
|
Heldt SA, Mou L, Ressler KJ. In vivo knockdown of GAD67 in the amygdala disrupts fear extinction and the anxiolytic-like effect of diazepam in mice. Transl Psychiatry 2012; 2:e181. [PMID: 23149445 PMCID: PMC3565763 DOI: 10.1038/tp.2012.101] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In mammals, γ-aminobutyric acid (GABA) transmission in the amygdala is particularly important for controlling levels of fear and anxiety. Most GABA synthesis in the brain is catalyzed in inhibitory neurons from L-glutamic acid by the enzyme glutamic acid decarboxylase 67 (GAD67). In the current study, we sought to examine the acquisition and extinction of conditioned fear in mice with knocked down expression of the GABA synthesizing enzyme GAD67 in the amygdala using a lentiviral-based (LV) RNA interference strategy to locally induce loss-of-function. In vitro experiments revealed that our LV-siRNA-GAD67 construct diminished the expression of GAD67 as determined with western blot and fluorescent immunocytochemical analyses. In vivo experiments, in which male C57BL/6J mice received bilateral amygdala microinjections, revealed that LV-siRNA-GAD67 injections produce significant inhibition of endogenous GAD67 when compared with control injections. In contrast, no significant changes in GAD65 expression were detected in the amygdala, validating the specificity of LV knockdown. Behavioral experiments showed that LV knockdown of GAD67 results in a deficit in the extinction, but not the acquisition or retention, of fear as measured by conditioned freezing. GAD67 knockdown did not affect baseline locomotion or basal measures of anxiety as measured in open field apparatus. However, diminished GAD67 in the amygdala blunted the anxiolytic-like effect of diazepam (1.5 mg kg(-1)) as measured in the elevated plus maze. Together, these studies suggest that of GABAergic transmission in amygdala mediates the inhibition of conditioned fear and the anxiolytic-like effect of diazepam in adult mice.
Collapse
Affiliation(s)
- S A Heldt
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - L Mou
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA,Howard Hughes Medical Institute, Bethesda, MD, USA
| |
Collapse
|
36
|
Darrah SD, Miller MA, Ren D, Hoh NZ, Scanlon JM, Conley YP, Wagner AK. Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res 2012; 103:180-94. [PMID: 22840783 DOI: 10.1016/j.eplepsyres.2012.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/18/2022]
Abstract
Post traumatic seizures (PTS) occur frequently after traumatic brain injury (TBI). Since gamma-amino butyric acid (GABA) neurotransmission is central to excitotoxicity and seizure development across multiple models, we investigated how genetic variability for glutamic acid decarboxylase (GAD) influences risk for PTS. Using both a tagging and functional single nucleotide polymorphism (SNP) approach, we genotyped the GAD1 and GAD2 genes and linked them with PTS data, regarding time to first seizure, obtained for 257 adult subjects with severe TBI. No significant associations were found for GAD2. In the GAD1 gene, the tagging SNP (tSNP) rs3828275 was associated with an increased risk for PTS occurring <1 wk. The tSNP rs769391 and the functional SNP rs3791878 in the GAD1 gene were associated with increased PTS risk occurring 1 wk-6 mo post-injury. Both risk variants conferred an increased susceptibility to PTS compared to subjects with 0-1 risk variant. Also, those with haplotypes having both risk variants had a higher PTS risk 1 wk-6 mo post-injury than those without these haplotypes. Similarly, diplotype analysis showed those with 2 copies of the haplotype containing both risk alleles were at the highest PTS risk. These results implicate genetic variability within the GABA system in modulating the development of PTS.
Collapse
Affiliation(s)
- Shaun D Darrah
- University of Pittsburgh, Department of Physical Medicine & Rehabilitation, 3471 Fifth Avenue, Suite 202, Pittsburgh, PA 15213, United States.
| | | | | | | | | | | | | |
Collapse
|
37
|
Rowley NM, Madsen KK, Schousboe A, Steve White H. Glutamate and GABA synthesis, release, transport and metabolism as targets for seizure control. Neurochem Int 2012; 61:546-58. [PMID: 22365921 DOI: 10.1016/j.neuint.2012.02.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/09/2012] [Indexed: 11/17/2022]
Abstract
The synthesis, release, reuptake, and metabolism of the excitatory and inhibitory neurotransmitters glutamate and GABA, respectively, are tightly controlled. Given the role that these two neurotransmitters play in normal and abnormal neurotransmission, it is important to consider the processes whereby they are regulated. This brief review is focused entirely on the metabolic aspects of glutamate and GABA synthesis and neurotransmission. It describes in limited detail the synthesis, release, reuptake, metabolism, cellular compartmentation and pharmacology of the glutamatergic and GABAergic synapse. This review also provides a summary and brief description of the pathologic and phenotypic features of the various genetic animal models that have been developed in an effort to provide a greater understanding of the role that each of the aforementioned metabolic processes plays in controlling excitatory and inhibitory neurotransmission and how their use will hopefully facilitate the development of safer and more efficacious therapies for the treatment of epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Nicole M Rowley
- Department of Pharmacology and Toxicology, Anticonvulsant Drug Development Program, University of Utah, 417 Wakara Way, Suite 3211, Salt Lake City, UT 84108, USA
| | | | | | | |
Collapse
|
38
|
Dmitriev AV, Gavrikov KE, Mangel SC. GABA-mediated spatial and temporal asymmetries that contribute to the directionally selective light responses of starburst amacrine cells in retina. J Physiol 2012; 590:1699-720. [PMID: 22289910 DOI: 10.1113/jphysiol.2011.225482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Starburst amacrine cells (SACs) are an essential component of the mechanism that generates direction selectivity in the retina. SACs exhibit opposite polarity, directionally selective (DS) light responses, depolarizing to stimuli that move centrifugally away from the cell through the receptive field surround, but hyperpolarizing to stimuli that move centripetally towards the cell through the surround.Recent findings suggest that (1) the intracellular chloride concentration ([Cl(−)](i)) is high in SAC proximal, but low in SAC distal dendritic compartments, so that GABA depolarizes and hyperpolarizes the proximal and distal compartments, respectively, and (2) this [Cl(−)](i) gradient plays an essential role in generating SAC DS light responses. Employing a biophysically realistic, computational model of SACs, which incorporated experimental measurements of SAC electrical properties and GABA and glutamate responses, we further investigated whether and how a [Cl(−)](i) gradient along SAC dendrites produces their DS responses. Our computational analysis suggests that robust DS light responses would be generated in both the SAC soma and distal dendrites if (1) the Cl(−) equilibrium potential is more positive in the proximal dendrite and more negative in the distal dendrite than the resting membrane potential, so that GABA depolarizes and hyperpolarizes the proximal and distal compartments, respectively, and (2) the GABA-evoked increase in the Cl(−) conductance lasts longer than the glutamate-evoked increase in cation conductance. The combination of these two specific GABA-associated spatial and temporal asymmetries, in conjunction with symmetric glutamate excitation, may underlie the opposite polarity, DS light responses of SACs.
Collapse
Affiliation(s)
- Andrey V Dmitriev
- Department of Neuroscience, Ohio State University College of Medicine, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
39
|
[Biological mechanisms involved in the spread of traumatic brain damage]. Med Intensiva 2011; 36:37-44. [PMID: 21903299 DOI: 10.1016/j.medin.2011.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/23/2011] [Accepted: 06/25/2011] [Indexed: 01/11/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health problem that is especially prevalent in young adults. It is characterized by one or more primary injury foci, with secondary spread to initially not compromised areas via cascades of inflammatory response, excitotoxicity, energy failure conditions, and amplification of the original tissue injury by glia. In theory, such progression of injury should be amenable to management. However, all neuroprotective drug trials have failed, and specific treatments remain lacking. These negative results can be explained by a neuron centered approach, excluding the participation of other cell types and pathogenic mechanisms. To change this situation, it is necessary to secure a better understanding of the biological mechanisms determining damage progression or spread. We discuss the biological mechanisms involved in the progression of post-trauma tissue damage, including the general physiopathology of TBI and cellular mechanisms of secondary damage such as inflammation, apoptosis, cell tumefaction, excitotoxicity, and the role of glia in damage propagation. We highlight the role of glia in each cellular mechanism discussed. Therapeutic approaches related to the described mechanisms have been included. The discussion is completed with a working model showing the convergence of the main topics.
Collapse
|
40
|
Jin XT, Galvan A, Wichmann T, Smith Y. Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia. Front Syst Neurosci 2011; 5:63. [PMID: 21847373 PMCID: PMC3148782 DOI: 10.3389/fnsys.2011.00063] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/13/2011] [Indexed: 02/04/2023] Open
Abstract
GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most data obtained so far relate to their role in the regulation of GABA(A) receptor-mediated postsynaptic tonic and phasic inhibition in the hippocampus, cerebral cortex and cerebellum. Taking into consideration the key role of GABAergic transmission within basal ganglia networks, and the importance for these systems to be properly balanced to mediate normal basal ganglia function, we analyzed in detail the localization and function of GAT-1 and GAT-3 in the globus pallidus of normal and Parkinsonian animals, in order to further understand the substrate and possible mechanisms by which GABA transporters may regulate basal ganglia outflow, and may become relevant targets for new therapeutic approaches for the treatment of basal ganglia-related disorders. In this review, we describe the general features of GATs in the basal ganglia, and give a detailed account of recent evidence that GAT-1 and GAT-3 regulation can have a major impact on the firing rate and pattern of basal ganglia neurons through pre- and post-synaptic GABA(A)- and GABA(B)-receptor-mediated effects.
Collapse
Affiliation(s)
- Xiao-Tao Jin
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| | - Adriana Galvan
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| | - Thomas Wichmann
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| | - Yoland Smith
- Division of Neuroscience, Yerkes National Primate Research Center and Department of Neurology, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
41
|
de Groot J, Sontheimer H. Glutamate and the biology of gliomas. Glia 2010; 59:1181-9. [PMID: 21192095 DOI: 10.1002/glia.21113] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/29/2010] [Indexed: 11/05/2022]
Abstract
Several important and previously unrecognized roles for the neurotransmitter glutamate in the biology of primary brain tumors have recently been elucidated. Glutamate is produced and released from glioma cells via the system x(c) (-) cystine glutamate transporter as a byproduct of glutathione synthesis. Glutamate appears to play a central role in the malignant phenotype of glioma via multiple mechanisms. By binding to peritumoral neuronal glutamate receptors, glutamate is responsible for seizure induction and similarly causes excitotoxicity, which aids the expansion of tumor cells into the space vacated by destroyed tissue. Glutamate also activates ionotropic and metabotropic glutamate receptors on glioma cells in a paracrine and autocrine manner. α-Amino-3-hydroxy-5-methyl-4-isoaxazolepropionate acid (AMPA) glutamate receptors lack the GluR2 subunit rendering them Ca(2+) permeable and capable of activating the AKT and MAPK pathways. Furthermore, these receptors are critical in aiding the invasion of glioma cells into normal brain. AMPA-Rs accumulate at focal adhesion sites where they may indirectly mediate interactions between the extracellular matrix and integrins. Glutamate receptor stimulation results in activation of focal adhesion kinase, which is critical to the regulation of growth factor and integrin-stimulated cell motility and invasion. The multitude of effects of glutamate on glioma biology supports the rationale for pharmacological targeting of glutamate receptors and transporters. Several ongoing and recently completed clinical trials are exploring the therapeutic potential of interrupting glutamate-mediated brain tumor growth.
Collapse
Affiliation(s)
- John de Groot
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
42
|
Mao X, Guo F, Yu J, Min D, Wang Z, Xie N, Chen T, Shaw C, Cai J. Up-regulation of GABA transporters and GABA(A) receptor α1 subunit in tremor rat hippocampus. Neurosci Lett 2010; 486:150-5. [PMID: 20851161 DOI: 10.1016/j.neulet.2010.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2010] [Revised: 09/01/2010] [Accepted: 09/11/2010] [Indexed: 12/15/2022]
Abstract
The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABA(A) receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR α1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR α1 subunit were all significantly increased in TRMs hippocampus by real time PCR and Western blot, respectively; GAT-1 and GABAR α1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR α1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy.
Collapse
Affiliation(s)
- Xiaoyuan Mao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bogen IL, Risa Ø, Haug KH, Sonnewald U, Fonnum F, Walaas SI. Distinct changes in neuronal and astrocytic amino acid neurotransmitter metabolism in mice with reduced numbers of synaptic vesicles. J Neurochem 2010; 105:2524-34. [PMID: 18346203 DOI: 10.1111/j.1471-4159.2008.05344.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The relations between glutamate and GABA concentrations and synaptic vesicle density in nerve terminals were examined in an animal model with 40-50% reduction in synaptic vesicle numbers caused by inactivation of the genes encoding synapsin I and II. Concentrations and synthesis of amino acids were measured in extracts from cerebrum and a crude synaptosomal fraction by HPLC and (13)C nuclear magnetic resonance spectroscopy (NMRS), respectively. Analysis of cerebrum extracts, comprising both neurotransmitter and metabolic pools, showed decreased concentration of GABA, increased concentration of glutamine and unchanged concentration of glutamate in synapsin I and II double knockout (DKO) mice. In contrast, both glutamate and GABA concentrations were decreased in crude synaptosomes isolated from synapsin DKO mice, suggesting that the large metabolic pool of glutamate in the cerebral extracts may overshadow minor changes in the transmitter pool. (13)C NMRS studies showed that the changes in amino acid concentrations in the synapsin DKO mice were caused by decreased synthesis of GABA (20-24%) in cerebral neurons and increased synthesis of glutamine (36%) in astrocytes. In a crude synaptosomal fraction, the glutamate synthesis was reduced (24%), but this reduction could not be detected in cerebrum extracts. We suggest that lack of synaptic vesicles causes down-regulation of neuronal GABA and glutamate synthesis, with a concomitant increase in astrocytic synthesis of glutamine, in order to maintain normal neurotransmitter concentrations in the nerve terminal cytosol.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Department of Biochemistry, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
44
|
Lehmann C, Bette S, Engele J. High extracellular glutamate modulates expression of glutamate transporters and glutamine synthetase in cultured astrocytes. Brain Res 2009; 1297:1-8. [PMID: 19728998 DOI: 10.1016/j.brainres.2009.08.070] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 08/19/2009] [Accepted: 08/24/2009] [Indexed: 12/27/2022]
Abstract
Astroglial cells clear extracellular glutamate through the glutamate transporters, GLT-1 and GLAST, and subsequently convert the incorporated glutamate into glutamine by the enzyme, glutamine synthetase (GS). Several forms of acute brain injury are associated with the increased expression of GS and the decreased expression of GLT-1 and/or GLAST, eventually leading to the accumulation of excitotoxic extracellular glutamate concentrations. Although of clinical interest, the actual trigger of these injury-related changes of glial glutamate turnover remains unknown. Our present studies provide evidence that increases in extracellular glutamate, as present in many brain injuries, are sufficient to modulate the expression of glutamate transporters and GS. Subjecting cultured cortical astrocytes to glutamate concentrations of 0.5-20 mM resulted in a 25% loss of GLT-1 and GLAST protein levels after 24 h; GLT-1 and GLAST levels maximally decreased by 40% and 75%, respectively, after 72 h. This decline was not due to astroglial cell death, since glutamate up to 50 mM did not affect the survival of cultured astrocytes within 72 h. Major astrocytic cell death, however, occurred in cultures maintained under severe (4% O(2)), but not mild (9% O(2)), hypoxia, as well as in the presence of aspartate (>or=20 mM). Glutamate at >or=1 mM induced a prolonged increase of GS expression in contrast to glutamate transporters. Neither the decline of glutamate transporter expression nor the increase in GS expression induced by high extracellular glutamate was further modulated by mild hypoxia. Whereas the stimulatory influences of glutamate on GS expression were prevented by the non-competitive NMDA receptor antagonist, MK801, the inhibitory influences on glutamate transporter expression were neither sensitive to MK801, the non-competitive mGluR5 antagonist, MTEP, nor the non-competitive AMPA receptor antagonist, GYKI52466, implying that glutamate controls glial glutamate transport by a glutamate receptor-independent mechanism.
Collapse
Affiliation(s)
- Claudia Lehmann
- Institute of Anatomy, University of Leipzig, Medical Faculty, Liebigstr. 13, 04103 Leipzig, Germany
| | | | | |
Collapse
|
45
|
Park JB, Jo JY, Zheng H, Patel KP, Stern JE. Regulation of tonic GABA inhibitory function, presympathetic neuronal activity and sympathetic outflow from the paraventricular nucleus by astroglial GABA transporters. J Physiol 2009; 587:4645-60. [PMID: 19703969 DOI: 10.1113/jphysiol.2009.173435] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neuronal activity in the hypothalamic paraventricular nucleus (PVN), as well as sympathetic outflow from the PVN, is basally restrained by a GABAergic inhibitory tone. We recently showed that two complementary GABA(A) receptor-mediated modalities underlie inhibition of PVN neuronal activity: a synaptic, quantal inhibitory modality (IPSCs, I(phasic)) and a sustained, non-inactivating modality (I(tonic)). Here, we investigated the role of neuronal and/or glial GABA transporters (GATs) in modulating these inhibitory modalities, and assessed their impact on the activity of RVLM-projecting PVN neurons (PVN-RVLM neurons), and on PVN influence of renal sympathetic nerve activity (RSNA). Patch-clamp recordings were obtained from retrogradely labelled PVN-RVLM neurons in a slice preparation. The non-selective GAT blocker nipecotic acid (100-300 microM) caused a large increase in GABA(A)I(tonic), and reduced IPSC frequency. These effects were replicated by beta-alanine (100 microM), but not by SKF 89976A (30 microM), relatively selective blockers of GAT3 and GAT1 isoforms, respectively. Similar effects were evoked by the gliotoxin L-alpha-aminodipic acid (2 mM). GAT blockade attenuated the firing activity of PVN-RVLM neurons. Moreover, PVN microinjections of nipecotic acid in the whole animal diminished ongoing RSNA. A robust GAT3 immunoreactivity was observed in the PVN, which partially colocalized with the glial marker GFAP. Altogether, our results indicate that by modulating ambient GABA levels and the efficacy of GABA(A)I(tonic), PVN GATs, of a likely glial location, contribute to setting a basal tone of PVN-RVLM firing activity, and PVN-driven RSNA.
Collapse
Affiliation(s)
- Jin Bong Park
- Department of Physiology, Medical College of Georgia, 1120 15th St, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
46
|
Brawek B, Löffler M, Weyerbrock A, Feuerstein TJ. Effects of gabapentin and pregabalin on K+-evoked 3H-GABA and 3H-glutamate release from human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:361-9. [DOI: 10.1007/s00210-008-0370-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
|
47
|
Dynamic regulation of the Kv2.1 voltage-gated potassium channel during brain ischemia through neuroglial interaction. J Neurosci 2008; 28:8529-38. [PMID: 18716211 DOI: 10.1523/jneurosci.1417-08.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The physiological significance of neuroglial interactions in the CNS has been emphasized in neurological conditions such as epilepsy and brain ischemia. The Kv2.1 voltage-gated potassium channel is unique in its ability to form large clusters in the plasma membrane of neuronal cell bodies. We have previously shown that brain ischemia causes rapid dephosphorylation of Kv2.1 subunits and resultant activation of the ion channel function. However, the physiological significance of the channel clustering is unknown. Here we present evidence that clustered Kv2.1 channels in the neuronal plasma membrane are juxtaposed to axosomatic synapses and associated with astrocytic processes expressing high levels of glutamate transporters. In acute cortical slices, ischemic stress rapidly resulted in the dephosphorylation and dispersion of Kv2.1. Selective inhibition of metabolism in astrocytes was sufficient to induce Kv2.1 dephosphorylation in neurons. Interestingly, these effects were blocked by the antagonists of ionotropic glutamate receptors, indicating the involvement of glutamate as the signal mediator between astrocytes and neurons. Furthermore, the pharmacological inhibition of glial glutamate transporter GLT-1 induced the similar Kv2.1 dephosphorylation, whereas exogenous glutamate alone was not efficacious. These results suggest that ischemic stress rapidly causes the dysfunction of glutamate transporters in astrocytes and resultant accumulation of glutamate in the extracellular space. The elevated glutamate may subsequently activate ionotropic glutamate receptors and result in the dephosphorylation of Kv2.1 in neurons. These findings implicate that Kv2.1 clusters are strategically situated at neuroglial junctions to achieve the rapid modulation after ischemic stress via glutamate signaling.
Collapse
|
48
|
Molz S, Tharine DC, Decker H, Tasca CI. GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices. Brain Res 2008; 1231:113-20. [PMID: 18655777 DOI: 10.1016/j.brainres.2008.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 01/11/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the mammalian nervous system and is essential for its normal functions. However, overstimulation of glutamatergic system due to hyperactivation of NMDA receptors and/or impairment of glutamate reuptake system has been implicated in many acute and chronic neurological diseases. Regulation of extracellular glutamate concentrations relies on the function of glutamate transporters which can be reversed in situations related to excitotoxicity. Guanosine-5'-monophosphate (GMP), a guanine nucleotide which displays important extracellular roles, such as trophic effects to neurons and astrocytes, behaves as antagonist of glutamate receptors and is neuroprotective in hippocampal slices against excitotoxicity or ischemic conditions. Hippocampal slices exposed to 1 or 10 mM glutamate, or 100 microM NMDA with 10 microM glycine for 1 h and evaluated after 6 or 18 h, showed reduced cell viability and DNA fragmentation, respectively. Glutamate- or NMDA-induced cell death was prevented by 50 microM MK-801, but only NMDA-induced cell damage was prevented by GMP (1 mM). Glutamate-induced cell viability impairment and glutamate-induced l-[(3)H]glutamate release were both prevented by adding DL-TBOA (10 microM). Otherwise, NMDA-induced cell viability loss was not prevented by 10 microM of DL-TBOA and NMDA did not induce l-[(3)H]glutamate release. Our results demonstrate that GMP is neuroprotective when acting selectively at NMDA receptors. Glutamate-induced hippocampal slice damage and glutamate release were blocked by glutamate transporter inhibitor, indicating that glutamate-induced toxicity also involves the reversal of glutamate uptake, which cannot be prevented by GMP.
Collapse
Affiliation(s)
- Simone Molz
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianópolis, SC, Brazil
| | | | | | | |
Collapse
|
49
|
Vaz SH, Cristóvão-Ferreira S, Ribeiro JA, Sebastião AM. Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals. Brain Res 2008; 1219:19-25. [DOI: 10.1016/j.brainres.2008.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 04/03/2008] [Accepted: 04/04/2008] [Indexed: 10/22/2022]
|
50
|
Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 2007; 8:935-47. [PMID: 17987031 DOI: 10.1038/nrn2274] [Citation(s) in RCA: 385] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Traditionally, glutamate transporters have been viewed as membrane proteins that harness the electrochemical gradient to slowly transport glutamate from the extracellular space into glial cells. However, recent studies have shown that glutamate transporters on glial and neuronal membranes also rapidly bind released glutamate to shape synaptic transmission. In this Review, we summarize the properties of glutamate transporters that influence synaptic transmission and are subject to regulation and plasticity. We highlight how the diversity of glutamate-transporter function relates to transporter location, density and affinity.
Collapse
Affiliation(s)
- Anastassios V Tzingounis
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94107, USA
| | | |
Collapse
|