1
|
Wegner S, Belle MDC, Chang P, Hughes ATL, Conibear AE, Muir C, Samuels RE, Piggins HD. Loss of neuropeptide signalling alters temporal expression of mouse suprachiasmatic neuronal state and excitability. Eur J Neurosci 2024; 60:6617-6633. [PMID: 39551976 PMCID: PMC11612845 DOI: 10.1111/ejn.16590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Individual neurons of the hypothalamic suprachiasmatic nuclei (SCN) contain an intracellular molecular clock that drives these neurons to exhibit day-night variation in excitability. The neuropeptide vasoactive intestinal polypeptide (VIP) and its cognate receptor, VPAC2, are synthesized by SCN neurons and this intercellular VIP-VPAC2 receptor signal facilitates coordination of SCN neuronal activity and timekeeping. How the loss of VPAC2 receptor signalling affects the electrophysiological properties and states of SCN neurons as well as their responses to excitatory inputs is unclear. Here we used patch-clamp electrophysiology and made recordings of SCN neurons in brain slices prepared from transgenic animals that do not express VPAC2 receptors (Vipr2-/- mice) as well as animals that do (Vipr2+/+ mice). We report that while Vipr2+/+ neurons exhibit coordinated day-night variation in their electrical state, Vipr2-/- neurons lack this and instead manifest a range of states during both day and night. Further, at the population level, Vipr2+/+ neurons vary the membrane threshold potential at which they start to fire action potentials from day to night, while Vipr2-/- neurons do not. We provide evidence that Vipr2-/- neurons lack a component of voltage-gated sodium currents that contribute to SCN neuronal excitability. Moreover, we determine that this aberrant temporal control of neuronal state and excitability alters neuronal responses to a neurochemical mimic of the light-input pathway to the SCN. These results highlight the critical role VIP-VPAC2 receptor signalling plays in the temporal expression of individual neuronal states as well as appropriate ensemble activity and input gating of the SCN neural network.
Collapse
Affiliation(s)
- Sven Wegner
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Mino D. C. Belle
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Pi‐Shan Chang
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Alun T. L. Hughes
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Biological and Environmental ScienceLiverpool John Moores UniversityLiverpoolUK
| | | | - Charlotte Muir
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| | - Rayna E. Samuels
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Hugh D. Piggins
- Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- School of Physiology, Pharmacology, and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
2
|
Schlaeger L, Olejniczak I, Lehmann M, Schmidt CX, Astiz M, Oster H, Pilorz V. Estrogen-mediated coupling via gap junctions in the suprachiasmatic nucleus. Eur J Neurosci 2024; 59:1723-1742. [PMID: 38326974 DOI: 10.1111/ejn.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
The circadian clock orchestrates many physiological and behavioural rhythms in mammals with 24-h periodicity, through a hierarchical organisation, with the central clock located in the suprachiasmatic nucleus (SCN) in the hypothalamus. The circuits of the SCN generate circadian rhythms with precision, relying on intrinsic coupling mechanisms, for example, neurotransmitters like arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), neuronal gamma-aminobutyric acid (GABA) signalling and astrocytes connected by gap junctions composed of connexins (Cx). In female rodents, the presence of estrogen receptors (ERs) in the dorsal SCN suggests an influence of estrogen (E2) on the circuit timekeeping that could regulate circadian rhythm and coupling. To investigate this, we used SCN explants together with hypothalamic neurons and astrocytes. First, we showed that E2 stabilised the circadian amplitude in the SCN when rAVPs (receptor-associated vasopressin peptides) were inhibited. However, the phase delay induced by VIPAC2 (VIP receptors) inhibition remained unaffected by E2. We then showed that E2 exerted its effects in the SCN via ERβ (estrogen receptor beta), resulting in increased expression of Cx36 and Cx43. Notably, specific inhibition of both connexins resulted in a significant reduction in circadian amplitude within the SCN. Remarkably, E2 restored the period with inhibited Cx36 but not with Cx43 inhibition. This implies that the network between astrocytes and neurons, responsible for coupling in the SCN, can be reinforced through E2. In conclusion, these findings provide new insights into how E2 regulates circadian rhythms ex vivo in an ERβ-dependent manner, underscoring its crucial role in fortifying the SCN's rhythm.
Collapse
Affiliation(s)
- Lina Schlaeger
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Iwona Olejniczak
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Marianne Lehmann
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Cosima Xenia Schmidt
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Mariana Astiz
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| | - Violetta Pilorz
- Institute of Neurobiology, Center of Brain, Behaviour and Metabolism, Marie-Curie-Strasse, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Starnes AN, Jones JR. Inputs and Outputs of the Mammalian Circadian Clock. BIOLOGY 2023; 12:508. [PMID: 37106709 PMCID: PMC10136320 DOI: 10.3390/biology12040508] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Circadian rhythms in mammals are coordinated by the central circadian pacemaker, the suprachiasmatic nucleus (SCN). Light and other environmental inputs change the timing of the SCN neural network oscillator, which, in turn, sends output signals that entrain daily behavioral and physiological rhythms. While much is known about the molecular, neuronal, and network properties of the SCN itself, the circuits linking the outside world to the SCN and the SCN to rhythmic outputs are understudied. In this article, we review our current understanding of the synaptic and non-synaptic inputs onto and outputs from the SCN. We propose that a more complete description of SCN connectivity is needed to better explain how rhythms in nearly all behaviors and physiological processes are generated and to determine how, mechanistically, these rhythms are disrupted by disease or lifestyle.
Collapse
Affiliation(s)
| | - Jeff R. Jones
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Hitrec T, Petit C, Cryer E, Muir C, Tal N, Fustin JM, Hughes AT, Piggins HD. Timed exercise stabilizes behavioral rhythms but not molecular programs in the brain's suprachiasmatic clock. iScience 2023; 26:106002. [PMID: 36866044 PMCID: PMC9971895 DOI: 10.1016/j.isci.2023.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/25/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Timed daily access to a running-wheel (scheduled voluntary exercise; SVE) synchronizes rodent circadian rhythms and promotes stable, 24h rhythms in animals with genetically targeted impairment of neuropeptide signaling (Vipr2 -/- mice). Here we used RNA-seq and/or qRT-PCR to assess how this neuropeptide signaling impairment as well as SVE shapes molecular programs in the brain clock (suprachiasmatic nuclei; SCN) and peripheral tissues (liver and lung). Compared to Vipr2 +/+ animals, the SCN transcriptome of Vipr2 -/- mice showed extensive dysregulation which included core clock components, transcription factors, and neurochemicals. Furthermore, although SVE stabilized behavioral rhythms in these animals, the SCN transcriptome remained dysregulated. The molecular programs in the lung and liver of Vipr2 -/- mice were partially intact, although their response to SVE differed to that of these peripheral tissues in the Vipr2 +/+ mice. These findings highlight that SVE can correct behavioral abnormalities in circadian rhythms without causing large scale alterations to the SCN transcriptome.
Collapse
Affiliation(s)
- Timna Hitrec
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Cheryl Petit
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Emily Cryer
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Charlotte Muir
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Natalie Tal
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Michel Fustin
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alun T.L. Hughes
- School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,School of Biological and Environmental Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, UK,Corresponding author
| | - Hugh D. Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK,School of Medical Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, UK,Corresponding author
| |
Collapse
|
5
|
Rohr KE, Inda T, Evans JA. Vasopressin Resets the Central Circadian Clock in a Manner Influenced by Sex and Vasoactive Intestinal Polypeptide Signaling. Neuroendocrinology 2022; 112:904-916. [PMID: 34856551 PMCID: PMC9160207 DOI: 10.1159/000521286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIMS Circadian rhythms in behavior and physiology are programmed by the suprachiasmatic nucleus (SCN) of the hypothalamus. A subset of SCN neurons produce the neuropeptide arginine vasopressin (AVP), but it remains unclear whether AVP signaling influences the SCN clock directly. METHODS Here, we test that AVP signaling acting through V1A and V1B receptors influences molecular rhythms in SCN neurons. V1 receptor agonists were applied ex vivo to PERIOD2::LUCIFERASE SCN slices, allowing for real-time monitoring of changes in molecular clock function. RESULTS V1A/B agonists reset the phase of the SCN molecular clock in a time-dependent manner, with larger magnitude responses by the female SCN. Further, we found evidence that both Gαq and Gαs signaling pathways interact with V1A/B-induced SCN resetting, and that this response requires vasoactive intestinal polypeptide (VIP) signaling. CONCLUSIONS Collectively, this work indicates that AVP signaling resets SCN molecular rhythms in conjunction with VIP signaling and in a manner influenced by sex. This highlights the utility of studying clock function in both sexes and suggests that signal integration in central clock circuits regulates emergent properties important for the control of daily rhythms in behavior and physiology.
Collapse
Affiliation(s)
| | | | - Jennifer A. Evans
- Corresponding author: 560 N 16 St, Schroeder Complex, Room 446, Milwaukee, WI 53233, Phone: 414 288-5732, Fax: 414-288-6564,
| |
Collapse
|
6
|
Lu Q, Kim JY. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J 2021; 289:6589-6604. [PMID: 34657394 DOI: 10.1111/febs.16233] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/28/2022]
Abstract
The brain has a complex structure composed of hundreds of regions, forming networks to cooperate body functions. Therefore, understanding how various brain regions communicate with each other and with peripheral organs is important to understand human physiology. The suprachiasmatic nucleus (SCN) in the brain is the circadian pacemaker. The SCN receives photic information from the environment and conveys this to other parts of the brain and body to synchronize all circadian clocks. The circadian clock is an endogenous oscillator that generates daily rhythms in metabolism and physiology in almost all cells via a conserved transcriptional-translational negative feedback loop. So, the information flow from the environment to the SCN to other tissues synchronizes locally distributed circadian clocks to maintain homeostasis. Thus, understanding the circadian networks and how they adjust to environmental changes will better understand human physiology. This review will focus on circadian networks mediated by the SCN to understand how the environment, brain, and peripheral tissues form networks for cooperation.
Collapse
Affiliation(s)
- Qingqing Lu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Jin Young Kim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Tung Foundation Biomedical Sciences Centre, Hong Kong, China.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
7
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
8
|
Patton AP, Edwards MD, Smyllie NJ, Hamnett R, Chesham JE, Brancaccio M, Maywood ES, Hastings MH. The VIP-VPAC2 neuropeptidergic axis is a cellular pacemaking hub of the suprachiasmatic nucleus circadian circuit. Nat Commun 2020; 11:3394. [PMID: 32636383 PMCID: PMC7341843 DOI: 10.1038/s41467-020-17110-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 06/05/2020] [Indexed: 12/01/2022] Open
Abstract
The hypothalamic suprachiasmatic nuclei (SCN) are the principal mammalian circadian timekeeper, co-ordinating organism-wide daily and seasonal rhythms. To achieve this, cell-autonomous circadian timing by the ~20,000 SCN cells is welded into a tight circuit-wide ensemble oscillation. This creates essential, network-level emergent properties of precise, high-amplitude oscillation with tightly defined ensemble period and phase. Although synchronised, regional cell groups exhibit differentially phased activity, creating stereotypical spatiotemporal circadian waves of cellular activation across the circuit. The cellular circuit pacemaking components that generate these critical emergent properties are unknown. Using intersectional genetics and real-time imaging, we show that SCN cells expressing vasoactive intestinal polypeptide (VIP) or its cognate receptor, VPAC2, are neurochemically and electrophysiologically distinct, but together they control de novo rhythmicity, setting ensemble period and phase with circuit-level spatiotemporal complexity. The VIP/VPAC2 cellular axis is therefore a neurochemically and topologically specific pacemaker hub that determines the emergent properties of the SCN timekeeper. Circadian activity modulation in the suprachiasmatic nucleus (SCN) is a network-level emergent property that requires neuropeptide VIP signaling, yet the precise cellular mechanisms are unknown. Patton et al. show that cells expressing VIP or its receptor VPAC2 together determine these emergent properties of the SCN.
Collapse
Affiliation(s)
- Andrew P Patton
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Mathew D Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK
| | - Nicola J Smyllie
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Ryan Hamnett
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,Department of Neurosurgery, Stanford University, Stanford, USA
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Marco Brancaccio
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.,Department of Brain Sciences, UK Dementia Research Institute, Imperial College London, London, UK
| | - Elizabeth S Maywood
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Michael H Hastings
- MRC Laboratory of Molecular Biology, Francis Crick Ave., Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
9
|
Harvey JRM, Plante AE, Meredith AL. Ion Channels Controlling Circadian Rhythms in Suprachiasmatic Nucleus Excitability. Physiol Rev 2020; 100:1415-1454. [PMID: 32163720 DOI: 10.1152/physrev.00027.2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animals synchronize to the environmental day-night cycle by means of an internal circadian clock in the brain. In mammals, this timekeeping mechanism is housed in the suprachiasmatic nucleus (SCN) of the hypothalamus and is entrained by light input from the retina. One output of the SCN is a neural code for circadian time, which arises from the collective activity of neurons within the SCN circuit and comprises two fundamental components: 1) periodic alterations in the spontaneous excitability of individual neurons that result in higher firing rates during the day and lower firing rates at night, and 2) synchronization of these cellular oscillations throughout the SCN. In this review, we summarize current evidence for the identity of ion channels in SCN neurons and the mechanisms by which they set the rhythmic parameters of the time code. During the day, voltage-dependent and independent Na+ and Ca2+ currents, as well as several K+ currents, contribute to increased membrane excitability and therefore higher firing frequency. At night, an increase in different K+ currents, including Ca2+-activated BK currents, contribute to membrane hyperpolarization and decreased firing. Layered on top of these intrinsically regulated changes in membrane excitability, more than a dozen neuromodulators influence action potential activity and rhythmicity in SCN neurons, facilitating both synchronization and plasticity of the neural code.
Collapse
Affiliation(s)
- Jenna R M Harvey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amber E Plante
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea L Meredith
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, Vanden Berghe P. VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Front Cell Neurosci 2017; 11:118. [PMID: 28487635 PMCID: PMC5403822 DOI: 10.3389/fncel.2017.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The enteric nervous system (ENS) situated within the gastrointestinal tract comprises an intricate network of neurons and glia which together regulate intestinal function. The exact neuro-glial circuitry and the signaling molecules involved are yet to be fully elucidated. Vasoactive intestinal peptide (VIP) is one of the main neurotransmitters in the gut, and is important for regulating intestinal secretion and motility. However, the role of VIP and its VPAC receptors within the enteric circuitry is not well understood. We investigated this in the submucosal plexus of mouse jejunum using calcium (Ca2+)-imaging. Local VIP application induced Ca2+-transients primarily in neurons and these were inhibited by VPAC1- and VPAC2-antagonists (PG 99-269 and PG 99-465 respectively). These VIP-evoked neural Ca2+-transients were also inhibited by tetrodotoxin (TTX), indicating that they were secondary to action potential generation. Surprisingly, VIP induced Ca2+-transients in glia in the presence of the VPAC2 antagonist. Further, selective VPAC1 receptor activation with the agonist ([K15, R16, L27]VIP(1-7)/GRF(8-27)) predominantly evoked glial responses. However, VPAC1-immunoreactivity did not colocalize with the glial marker glial fibrillary acidic protein (GFAP). Rather, VPAC1 expression was found on cholinergic submucosal neurons and nerve fibers. This suggests that glial responses observed were secondary to neuronal activation. Trains of electrical stimuli were applied to fiber tracts to induce endogenous VIP release. Delayed glial responses were evoked when the VPAC2 antagonist was present. These findings support the presence of an intrinsic VIP/VPAC-initiated neuron-to-glia signaling pathway. VPAC1 agonist-evoked glial responses were inhibited by purinergic antagonists (PPADS and MRS2179), thus demonstrating the involvement of P2Y1 receptors. Collectively, we showed that neurally-released VIP can activate neurons expressing VPAC1 and/or VPAC2 receptors to modulate purine-release onto glia. Selective VPAC1 activation evokes a glial response, whereas VPAC2 receptors may act to inhibit this response. Thus, we identified a component of an enteric neuron-glia circuit that is fine-tuned by endogenous VIP acting through VPAC1- and VPAC2-mediated pathways.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, The University of MelbourneParkville, VIC, Australia.,Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Jaime P P Foong
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| |
Collapse
|
11
|
Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016; 230:R27-49. [PMID: 27154335 PMCID: PMC4938744 DOI: 10.1530/joe-16-0054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus is the master circadian clock that coordinates daily rhythms in behavior and physiology in mammals. Like other hypothalamic nuclei, the SCN displays an impressive array of distinct cell types characterized by differences in neurotransmitter and neuropeptide expression. Individual SCN neurons and glia are able to display self-sustained circadian rhythms in cellular function that are regulated at the molecular level by a 24h transcriptional-translational feedback loop. Remarkably, SCN cells are able to harmonize with one another to sustain coherent rhythms at the tissue level. Mechanisms of cellular communication in the SCN network are not completely understood, but recent progress has provided insight into the functional roles of several SCN signaling factors. This review discusses SCN organization, how intercellular communication is critical for maintaining network function, and the signaling mechanisms that play a role in this process. Despite recent progress, our understanding of SCN circuitry and coupling is far from complete. Further work is needed to map SCN circuitry fully and define the signaling mechanisms that allow for collective timekeeping in the SCN network.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical SciencesMarquette University, Milwaukee, WI, USA
| |
Collapse
|
12
|
Kingsbury NJ, Taylor SR, Henson MA. Inhibitory and excitatory networks balance cell coupling in the suprachiasmatic nucleus: A modeling approach. J Theor Biol 2016; 397:135-44. [PMID: 26972478 DOI: 10.1016/j.jtbi.2016.02.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/07/2016] [Accepted: 02/01/2016] [Indexed: 01/13/2023]
Abstract
Neuronal coupling contributes to circadian rhythms formation in the suprachiasmatic nucleus (SCN). While the neurotransmitter vasoactive intestinal polypeptide (VIP) is considered essential for synchronizing the oscillations of individual neurons, γ-aminobutyric acid (GABA) does not have a clear functional role despite being highly concentrated in the SCN. While most studies have examined the role of either GABA or VIP, our mathematical modeling approach explored their interplay on networks of SCN neurons. Tuning the parameters that control the release of GABA and VIP enabled us to optimize network synchrony, which was achieved at a peak firing rate during the subjective day of about 7Hz. Furthermore, VIP and GABA modulation could adjust network rhythm amplitude and period without sacrificing synchrony. We also performed simulations of SCN networks to phase shifts during 12h:12h light-dark cycles and showed that GABA networks reduced the average time for the SCN model to re-synchronize. We hypothesized that VIP and GABA balance cell coupling in the SCN to promote synchronization of heterogeneous oscillators while allowing flexibility for adjustment to environmental changes.
Collapse
Affiliation(s)
- Nathaniel J Kingsbury
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01007, United States
| | - Stephanie R Taylor
- Department of Computer Science, Colby College, Waterville, ME 04901, United States
| | - Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01007, United States.
| |
Collapse
|
13
|
Hughes ATL, Croft CL, Samuels RE, Myung J, Takumi T, Piggins HD. Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC2-signaling deficient mice. Sci Rep 2015; 5:14044. [PMID: 26370467 PMCID: PMC4642707 DOI: 10.1038/srep14044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Individual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms. An important goal in chronobiology is to develop interventions to correct deficiencies in circadian timekeeping. Here we show that extended exposure to constant light promotes synchrony among SCN clock cells and the expression of ~24 h rhythms in behavior in mice in which intercellular signaling is disrupted through loss of VIP-VPAC2 signaling. This study highlights the importance of SCN synchrony for the expression of rhythms in behavior and reveals how non-invasive manipulations in the external environment can be used to overcome neurochemical communication deficits in this important brain system.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Cara L Croft
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rayna E Samuels
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Jihwan Myung
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Hugh D Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Ago Y, Condro MC, Tan YV, Ghiani CA, Colwell CS, Cushman JD, Fanselow MS, Hashimoto H, Waschek JA. Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacology (Berl) 2015; 232:2181-9. [PMID: 25575489 PMCID: PMC4433594 DOI: 10.1007/s00213-014-3848-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
RATIONALE An abundance of genetic and epidemiologic evidence as well as longitudinal neuroimaging data point to developmental origins for schizophrenia and other mental health disorders. Recent clinical studies indicate that microduplications of VIPR2, encoding the vasoactive intestinal peptide (VIP) receptor VPAC2, confer significant risk for schizophrenia and autism spectrum disorder. Lymphocytes from patients with these mutations exhibited higher VIPR2 gene expression and VIP responsiveness (cAMP induction), but mechanisms by which overactive VPAC2 signaling may lead to these psychiatric disorders are unknown. OBJECTIVES We subcutaneously administered the highly selective VPAC2 receptor agonist Ro 25-1553 to C57BL/6 mice from postnatal day 1 (P1) to P14 to determine if overactivation of VPAC2 receptor signaling during postnatal brain maturation affects synaptogenesis and selected behaviors. RESULTS Western blot analyses on P21 revealed significant reductions of synaptophysin and postsynaptic density protein 95 (PSD-95) in the prefrontal cortex, but not in the hippocampus in Ro 25-1553-treated mice. The same postnatally restricted treatment resulted in a disruption in prepulse inhibition of the acoustic startle measured in adult mice. No effects were observed in open-field locomotor activity, sociability in the three-chamber social interaction test, or fear conditioning or extinction. CONCLUSION Overactivation of the VPAC2 receptor in the postnatal mouse results in a reduction in synaptic proteins in the prefrontal cortex and selective alterations in prepulse inhibition. These findings suggest that the VIPR2-linkage to mental health disorders may be due in part to overactive VPAC2 receptor signaling during a critical time of synaptic maturation.
Collapse
Affiliation(s)
- Yukio Ago
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Michael C. Condro
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yossan-Var Tan
- INSERM - Unité Mixte de Recherche U905 - IRIB, Université de Rouen, 76183 Rouen Cedex, France
| | - Cristina A. Ghiani
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S. Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jesse D. Cushman
- Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael S. Fanselow
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Department of Psychology, Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - James A. Waschek
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA.,Correspondence should be addressed to: Dr. James A. Waschek; Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA. Tel.: +1-310-825-0179; Fax: +1-310-206-5061.
| |
Collapse
|
15
|
Vosko A, van Diepen HC, Kuljis D, Chiu AM, Heyer D, Terra H, Carpenter E, Michel S, Meijer JH, Colwell CS. Role of vasoactive intestinal peptide in the light input to the circadian system. Eur J Neurosci 2015; 42:1839-48. [PMID: 25885685 DOI: 10.1111/ejn.12919] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in a subset of neurons in the ventral region of the suprachiasmatic nucleus (SCN). While VIP is known to be important for the synchronization of the SCN network, the role of VIP in photic regulation of the circadian system has received less attention. In the present study, we found that the light-evoked increase in electrical activity in vivo was unaltered by the loss of VIP. In the absence of VIP, the ventral SCN still exhibited N-methyl-d-aspartate-evoked responses in a brain slice preparation, although the absolute levels of neural activity before and after treatment were significantly reduced. Next, we used calcium imaging techniques to determine if the loss of VIP altered the calcium influx due to retinohypothalamic tract stimulation. The magnitude of the evoked calcium influx was not reduced in the ventral SCN, but did decline in the dorsal SCN regions. We examined the time course of the photic induction of Period1 in the SCN using in situ hybridization in VIP-mutant mice. We found that the initial induction of Period1 was not reduced by the loss of this signaling peptide. However, the sustained increase in Period1 expression (after 30 min) was significantly reduced. Similar results were found by measuring the light induction of cFOS in the SCN. These findings suggest that VIP is critical for longer-term changes within the SCN circuit, but does not play a role in the acute light response.
Collapse
Affiliation(s)
- Andrew Vosko
- Department of Structural Medicine, Rocky Vista University, Parker, CO, USA
| | - Hester C van Diepen
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dika Kuljis
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Andrew M Chiu
- Medical Scientist Training Program, Northwestern University, Evanston, IL, USA
| | - Djai Heyer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Huub Terra
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ellen Carpenter
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| | - Stephan Michel
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna H Meijer
- Laboratory of Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California - Los Angeles, Los Angeles, CA, 90024, USA
| |
Collapse
|
16
|
Wei H, Yasar H, Funk NW, Giese M, Baz ES, Stengl M. Signaling of pigment-dispersing factor (PDF) in the Madeira cockroach Rhyparobia maderae. PLoS One 2014; 9:e108757. [PMID: 25269074 PMCID: PMC4182629 DOI: 10.1371/journal.pone.0108757] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022] Open
Abstract
The insect neuropeptide pigment-dispersing factor (PDF) is a functional ortholog of vasoactive intestinal polypeptide, the coupling factor of the mammalian circadian pacemaker. Despite of PDF's importance for synchronized circadian locomotor activity rhythms its signaling is not well understood. We studied PDF signaling in primary cell cultures of the accessory medulla, the circadian pacemaker of the Madeira cockroach. In Ca²⁺ imaging studies four types of PDF-responses were distinguished. In regularly bursting type 1 pacemakers PDF application resulted in dose-dependent long-lasting increases in Ca²⁺ baseline concentration and frequency of oscillating Ca²⁺ transients. Adenylyl cyclase antagonists prevented PDF-responses in type 1 cells, indicating that PDF signaled via elevation of intracellular cAMP levels. In contrast, in type 2 pacemakers PDF transiently raised intracellular Ca²⁺ levels even after blocking adenylyl cyclase activity. In patch clamp experiments the previously characterized types 1-4 could not be identified. Instead, PDF-responses were categorized according to ion channels affected. Application of PDF inhibited outward potassium or inward sodium currents, sometimes in the same neuron. In a comparison of Ca²⁺ imaging and patch clamp experiments we hypothesized that in type 1 cells PDF-dependent rises in cAMP concentrations block primarily outward K⁺ currents. Possibly, this PDF-dependent depolarization underlies PDF-dependent phase advances of pacemakers. Finally, we propose that PDF-dependent concomitant modulation of K⁺ and Na⁺ channels in coupled pacemakers causes ultradian membrane potential oscillations as prerequisite to efficient synchronization via resonance.
Collapse
Affiliation(s)
- Hongying Wei
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Hanzey Yasar
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Nico W. Funk
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Maria Giese
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - El-Sayed Baz
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
| | - Monika Stengl
- University of Kassel, FB 10, Biology, Animal Physiology, Kassel, Germany
- * E-mail:
| |
Collapse
|
17
|
Loh DH, Kuljis DA, Azuma L, Wu Y, Truong D, Wang HB, Colwell CS. Disrupted reproduction, estrous cycle, and circadian rhythms in female mice deficient in vasoactive intestinal peptide. J Biol Rhythms 2014; 29:355-69. [PMID: 25252712 DOI: 10.1177/0748730414549767] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The female reproductive cycle is gated by the circadian timing system and may be vulnerable to disruptions in the circadian system. Prior work suggests that vasoactive intestinal peptide (VIP)-expressing neurons in the suprachiasmatic nucleus (SCN) are one pathway by which the circadian clock can influence the estrous cycle, but the impact of the loss of this peptide on reproduction has not been assessed. In the present study, we first examine the impact of the genetic loss of the neuropeptide VIP on the reproductive success of female mice. Significantly, mutant females produce about half the offspring of their wild-type sisters even when mated to the same males. We also find that VIP-deficient females exhibit a disrupted estrous cycle; that is, ovulation occurs less frequently and results in the release of fewer oocytes compared with controls. Circadian rhythms of wheel-running activity are disrupted in the female mutant mice, as is the spontaneous electrical activity of dorsal SCN neurons. On a molecular level, the VIP-deficient SCN tissue exhibits lower amplitude oscillations with altered phase relationships between the SCN and peripheral oscillators as measured by PER2-driven bioluminescence. The simplest explanation of our data is that the loss of VIP results in a weakened SCN oscillator, which reduces the synchronization of the female circadian system. These results clarify one of the mechanisms by which disruption of the circadian system reduces female reproductive success.
Collapse
Affiliation(s)
- D H Loh
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - D A Kuljis
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California Department of Neurobiology, University of California-Los Angeles
| | - L Azuma
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - Y Wu
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - D Truong
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - H B Wang
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| | - C S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, California
| |
Collapse
|
18
|
Stepanyuk AR, Belan PV, Kononenko NI. A model for the fast synchronous oscillations of firing rate in rat suprachiasmatic nucleus neurons cultured in a multielectrode array dish. PLoS One 2014; 9:e106152. [PMID: 25192180 PMCID: PMC4156468 DOI: 10.1371/journal.pone.0106152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/03/2014] [Indexed: 12/27/2022] Open
Abstract
When dispersed and cultured in a multielectrode dish (MED), suprachiasmatic nucleus (SCN) neurons express fast oscillations of firing rate (FOFR; fast relative to the circadian cycle), with burst duration ∼10 min, and interburst interval varying from 20 to 60 min in different cells but remaining nevertheless rather regular in individual cells. In many cases, separate neurons in distant parts of the 1 mm recording area of a MED exhibited correlated FOFR. Neither the mechanism of FOFR nor the mechanism of their synchronization among neurons is known. Based on recent data implicating vasoactive intestinal polypeptide (VIP) as a key intercellular synchronizing agent, we built a model in which VIP acts as both a feedback regulator to generate FOFR in individual neurons, and a diffusible synchronizing agent to produce coherent electrical output of a neuronal network. In our model, VIP binding to its (VPAC2) receptors acts through Gs G-proteins to activate adenylyl cyclase (AC), increase intracellular cAMP, and open cyclic-nucleotide-gated (CNG) cation channels, thus depolarizing the cell and generating neuronal firing to release VIP. In parallel, slowly developing homologous desensitization and internalization of VPAC2 receptors terminates elevation of cAMP and thereby provides an interpulse silent interval. Through mathematical modeling, we show that this VIP/VPAC2/AC/cAMP/CNG-channel mechanism is sufficient for generating reliable FOFR in single neurons. When our model for FOFR is combined with a published model of synchronization of circadian rhythms based on VIP/VPAC2 and Per gene regulation synchronization of circadian rhythms is significantly accelerated. These results suggest that (a) auto/paracrine regulation by VIP/VPAC2 and intracellular AC/cAMP/CNG-channels are sufficient to provide robust FOFR and synchrony among neurons in a heterogeneous network, and (b) this system may also participate in synchronization of circadian rhythms.
Collapse
Affiliation(s)
- Andrey R. Stepanyuk
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
- * E-mail:
| | - Pavel V. Belan
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| | - Nikolai I. Kononenko
- Bogomoletz Institute of Physiology, Kiev, Ukraine
- State Key Laboratory of Molecular and Cellular Biology, Kiev, Ukraine
| |
Collapse
|
19
|
Vecsey CG, Pírez N, Griffith LC. The Drosophila neuropeptides PDF and sNPF have opposing electrophysiological and molecular effects on central neurons. J Neurophysiol 2014; 111:1033-45. [PMID: 24353297 PMCID: PMC3949227 DOI: 10.1152/jn.00712.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/12/2013] [Indexed: 12/26/2022] Open
Abstract
Neuropeptides have widespread effects on behavior, but how these molecules alter the activity of their target cells is poorly understood. We employed a new model system in Drosophila melanogaster to assess the electrophysiological and molecular effects of neuropeptides, recording in situ from larval motor neurons, which transgenically express a receptor of choice. We focused on two neuropeptides, pigment-dispersing factor (PDF) and small neuropeptide F (sNPF), which play important roles in sleep/rhythms and feeding/metabolism. PDF treatment depolarized motor neurons expressing the PDF receptor (PDFR), increasing excitability. sNPF treatment had the opposite effect, hyperpolarizing neurons expressing the sNPF receptor (sNPFR). Live optical imaging using a genetically encoded fluorescence resonance energy transfer (FRET)-based sensor for cyclic AMP (cAMP) showed that PDF induced a large increase in cAMP, whereas sNPF caused a small but significant decrease in cAMP. Coexpression of pertussis toxin or RNAi interference to disrupt the G-protein Gαo blocked the electrophysiological responses to sNPF, showing that sNPFR acts via Gαo signaling. Using a fluorescent sensor for intracellular calcium, we observed that sNPF-induced hyperpolarization blocked spontaneous waves of activity propagating along the ventral nerve cord, demonstrating that the electrical effects of sNPF can cause profound changes in natural network activity in the brain. This new model system provides a platform for mechanistic analysis of how neuropeptides can affect target cells at the electrical and molecular level, allowing for predictions of how they regulate brain circuits that control behaviors such as sleep and feeding.
Collapse
Affiliation(s)
- Christopher G Vecsey
- National Center for Behavioral Genomics, Volen National Center for Complex Systems and Department of Biology, Brandeis University, Waltham, Massachusetts
| | | | | |
Collapse
|
20
|
Zou YC, Liu LQ, Zhang MX. The expression of vasoactive intestinal polypeptide in visual cortex-17 in normal visual development and formation of anisometropic amblyopia. Semin Ophthalmol 2013; 29:59-65. [PMID: 23947335 DOI: 10.3109/08820538.2012.760620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS To document the expression of vasoactive intestinal polypeptide (VIP) in the visual cortex-17 of kittens with anisometropic amblyopia, and to investigate the relationship between VIP and the development of the visual system. METHODS Sixteen normal kittens (4-wk of age) were randomly divided into two groups: control and amblyopic. Amblyopia was produced by atropinization of one eye in eight kittens. Four (2 normal and 2 amblyopia) kittens were sacrificed at weeks 3, 6, 9, or 12 post-treatment respectively. Expression of VIP-mRNA in the visual cortex-17 was detected through in-situ hybridization. Neurons in the visual cortex were visualized by transmission electron microscopy (TEM). The number of neurons was analyzed via light microscopy (LM). RESULTS VIP-mRNA expression was increased with age in control kittens but remained nearly static in age-matched anisometropic amblyopic kittens (p < 0.05). The number of VIP-positive cells of amblyopic kittens decreased dramatically when compared to normal age-matched kittens (p < 0.05). The total comparison between different positive ranks suggested a significant difference. The degree of expression between these two groups was significantly different. Ultrastructurally, in the control group, the nuclear membrane of most neurons was discernable and chromatin was evenly distributed within the nucleus. Abundant cytoplasm and tubular-shaped mitochondria were observed. These cells were also rich in Golgi bodies, ribosomes, and endoplasmic reticulum. In amblyopic kittens, nuclei of most neurons were aggregated, the number of ribosomes and Golgi bodies was reduced, mitochondria were swollen, and mitochondrial cristae were shortened or even absent. The endoplasmic reticulum was distended and reduced in magnitude. CONCLUSIONS VIP appears to play an important role in visual development, and its mRNA expression is affected by visual experiences. Visual dysfunction may down-regulate the expression of VIP-mRNA by impairing the structure and function of the neurons in the visual cortex, finally leading to amblyopia.
Collapse
Affiliation(s)
- Yun-Chun Zou
- Department of Ophthalmology, West China Hospital, Sichuan University , Chengdu , China and
| | | | | |
Collapse
|
21
|
Kudo T, Tahara Y, Gamble KL, McMahon DG, Block GD, Colwell CS. Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus. J Neurophysiol 2013; 110:1097-106. [PMID: 23741043 DOI: 10.1152/jn.00114.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide vasoactive intestinal peptide (VIP) is expressed at high levels in the neurons of the suprachiasmatic nucleus (SCN). While VIP is known to be important to the input and output pathways from the SCN, the physiological effects of VIP on electrical activity of SCN neurons are not well known. Here the impact of VIP on firing rate of SCN neurons was investigated in mouse slice cultures recorded during the night. The application of VIP produced an increase in electrical activity in SCN slices that lasted several hours after treatment. This is a novel mechanism by which this peptide can produce long-term changes in central nervous system physiology. The increase in action potential frequency was blocked by a VIP receptor antagonist and lost in a VIP receptor knockout mouse. In addition, inhibitors of both the Epac family of cAMP binding proteins and cAMP-dependent protein kinase (PKA) blocked the induction by VIP. The persistent increase in spike rate following VIP application was not seen in SCN neurons from mice deficient in Kv3 channel proteins and was dependent on the clock protein PER1. These findings suggest that VIP regulates the long-term firing rate of SCN neurons through a VIPR2-mediated increase in the cAMP pathway and implicate the fast delayed rectifier (FDR) potassium currents as one of the targets of this regulation.
Collapse
Affiliation(s)
- Takashi Kudo
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California-Los Angeles, CA 90024, USA
| | | | | | | | | | | |
Collapse
|
22
|
Choi C, Cao G, Tanenhaus AK, McCarthy EV, Jung M, Schleyer W, Shang Y, Rosbash M, Yin JCP, Nitabach MN. Autoreceptor control of peptide/neurotransmitter corelease from PDF neurons determines allocation of circadian activity in drosophila. Cell Rep 2012; 2:332-44. [PMID: 22938867 DOI: 10.1016/j.celrep.2012.06.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 05/04/2012] [Accepted: 06/28/2012] [Indexed: 01/03/2023] Open
Abstract
Drosophila melanogaster flies concentrate behavioral activity around dawn and dusk. This organization of daily activity is controlled by central circadian clock neurons, including the lateral-ventral pacemaker neurons (LN(v)s) that secrete the neuropeptide PDF (pigment dispersing factor). Previous studies have demonstrated the requirement for PDF signaling to PDF receptor (PDFR)-expressing dorsal clock neurons in organizing circadian activity. Although LN(v)s also express functional PDFR, the role of these autoreceptors has remained enigmatic. Here, we show that (1) PDFR activation in LN(v)s shifts the balance of circadian activity from evening to morning, similar to behavioral responses to summer-like environmental conditions, and (2) this shift is mediated by stimulation of the Gα,s-cAMP pathway and a consequent change in PDF/neurotransmitter corelease from the LN(v)s. These results suggest another mechanism for environmental control of the allocation of circadian activity and provide new general insight into the role of neuropeptide autoreceptors in behavioral control circuits.
Collapse
Affiliation(s)
- Charles Choi
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Neurons in the suprachiasmatic nucleus (SCN) function as part of a central timing circuit that drives daily changes in our behaviour and underlying physiology. A hallmark feature of SCN neuronal populations is that they are mostly electrically silent during the night, start to fire action potentials near dawn and then continue to generate action potentials with a slow and steady pace all day long. Sets of currents are responsible for this daily rhythm, with the strongest evidence for persistent Na(+) currents, L-type Ca(2+) currents, hyperpolarization-activated currents (I(H)), large-conductance Ca(2+) activated K(+) (BK) currents and fast delayed rectifier (FDR) K(+) currents. These rhythms in electrical activity are crucial for the function of the circadian timing system, including the expression of clock genes, and decline with ageing and disease. This article reviews our current understanding of the ionic and molecular mechanisms that drive the rhythmic firing patterns in the SCN.
Collapse
Affiliation(s)
- Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, California 90024, USA.
| |
Collapse
|
24
|
Pielecka-Fortuna J, DeFazio RA, Moenter SM. Voltage-gated potassium currents are targets of diurnal changes in estradiol feedback regulation and kisspeptin action on gonadotropin-releasing hormone neurons in mice. Biol Reprod 2011; 85:987-95. [PMID: 21778142 DOI: 10.1095/biolreprod.111.093492] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Estradiol has both negative and positive feedback actions upon gonadotropin-releasing hormone (GnRH) release; the latter actions trigger the preovulatory GnRH surge. Although neurobiological mechanisms of the transitions between feedback modes are becoming better understood, the roles of voltage-gated potassium currents, major contributors to neuronal excitability, are unknown. Estradiol alters two components of potassium currents in these cells: a transient current, I(A), and a sustained current, I(K). Kisspeptin is a potential mediator between estradiol and GnRH neurons and can act directly on GnRH neurons. We examined how estradiol, time of day, and kisspeptin interact to regulate these conductances in a mouse model exhibiting daily switches between estradiol negative (morning) and positive feedback (evening). Whole-cell voltage clamp recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice and from OVX mice treated with estradiol (OVX+E). There were no diurnal changes in either I(A) or I(K) in GnRH neurons from OVX mice. In contrast, in GnRH neurons from OVX+E mice, I(A) and I(K) were greater during the morning when GnRH neuron activity is low and smaller in the evening when GnRH neuron activity is high. Estradiol increased I(A) in the morning and decreased it in the evening, relative to that in cells from OVX mice. Exogenously applied kisspeptin reduced I(A) regardless of time of day or estradiol status. Estradiol, interacting with time of day, and kisspeptin both depolarized I(A) activation. These findings extend our understanding of both the neurobiological mechanisms of estradiol negative vs. positive regulation of GnRH neurons and of kisspeptin action on these cells.
Collapse
|
25
|
Abstract
Neuroactive peptides and the intracellular calcium concentration ([Ca(2+) ](i) ) play important roles in light-induced modulation of gene expression in the suprachiasmatic nucleus (SCN) neurons that ultimately control behavioral rhythms. Vasoactive intestinal peptide (VIP) and arginine vasopressin (AVP) are expressed rhythmically within populations of SCN neurons. Pituitary adenylate cyclase-activating peptide (PACAP) is released from retinohypothalamic tract (RHT) terminals synapsing on SCN neurons. Nociceptin/orphanin FQ (OFQ) receptors are functionally expressed in the SCN. We examined the role of several neuropeptides on Ca(2+) signaling, simultaneously imaging multiple neurons within the SCN neural network. VIP reduced the [Ca(2+) ](i) in populations of SCN neurons during the day, but had little effect at night. Stimulation of the RHT at frequencies that simulate light input signaling evoked transient [Ca(2+) ](i) elevations that were not altered by VIP. AVP elevated the [Ca(2+) ](i) during both the day and night, PACAP produced variable responses, and OFQ induced a reduction in the [Ca(2+) ](i) similar to VIP. During the day, VIP lowered the [Ca(2+) ](i) to near nighttime levels, while AVP elevated [Ca(2+) ](i) during both the day and night, suggesting that the VIP effects on [Ca(2+) ](i) were dependent, and the AVP effects independent of the action potential firing activity state of the neuron. We hypothesize that VIP and AVP regulate, at least in part, Ca(2+) homeostasis in SCN neurons and may be a major point of regulation for SCN neuronal synchronization.
Collapse
Affiliation(s)
- Robert P Irwin
- Center for Research on Occupational and Environmental Toxicology (CROET), Oregon Health & Science University, L-606, Portland, OR, 97239 USA.
| | | |
Collapse
|
26
|
The role of PACAP in central cardiorespiratory regulation. Respir Physiol Neurobiol 2010; 174:65-75. [PMID: 20470908 DOI: 10.1016/j.resp.2010.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/03/2010] [Accepted: 05/03/2010] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) plays a role in almost every biological process from reproduction to hippocampal function. One area where a role for PACAP is not clearly delineated is central cardiorespiratory regulation. PACAP and its receptors (PAC1, VPAC1 and VPAC2) are present in cardiovascular areas of the ventral medulla and spinal cord and in the periphery. Central administration of PACAP generally increases arterial pressure. Knowledge about the role of PACAP in central cardiovascular regulation is growing, but even less is known about PACAP in central respiratory regulation. No specific data is currently available regarding the presence of PACAP or receptors in key respiratory centers, although it is known that neonatal PACAP knock-out mice die suddenly in a manner similar to sudden infant death syndrome (SIDS). Future studies in mature preparations investigating the role of PACAP in the physiology and integration of central cardiorespiratory reflexes are clearly essential for a full understanding of this important neuropeptide in breathing.
Collapse
|
27
|
Dibner C, Schibler U, Albrecht U. The Mammalian Circadian Timing System: Organization and Coordination of Central and Peripheral Clocks. Annu Rev Physiol 2010; 72:517-49. [DOI: 10.1146/annurev-physiol-021909-135821] [Citation(s) in RCA: 1626] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most physiology and behavior of mammalian organisms follow daily oscillations. These rhythmic processes are governed by environmental cues (e.g., fluctuations in light intensity and temperature), an internal circadian timing system, and the interaction between this timekeeping system and environmental signals. In mammals, the circadian timekeeping system has a complex architecture, composed of a central pacemaker in the brain's suprachiasmatic nuclei (SCN) and subsidiary clocks in nearly every body cell. The central clock is synchronized to geophysical time mainly via photic cues perceived by the retina and transmitted by electrical signals to SCN neurons. In turn, the SCN influences circadian physiology and behavior via neuronal and humoral cues and via the synchronization of local oscillators that are operative in the cells of most organs and tissues. Thus, some of the SCN output pathways serve as input pathways for peripheral tissues. Here we discuss knowledge acquired during the past few years on the complex structure and function of the mammalian circadian timing system.
Collapse
Affiliation(s)
- Charna Dibner
- Division of Endocrinology, Diabetes and Nutrition, Geneva University Hospital (HUG), CH-1211 Geneva-14, Switzerland
| | - Ueli Schibler
- Department of Molecular Biology & NCCR Frontiers in Genetics, Sciences III, University of Geneva, CH-1211 Geneva-4, Switzerland
| | - Urs Albrecht
- Department of Medicine, Division of Biochemistry, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
28
|
Abstract
The suprachiasmatic nucleus (SCN) is the primary circadian pacemaker in mammals. Individual SCN neurons in dispersed culture can generate independent circadian oscillations of clock gene expression and neuronal firing. However, SCN rhythmicity depends on sufficient membrane depolarization and levels of intracellular calcium and cAMP. In the intact SCN, cellular oscillations are synchronized and reinforced by rhythmic synaptic input from other cells, resulting in a reproducible topographic pattern of distinct phases and amplitudes specified by SCN circuit organization. The SCN network synchronizes its component cellular oscillators, reinforces their oscillations, responds to light input by altering their phase distribution, increases their robustness to genetic perturbations, and enhances their precision. Thus, even though individual SCN neurons can be cell-autonomous circadian oscillators, neuronal network properties are integral to normal function of the SCN.
Collapse
Affiliation(s)
- David K Welsh
- Department of Psychiatry, University of California-San Diego, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
29
|
Ospeck MC, Coffey B, Freeman D. Light-dark cycle memory in the mammalian suprachiasmatic nucleus. Biophys J 2009; 97:1513-24. [PMID: 19751655 DOI: 10.1016/j.bpj.2009.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 05/18/2009] [Accepted: 06/08/2009] [Indexed: 11/15/2022] Open
Abstract
The mammalian circadian oscillator, or suprachiasmatic nucleus (SCN), contains several thousand clock neurons in its ventrolateral division, many of which are spontaneous oscillators with period lengths that range from 22 to 28 h. In complete darkness, this network synchronizes through the exchange of action potentials that release vasoactive intestinal polypeptide, striking a compromise, free-running period close to 24 h long. We entrained Siberian hamsters to various light-dark cycles and then tracked their activity into constant darkness to show that they retain a memory of the previous light-dark cycle before returning to their own free-running period. Employing Leloup-Goldbeter mammalian clock neurons we model the ventrolateral SCN network and show that light acting weakly upon a strongly rhythmic vasoactive intestinal polypeptide oscillation can explain the observed light-dark cycle memory. In addition, light is known to initiate a mitogen-activated protein kinase signaling cascade that induces transcription of both per and mkp1 phosphatase. We show that the ensuing phosphatase-kinase interaction can account for the dead zone in the mammalian phase response curve and hypothesize that the SCN behaves like a lock-in amplifier to entrain to the light edges of the circadian day.
Collapse
Affiliation(s)
- Mark C Ospeck
- Physics Department, University of Memphis, Memphis, Tennessee, USA.
| | | | | |
Collapse
|
30
|
Diekman CO, Forger DB. Clustering predicted by an electrophysiological model of the suprachiasmatic nucleus. J Biol Rhythms 2009; 24:322-33. [PMID: 19625734 DOI: 10.1177/0748730409337601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the wealth of experimental data on the electrophysiology of individual neurons in the suprachiasmatic nuclei (SCN), the neural code of the SCN remains largely unknown. To predict the electrical activity of the SCN, the authors simulated networks of 10,000 GABAergic SCN neurons using a detailed model of the ionic currents within SCN neurons. Their goal was to understand how neuronal firing, which occurs on a time scale faster than a second, can encode a set phase of the circadian (24-h) cycle. The authors studied the effects of key network properties including: 1) the synaptic density within the SCN, 2) the magnitude of postsynaptic currents, 3) the heterogeneity of circadian phase in the neuronal population, 4) the degree of synaptic noise, and 5) the balance between excitation and inhibition. Their main result was that under a wide variety of conditions, the SCN network spontaneously organized into (typically 3) groups of synchronously firing neurons. They showed that this type of clustering can lead to the silencing of neurons whose intracellular clocks are out of circadian phase with the rest of the population. Their results provide clues to how the SCN may generate a coherent electrical output signal at the tissue level to time rhythms throughout the body.
Collapse
Affiliation(s)
- Casey O Diekman
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
31
|
Tremere LA, Pinaud R, Irwin RP, Allen CN. Postinhibitory rebound spikes are modulated by the history of membrane hyperpolarization in the SCN. Eur J Neurosci 2008; 28:1127-35. [PMID: 18783377 DOI: 10.1111/j.1460-9568.2008.06410.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus regulates biological circadian time thereby directly impacting numerous physiological processes. The SCN is composed almost exclusively of gamma-aminobutyric acid (GABA)ergic neurons, many of which synapse with other GABAergic cells in the SCN to exert an inhibitory influence on their postsynaptic targets for most, if not all, phases of the circadian cycle. The overwhelmingly GABAergic nature of the SCN, along with its internal connectivity properties, provide a strong model to examine how inhibitory neurotransmission generates output signals. In the present work we show that hyperpolarizations that range from 5 to 1000 ms elicit rebound spikes in 63% of all SCN neurons tested in voltage-clamp in the SCN of adult rats and hamsters. In current-clamp recordings, hyperpolarizations led to rebound spike formation in all cells; however, low-amplitude or short-duration current injections failed to consistently activate rebound spikes. Increasing the duration of hyperpolarization from 5 to 1000 ms is strongly and positively correlated with enhanced spike probability. Additionally, the magnitude of hyperpolarization exerts a strong influence on both the amplitude of the spike, as revealed by voltage-clamp recordings, and the latency to peak current obtained in either voltage- or current-clamp mode. Our results suggest that SCN neurons may use rebound spikes as one means of producing output signals from a largely interconnected network of GABAergic neurons.
Collapse
|
32
|
Chaudhury D, Loh DH, Dragich JM, Hagopian A, Colwell CS. Select cognitive deficits in vasoactive intestinal peptide deficient mice. BMC Neurosci 2008; 9:63. [PMID: 18616823 PMCID: PMC2474849 DOI: 10.1186/1471-2202-9-63] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 07/10/2008] [Indexed: 12/03/2022] Open
Abstract
Background The neuropeptide vasoactive intestinal peptide (VIP) is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.
Collapse
Affiliation(s)
- Dipesh Chaudhury
- Department of Psychiatry and Biobehavioral Sciences, University of California - Los Angeles, 760 Westwood Plaza, Los Angeles, California 90024-1759, USA.
| | | | | | | | | |
Collapse
|
33
|
Hughes ATL, Guilding C, Lennox L, Samuels RE, McMahon DG, Piggins HD. Live imaging of altered period1 expression in the suprachiasmatic nuclei of Vipr2-/- mice. J Neurochem 2008; 106:1646-57. [PMID: 18554318 PMCID: PMC2658715 DOI: 10.1111/j.1471-4159.2008.05520.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vasoactive intestinal polypeptide and its receptor, VPAC2, play important roles in the functioning of the brain’s circadian clock in the suprachiasmatic nuclei (SCN). Mice lacking VPAC2 receptors (Vipr2−/−) show altered circadian rhythms in locomotor behavior, neuronal firing rate, and clock gene expression, however, the nature of molecular oscillations in individual cells is unclear. Here, we used real-time confocal imaging of a destabilized green fluorescent protein (GFP) reporter to track the expression of the core clock gene Per1 in live SCN-containing brain slices from wild-type (WT) and Vipr2−/− mice. Rhythms in Per1-driven GFP were detected in WT and Vipr2−/− cells, though a significantly lower number and proportion of cells in Vipr2−/− slices expressed detectable rhythms. Further, Vipr2−/− cells expressed significantly lower amplitude oscillations than WT cells. Within each slice, the phases of WT cells were synchronized whereas cells in Vipr2−/− slices were poorly synchronized. Most GFP-expressing cells, from both genotypes, expressed neither vasopressin nor vasoactive intestinal polypeptide. Pharmacological blockade of VPAC2 receptors in WT SCN slices partially mimicked the Vipr2−/− phenotype. These data demonstrate that intercellular communication via the VPAC2 receptor is important for SCN neurons to sustain robust, synchronous oscillations in clock gene expression.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Vasoactive intestinal polypeptide and its receptor, VPAC2 , play important roles in the functioning of the dominant circadian pacemaker, located in the hypothalamic suprachiasmatic nuclei (SCN). Mice lacking VPAC 2 receptors ( Vipr2–/–) show altered circadian rhythms and impaired synchronization to environmental lighting cues. However, light can increase phosphoprotein and immediate early gene expression in the Vipr2–/– SCN demonstrating that the circadian clock is readily responsive to light in these mice. It is not clear whether these neurochemical responses to light can be transduced to behavioral changes as seen in wild-type (WT) animals. In this study we investigated the diurnal and circadian wheel-running profile of WT (C57BL/6J) and Vipr2–/– mice under a 12-h light:12-h complete darkness (LD) lighting schedule and in constant darkness (DD) and used 1-h light pulses to shift the activity of mice in DD. Unlike WT mice, Vipr2–/– mice show grossly altered locomotor patterns making the analysis of behavioral responses to light problematic. However, analyses of both the onset and the offset of locomotor activity reveal that in a subset of these mice, light can reset the offset of behavioral rhythms during the subjective night. This suggests that the SCN clock of Vipr2–/– mice and the rhythms it generates are responsive to photic stimulation and that these responses can be integrated to whole animal behavioral changes.
Collapse
Affiliation(s)
- A.T.L. Hughes
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - H.D. Piggins
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom,
| |
Collapse
|
35
|
Maywood ES, O'Neill JS, Chesham JE, Hastings MH. Minireview: The circadian clockwork of the suprachiasmatic nuclei--analysis of a cellular oscillator that drives endocrine rhythms. Endocrinology 2007; 148:5624-34. [PMID: 17901233 DOI: 10.1210/en.2007-0660] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The secretion of hormones is temporally precise and periodic, oscillating over hours, days, and months. The circadian timekeeper within the suprachiasmatic nuclei (SCN) is central to this coordination, modulating the frequency of pulsatile release, maintaining daily cycles of secretion, and defining the time base for longer-term rhythms. This central clock is driven by cell-autonomous, transcriptional/posttranslational feedback loops incorporating Period (Per) and other clock genes. SCN neurons exist, however, within neural circuits, and an unresolved question is how SCN clock cells interact. By monitoring the SCN molecular clockwork using fluorescence and bioluminescence videomicroscopy of organotypic slices from mPer1::GFP and mPer1::luciferase transgenic mice, we show that interneuronal neuropeptidergic signaling via the vasoactive intestinal peptide (VIP)/PACAP2 (VPAC2) receptor for VIP (an abundant SCN neuropeptide) is necessary to maintain both the amplitude and the synchrony of clock cells in the SCN. Acute induction of mPer1 by light is, however, independent of VIP/VPAC2 signaling, demonstrating dissociation between cellular mechanisms mediating circadian control of the clockwork and those mediating its retinally dependent entrainment to the light/dark cycle. The latter likely involves the Ca(2+)/cAMP response elements of mPer genes, triggered by a MAPK cascade activated by retinal afferents to the SCN. In the absence of VPAC2 signaling, however, this cascade is inappropriately responsive to light during circadian daytime. Hence VPAC2-mediated signaling sustains the SCN cellular clockwork and is necessary both for interneuronal synchronization and appropriate entrainment to the light/dark cycle. In its absence, behavioral and endocrine rhythms are severely compromised.
Collapse
Affiliation(s)
- Elizabeth S Maywood
- Medical Research Council, Laboratory of Molecular Biology, Neurobiology Division, Hills Road, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
36
|
Brown TM, Piggins HD. Electrophysiology of the suprachiasmatic circadian clock. Prog Neurobiol 2007; 82:229-55. [PMID: 17646042 DOI: 10.1016/j.pneurobio.2007.05.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/29/2007] [Accepted: 05/30/2007] [Indexed: 01/28/2023]
Abstract
In mammals, an internal timekeeping mechanism located in the suprachiasmatic nuclei (SCN) orchestrates a diverse array of neuroendocrine and physiological parameters to anticipate the cyclical environmental fluctuations that occur every solar day. Electrophysiological recording techniques have proved invaluable in shaping our understanding of how this endogenous clock becomes synchronized to salient environmental cues and appropriately coordinates the timing of a multitude of physiological rhythms in other areas of the brain and body. In this review we discuss the pioneering studies that have shaped our understanding of how this biological pacemaker functions, from input to output. Further, we highlight insights from new studies indicating that, more than just reflecting its oscillatory output, electrical activity within individual clock cells is a vital part of SCN clockwork itself.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
37
|
Guilding C, Piggins HD. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 2007; 25:3195-216. [PMID: 17552989 DOI: 10.1111/j.1460-9568.2007.05581.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) is the master circadian pacemaker or clock in the mammalian brain. Canonical theory holds that the output from this single, dominant clock is responsible for driving most daily rhythms in physiology and behaviour. However, important recent findings challenge this uniclock model and reveal clock-like activities in many neural and non-neural tissues. Thus, in addition to the SCN, a number of areas of the mammalian brain including the olfactory bulb, amygdala, lateral habenula and a variety of nuclei in the hypothalamus, express circadian rhythms in core clock gene expression, hormone output and electrical activity. This review examines the evidence for extra-SCN circadian oscillators in the mammalian brain and highlights some of the essential properties and key differences between brain oscillators. The demonstration of neural pacemakers outside the SCN has wide-ranging implications for models of the circadian system at a whole-organism level.
Collapse
Affiliation(s)
- Clare Guilding
- 3.614 Stopford Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
38
|
Vosko AM, Schroeder A, Loh DH, Colwell CS. Vasoactive intestinal peptide and the mammalian circadian system. Gen Comp Endocrinol 2007; 152:165-75. [PMID: 17572414 PMCID: PMC1994114 DOI: 10.1016/j.ygcen.2007.04.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/25/2022]
Abstract
In mammals, the circadian oscillators that drive daily behavioral and endocrine rhythms are located in the hypothalamic suprachiasmatic nucleus (SCN). While the SCN is anatomically well-situated to receive and transmit temporal cues to the rest of the brain and periphery, there are many holes in our understanding of how this temporal regulation occurs. Unanswered questions include how cell autonomous circadian oscillations within the SCN remain synchronized to each other as well as communicate temporal information to downstream targets. In recent years, it has become clear that neuropeptides are critically involved in circadian timekeeping. One such neuropeptide, vasoactive intestinal peptide (VIP), defines a cell population within the SCN and is likely used as a signaling molecule by these neurons. Converging lines of evidence suggest that the loss of VIP or its receptor has a major influence on the ability of the SCN neurons to generate circadian oscillations as well as synchronize these cellular oscillations. VIP, acting through the VPAC(2) receptor, exerts these effects in the SCN by activating intracellular signaling pathways and, consequently, modulating synaptic transmission and intrinsic membrane currents. Anatomical evidence suggests that these VIP expressing neurons connect both directly and indirectly to endocrine and other output targets. Striking similarities exist between the role of VIP in mammals and the role of Pigment Dispersing Factor (PDF), a functionally related neuropeptide, in the Drosophila circadian system. Work in both mammals and insects suggests that further research into neuropeptide function is necessary to understand how circadian oscillators work as a coordinated system to impose a temporal structure on physiological processes within the organism.
Collapse
Affiliation(s)
- Andrew M Vosko
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience, University of California--Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA
| | | | | | | |
Collapse
|
39
|
Rusnak M, E. Tóth Z, House SB, Gainer H. Depolarization and neurotransmitter regulation of vasopressin gene expression in the rat suprachiasmatic nucleus in vitro. J Neurosci 2007; 27:141-51. [PMID: 17202481 PMCID: PMC6672276 DOI: 10.1523/jneurosci.3739-06.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Vasopressin (VP) transcription in the rat suprachiasmatic nucleus (SCN) in organotypic culture was studied by in situ hybridization histochemistry using an intron-specific VP heteronuclear RNA probe. The circadian peak of VP gene transcription in the SCN in vitro is completely blocked by a 2 h exposure to tetrodotoxin (TTX) in the culture medium, and this TTX inhibition of VP gene transcription is reversed by exposure of the SCN to either forskolin or potassium depolarization. This suggests that an intrinsic, spontaneously active neuronal mechanism in the SCN is responsible for the cAMP- and depolarization-dependent pathways involved in maintaining peak VP gene transcription. In this paper, we evaluate a variety of neurotransmitter candidates, membrane receptors, and signal-transduction cascades that might constitute the mechanisms responsible for the peak of VP gene transcription. We find that vasoactive intestinal peptide (VIP) and a VPAC2 (VIP receptor subtype 2) receptor-specific agonist, Ro-25-1553, are the most effective ligands tested in evoking a cAMP-mitogen-activated protein kinase signal transduction cascade leading to an increase in VP gene transcription in the SCN. In addition, a second independent pathway involving depolarization activating L-type voltage-gated calcium channels and a Ca-dependent kinase pathway [inhibited by KN62 (1-[N,O-bis(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine)] rescues VP gene transcription in the presence of TTX. In the absence of TTX, these independent pathways appear to act in a cooperative manner to generate the circadian peak of VP gene transcription in the SCN.
Collapse
Affiliation(s)
- Milan Rusnak
- Molecular Neuroscience Section, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Zsuzsanna E. Tóth
- Molecular Neuroscience Section, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Shirley B. House
- Molecular Neuroscience Section, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| | - Harold Gainer
- Molecular Neuroscience Section, Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, 20892
| |
Collapse
|
40
|
Welsh DK. VIP activates and couples clock cells. Focus on "Disrupted neuronal activity rhythms in the suprachiasmatic nucleus of vasoactive intestinal polypeptide-deficient mice". J Neurophysiol 2007; 97:1885-6. [PMID: 17251373 DOI: 10.1152/jn.00063.2007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
41
|
Brown TM, Colwell CS, Waschek JA, Piggins HD. Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice. J Neurophysiol 2006; 97:2553-8. [PMID: 17151217 PMCID: PMC2570696 DOI: 10.1152/jn.01206.2006] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasoactive intestinal polypeptide (VIP), acting via the VPAC(2) receptor, is a key signaling pathway in the suprachiasmatic nuclei (SCN), the master clock controlling daily rhythms in mammals. Most mice lacking functional VPAC(2) receptors are unable to sustain behavioral rhythms and lack detectable SCN electrical rhythms in vitro. Adult mice that do not produce VIP (VIP/PHI(-/-)) exhibit less severe alterations in wheel-running rhythms, but the effects of this deficiency on the amplitude, phasing, or periodicity of their SCN cellular rhythms are unknown. To investigate this, we used suction electrodes to extracellularly record multiple- and single-unit electrical activity in SCN brain slices from mice with varying degrees of VIP deficiency, ranging from wild-type (VIP/PHI(+/+)) to heterozygous (VIP/PHI(+/-)) and VIP/PHI(-/-) animals. We found decreasing proportions of rhythmic cells in SCN slices from VIP/PHI(+/+) ( approximately 91%, n = 23) through VIP/PHI(-/+) ( approximately 71%, n = 28) to VIP/PHI(-/-) mice (62%; n = 37) and a parallel trend toward decreasing amplitude in the remaining rhythmic cells. SCN neurons from VIP/PHI(-/-) mice exhibited a broad range in the period and phasing of electrical rhythms, concordant with the known alterations in their behavioral rhythms. Further, treatment of VIP/PHI(-/-) slices with a VPAC(2) receptor antagonist significantly reduced the proportion of oscillating neurons, suggesting that VPAC(2) receptors still become activated in the SCN of these mice. The results establish that VIP is important for appropriate periodicity and phasing of SCN neuronal rhythms and suggest that residual VPAC(2) receptor signaling promotes rhythmicity in adult VIP/PHI(-/-) mice.
Collapse
Affiliation(s)
- T. M. Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - C. S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | - J. A. Waschek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California
| | - H. D. Piggins
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|