1
|
Blander JM, Yee Mon KJ, Jha A, Roycroft D. The show and tell of cross-presentation. Adv Immunol 2023; 159:33-114. [PMID: 37996207 DOI: 10.1016/bs.ai.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cross-presentation is the culmination of complex subcellular processes that allow the processing of exogenous proteins and the presentation of resultant peptides on major histocompatibility class I (MHC-I) molecules to CD8 T cells. Dendritic cells (DCs) are a cell type that uniquely specializes in cross-presentation, mainly in the context of viral or non-viral infection and cancer. DCs have an extensive network of endovesicular pathways that orchestrate the biogenesis of an ideal cross-presentation compartment where processed antigen, MHC-I molecules, and the MHC-I peptide loading machinery all meet. As a central conveyor of information to CD8 T cells, cross-presentation allows cross-priming of T cells which carry out robust adaptive immune responses for tumor and viral clearance. Cross-presentation can be canonical or noncanonical depending on the functional status of the transporter associated with antigen processing (TAP), which in turn influences the vesicular route of MHC-I delivery to internalized antigen and the cross-presented repertoire of peptides. Because TAP is a central node in MHC-I presentation, it is targeted by immune evasive viruses and cancers. Thus, understanding the differences between canonical and noncanonical cross-presentation may inform new therapeutic avenues against cancer and infectious disease. Defects in cross-presentation on a cellular and genetic level lead to immune-related disease progression, recurrent infection, and cancer progression. In this chapter, we review the process of cross-presentation beginning with the DC subsets that conduct cross-presentation, the signals that regulate cross-presentation, the vesicular trafficking pathways that orchestrate cross-presentation, the modes of cross-presentation, and ending with disease contexts where cross-presentation plays a role.
Collapse
Affiliation(s)
- J Magarian Blander
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, United States; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, Cornell University, New York, NY, United States; Immunology and Microbial Pathogenesis Programs, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, United States.
| | - Kristel Joy Yee Mon
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Atimukta Jha
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Dylan Roycroft
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, United States; Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, United States
| |
Collapse
|
2
|
Sethumadhavan S, Barth M, Spaapen RM, Schmidt C, Trowitzsch S, Tampé R. Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex. Sci Rep 2022; 12:1516. [PMID: 35087068 PMCID: PMC8795405 DOI: 10.1038/s41598-022-05000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients' allotypes.
Collapse
Affiliation(s)
- Sunesh Sethumadhavan
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Marie Barth
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle, Germany
| | - Simon Trowitzsch
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany.
| |
Collapse
|
3
|
Abstract
Viruses are essentially, obligate intracellular parasites. They require a host to replicate their genetic material, spread to other cells, and eventually to other hosts. For humans, most viral infections are not considered lethal, regardless if at the cellular level, the virus can obliterate individual cells. Constant genomic mutations, (which can alter the antigenic content of viruses such as influenza or coronaviruses), zoonosis or immunosuppression/immunocompromisation, is when viruses achieve higher host mortality. Frequent examples of the severe consequenses of viral infection can be seen in children and the elderly. In most instances, the immune system will take a multifaceted approach in defending the host against viruses. Depending on the virus, the individual, and the point of entry, the immune system will initiate a robust response which involves multiple components. In this chapter, we expand on the total immune system, breaking it down to the two principal types: Innate and Adaptive Immunity, their different roles in viral recognition and clearance. Finally, how different viruses activate and evade different arms of the immune system.
Collapse
|
4
|
Padariya M, Kote S, Mayordomo M, Dapic I, Alfaro J, Hupp T, Fahraeus R, Kalathiya U. Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations. Comput Struct Biotechnol J 2021; 19:5072-5091. [PMID: 34589184 PMCID: PMC8453138 DOI: 10.1016/j.csbj.2021.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Marcos Mayordomo
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
5
|
Janßen L, Ramnarayan VR, Aboelmagd M, Iliopoulou M, Hein Z, Majoul I, Fritzsche S, Halenius A, Springer S. The murine cytomegalovirus immunoevasin gp40 binds MHC class I molecules to retain them in the early secretory pathway. J Cell Sci 2015; 129:219-27. [DOI: 10.1242/jcs.175620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/26/2015] [Indexed: 12/30/2022] Open
Abstract
In the presence of the murine cytomegalovirus (mCMV) gp40 (m152) protein, murine major histocompatibility complex (MHC) class I molecules do not reach the cell surface but are retained in an early compartment of the secretory pathway. We find that gp40 does not impair folding or high-affinity peptide binding of class I molecules but binds to them to retain them in the endoplasmic reticulum (ER), the ER-Golgi intermediate compartment (ERGIC), and the cis-Golgi, most likely by retrieval from the cis-Golgi to the ER. We identify a sequence in gp40 that is required for both its own retention in the early secretory pathway and for that of class I molecules.
Collapse
Affiliation(s)
- Linda Janßen
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | | | - Mohamed Aboelmagd
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Maria Iliopoulou
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Irina Majoul
- Institute of Biology, University of Lübeck, Germany
| | - Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| | - Anne Halenius
- Institute of Virology, University of Freiburg, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Germany
| |
Collapse
|
6
|
|
7
|
ABC transporters in adaptive immunity. Biochim Biophys Acta Gen Subj 2014; 1850:449-60. [PMID: 24923865 DOI: 10.1016/j.bbagen.2014.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 05/24/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND ABC transporters ubiquitously found in all kingdoms of life move a broad range of solutes across membranes. Crystal structures of four distinct types of ABC transport systems have been solved, shedding light on different conformational states within the transport process. Briefly, ATP-dependent flipping between inward- and outward-facing conformations allows directional transport of various solutes. SCOPE OF REVIEW The heterodimeric transporter associated with antigen processing TAP1/2 (ABCB2/3) is a crucial element of the adaptive immune system. The ABC transport complex shuttles proteasomal degradation products into the endoplasmic reticulum. These antigenic peptides are loaded onto major histocompatibility complex class I molecules and presented on the cell surface. We detail the functional modules of TAP, its ATPase and transport cycle, and its interaction with and modulation by other cellular components. In particular, we emphasize how viral factors inhibit TAP activity and thereby prevent detection of the infected host cell by cytotoxic T-cells. MAJOR CONCLUSIONS Merging functional details on TAP with structural insights from related ABC transporters refines the understanding of solute transport. Although human ABC transporters are extremely diverse, they still may employ conceptually related transport mechanisms. Appropriately, we delineate a working model of the transport cycle and how viral factors arrest TAP in distinct conformations. GENERAL SIGNIFICANCE Deciphering the transport cycle of human ABC proteins is the major issue in the field. The defined peptidic substrate, various inhibitory viral factors, and its role in adaptive immunity provide unique tools for the investigation of TAP, making it an ideal model system for ABC transporters in general. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
|
8
|
Schenkel AR, Kingry LC, Slayden RA. The ly49 gene family. A brief guide to the nomenclature, genetics, and role in intracellular infection. Front Immunol 2013; 4:90. [PMID: 23596445 PMCID: PMC3627126 DOI: 10.3389/fimmu.2013.00090] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/04/2013] [Indexed: 12/19/2022] Open
Abstract
Understanding the Ly49 gene family can be challenging in terms of nomenclature and genetic organization. The Ly49 gene family has two major gene nomenclature systems, Ly49 and Killer Cell Lectin-like Receptor subfamily A (klra). Mice from different strains have varying numbers of these genes with strain specific allelic variants, duplications, deletions, and pseudogene sequences. Some members activate NK lymphocytes, invariant NKT (iNKT) lymphocytes and γδ T lymphocytes while others inhibit killing activity. One family member, Ly49Q, is expressed only on myeloid cells and is not found on NK, iNKT, or γδ T cells. There is growing evidence that these receptors may regulate not just the immune response to viruses, but other intracellular pathogens as well. Thus, this review’s primary goal is to provide a guide for researchers first encountering the Ly49 gene family and a foundation for future studies on the role that these gene products play in the immune response, particularly the response to intracellular viral and bacterial pathogens.
Collapse
Affiliation(s)
- Alan Rowe Schenkel
- Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins, CO, USA
| | | | | |
Collapse
|
9
|
Abstract
The transporter associated with antigen processing (TAP) is a prototype of an asymmetric ATP-binding cassette (ABC) transporter, which uses ATP binding and hydrolysis to translocate peptides from the cytosol to the lumen of the endoplasmic reticulum (ER). Here, we review molecular details of peptide binding and ATP binding and hydrolysis as well as the resulting allosteric cross-talk between the nucleotide-binding domains and the transmembrane domains that drive translocation of the solute across the ER membrane. We also discuss the general molecular architecture of ABC transporters and demonstrate the importance of structural and functional studies for a better understanding of the role of the noncanonical site of asymmetric ABC transporters. Several aspects of peptide binding and specificity illustrate details of peptide translocation by TAP. Furthermore, this ABC transporter forms the central part of the major histocompatibility complex class I (MHC I) peptide-loading machinery. Hence, TAP is confronted with a number of viral factors, which prevent antigen translocation and MHC I loading in virally infected cells. We review how these viral factors have been used as molecular tools to decipher mechanistic aspects of solute translocation and discuss how they can help in the structural analysis of TAP.
Collapse
Affiliation(s)
- Andreas Hinz
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, D-60438 Frankfurt/M., Germany
| | | |
Collapse
|
10
|
Chemali M, Radtke K, Desjardins M, English L. Alternative pathways for MHC class I presentation: a new function for autophagy. Cell Mol Life Sci 2011; 68:1533-41. [PMID: 21390546 PMCID: PMC11114914 DOI: 10.1007/s00018-011-0660-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/16/2022]
Abstract
The classical view that endogenous antigens are processed by the proteasome and loaded on MHC class I molecules in the endoplasmic reticulum, while exogenous antigens taken up by endocytosis or phagocytosis are degraded and loaded on MHC class II in lysosome-derived organelles, has evolved along with the improvement of our understanding of the cell biology of antigen-presenting cells. In recent years, evidence for alternative presentation pathways has emerged. Exogenous antigens can be processed by the proteasome and loaded on MHC class I through a pathway called cross-presentation. Moreover, endogenous antigens can be targeted to lytic organelles for presentation on MHC class II through autophagy, a highly conserved cellular process of self-eating. Recent evidence indicates that the vacuolar degradation of endogenous antigens is also beneficial for presentation on MHC class I molecules. This review focuses on how various forms of autophagy participate to presentation of these antigens on MHC class I.
Collapse
Affiliation(s)
- Magali Chemali
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
| | - Kerstin Radtke
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
| | - Michel Desjardins
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
- Département de microbiologie et immunologie, Université de Montréal, Montreal, Canada
| | - Luc English
- Département de pathologie et biologie cellulaire, Université de Montréal, Montreal, Canada
| |
Collapse
|
11
|
Ghanem E, Fritzsche S, Al-Balushi M, Hashem J, Ghuneim L, Thomer L, Kalbacher H, van Endert P, Wiertz E, Tampé R, Springer S. The transporter associated with antigen processing (TAP) is active in a post-ER compartment. J Cell Sci 2010; 123:4271-9. [DOI: 10.1242/jcs.060632] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The translocation of cytosolic peptides into the lumen of the endoplasmic reticulum (ER) is a crucial step in the presentation of intracellular antigen to T cells by major histocompatibility complex (MHC) class I molecules. It is mediated by the transporter associated with antigen processing (TAP) protein, which binds to peptide-receptive MHC class I molecules to form the MHC class I peptide-loading complex (PLC). We investigated whether TAP is present and active in compartments downstream of the ER. By fluorescence microscopy, we found that TAP is localized to the ERGIC (ER-Golgi intermediate compartment) and the Golgi of both fibroblasts and lymphocytes. Using an in vitro vesicle formation assay, we show that COPII vesicles, which carry secretory cargo out of the ER, contain functional TAP that is associated with MHC class I molecules. Together with our previous work on post-ER localization of peptide-receptive class I molecules, our results suggest that loading of peptides onto class I molecules in the context of the peptide-loading complex can occur outside the ER.
Collapse
Affiliation(s)
- Esther Ghanem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Susanne Fritzsche
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Mohammed Al-Balushi
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
- Department of Microbiology and Immunology, Sultan Qaboos University, Muscat 123, Oman
| | - Jood Hashem
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lana Ghuneim
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Lena Thomer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| | - Hubert Kalbacher
- Medical and Natural Sciences Research Center, University of Tübingen, 72074 Tübingen, Germany
| | - Peter van Endert
- INSERM, U580, 75015 Paris, France, and Université Paris Descartes, Faculté de Médecine René Descartes, 75015 Paris, France
| | - Emmanuel Wiertz
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, and Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Tampé
- Cluster of Excellence ‘Macromolecular Complexes’, Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Marie-Curie-Str. 9, 60439 Frankfurt, Germany
| | - Sebastian Springer
- Biochemistry and Cell Biology, Molecular Life Science Center, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
12
|
Testa JS, Apcher GS, Comber JD, Eisenlohr LC. Exosome-driven antigen transfer for MHC class II presentation facilitated by the receptor binding activity of influenza hemagglutinin. THE JOURNAL OF IMMUNOLOGY 2010; 185:6608-16. [PMID: 21048109 DOI: 10.4049/jimmunol.1001768] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms underlying MHC class I-restricted cross-presentation, the transfer of Ag from an infected cell to a professional APC, have been studied in great detail. Much less is known about the equivalent process for MHC class II-restricted presentation. After infection or transfection of class II-negative donor cells, we observed minimal transfer of a proteasome-dependent "class I-like" epitope within the influenza neuraminidase glycoprotein but potent transfer of a classical, H-2M-dependent epitope within the hemagglutinin (HA) glycoprotein. Additional experiments determined transfer to be exosome-mediated and substantially enhanced by the receptor binding activity of incorporated HA. Furthermore, a carrier effect was observed in that incorporated HA improved exosome-mediated transfer of a second membrane protein. This route of Ag presentation should be relevant to other enveloped viruses, may skew CD4(+) responses toward exosome-incorporated glycoproteins, and points toward novel vaccine strategies.
Collapse
Affiliation(s)
- James S Testa
- Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
13
|
Deruelle MJ, Favoreel HW. Keep it in the subfamily: the conserved alphaherpesvirus US3 protein kinase. J Gen Virol 2010; 92:18-30. [PMID: 20943887 DOI: 10.1099/vir.0.025593-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The US3 protein kinase is conserved over the alphaherpesvirus subfamily. Increasing evidence shows that, although the kinase is generally not required for virus replication in cell culture, it plays a pivotal and in some cases an essential role in virus virulence in vivo. The US3 protein is a multifunctional serine/threonine kinase that is involved in viral gene expression, virion morphogenesis, remodelling the actin cytoskeleton and the evasion of several antiviral host responses. In the current review, both the well conserved and virus-specific functions of alphaherpesvirus US3 protein kinase orthologues will be discussed.
Collapse
Affiliation(s)
- M J Deruelle
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | | |
Collapse
|
14
|
Thanthrige-Don N, Read LR, Abdul-Careem MF, Mohammadi H, Mallick AI, Sharif S. Marek's disease virus influences the expression of genes associated with IFN-gamma-inducible MHC class II expression. Viral Immunol 2010; 23:227-32. [PMID: 20374003 DOI: 10.1089/vim.2009.0092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chickens infected with Marek's disease virus (MDV) become lifelong carriers regardless of their susceptibility to clinical disease. Therefore various viral immune-evasive mechanisms must play a role in MDV-host interactions. MDV has previously been shown to influence the expression of major histocompatibility complex (MHC) class II molecules. However, little is known about the underlying mechanisms of this phenomenon. In the present study, we studied the effect of MDV infection on the expression of several genes associated with IFN-gamma-inducible MHC class II expression at 4, 7, 14, and 21 days post-infection (dpi). There was a significant (p
Collapse
|
15
|
Zhou F. Molecular mechanisms of viral immune evasion proteins to inhibit MHC class I antigen processing and presentation. Int Rev Immunol 2009; 28:376-93. [PMID: 19811316 DOI: 10.1080/08830180903013034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viral products inhibit MHC class I antigen processing and presentation via three major pathways: inhibition of major histocompatibility complex (MHC) class I expression on cells, blockade of peptide trafficking and loading on MHC class I molecules, and inhibition of peptide generation in host cells. Viral products also interfere with IFN-gamma -mediated JAK/STAT signal transduction in cells. These results imply that viral proteins probably inhibit the function of IFN-gamma in MHC class I antigen presentation via inactivation of JAK/STAT signal transduction in host cells. Mechanisms of viral products to inhibit IFN-gamma -mediated MHC class I antigen presentation were summarized in this literature review.
Collapse
Affiliation(s)
- Fang Zhou
- University of Queensland Diamantina Institute for Cancer Immunology and Metabolic Medicine, Princess Alexandra Hospital, Brisbane QLD 4102, Australia.
| |
Collapse
|
16
|
Deruelle MJ, Van den Broeke C, Nauwynck HJ, Mettenleiter TC, Favoreel HW. Pseudorabies virus US3- and UL49.5-dependent and -independent downregulation of MHC I cell surface expression in different cell types. Virology 2009; 395:172-81. [DOI: 10.1016/j.virol.2009.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/30/2009] [Accepted: 09/15/2009] [Indexed: 12/30/2022]
|
17
|
Kennedy RB, Ovsyannikova IG, Vierkant RA, Jacobson RM, Poland GA. Effect of human leukocyte antigen homozygosity on rubella vaccine-induced humoral and cell-mediated immune responses. Hum Immunol 2009; 71:128-35. [PMID: 19896518 DOI: 10.1016/j.humimm.2009.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/23/2009] [Accepted: 11/02/2009] [Indexed: 01/22/2023]
Abstract
Human leukocyte antigen (HLA) genes play a critical role in host immunity, including vaccine responses. HLA molecules present antigenic peptides to T cells and provide inhibitory signals to NK cells, and polymorphisms within HLA genes allow binding and presentation of a diverse array of self and foreign peptides. Heterozygosity across HLA alleles has been found to play a positive role in host defense for a variety of infections. Homozygosity within one or more HLA loci may restrict this epitope repertoire and limit T-cell responses to infection or vaccination. Here we report that homozygosity within the HLA DPB1 locus is associated with increased levels of rubella-specific IgG, an effect driven by a common allele DPB1*0401. We also show that homozygosity within different HLA class I and class II loci is correlated with variations (but not necessarily decreases) in interleukin (IL)-2, IL-5, and IL-10 secretion after rubella virus stimulation.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic, Vaccine Research Group, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
18
|
Schölz C, Tampé R. The peptide-loading complex--antigen translocation and MHC class I loading. Biol Chem 2009; 390:783-94. [PMID: 19426129 DOI: 10.1515/bc.2009.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A large and dynamic membrane-associated machinery orchestrates the translocation of antigenic peptides into the endoplasmic reticulum (ER) lumen for subsequent loading onto major histocompatibility complex (MHC) class I molecules. The peptide-loading complex ensures that only high-affinity peptides, which guarantee long-term stability of MHC I complexes, are presented to T-lymphocytes. Adaptive immunity is dependent on surface display of the cellular proteome in the form of protein fragments, thus allowing efficient recognition of infected or malignant transformed cells. In this review, we summarize recent findings of antigen translocation by the transporter associated with antigen processing and loading of MHC class I molecules in the ER, focusing on the mechanisms involved in this process.
Collapse
Affiliation(s)
- Christian Schölz
- Institute of Biochemistry, Biocenter, Center for Membrane Proteomics (CMP) and Cluster of Excellence (CEF)-Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt/Main, Germany
| | | |
Collapse
|
19
|
Abele R, Tampé R. Peptide trafficking and translocation across membranes in cellular signaling and self-defense strategies. Curr Opin Cell Biol 2009; 21:508-15. [PMID: 19443191 DOI: 10.1016/j.ceb.2009.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 01/03/2023]
Abstract
Cells are metastable per se and a fine-tuned balance of de novo protein synthesis and degradation shapes their proteome. The primary function of peptides is to supply amino acids for de novo protein synthesis or as an energy source during starvation. Peptides are intrinsically short-lived and steadily trimmed by an armada of intra and extracellular peptidases. However, peptides acquired additional, more sophisticated tasks already early in evolution. Here, we summarize current knowledge on intracellular peptide trafficking and translocation mediated by ATP-binding cassette (ABC) transport machineries with a focus on the functions of protein degradation products as important signaling molecules in self-defense mechanisms.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt aM, Germany
| | | |
Collapse
|
20
|
Viral proteins interfering with antigen presentation target the major histocompatibility complex class I peptide-loading complex. J Virol 2008; 82:8246-52. [PMID: 18448533 DOI: 10.1128/jvi.00207-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
21
|
Nikles D, Tampé R. Targeted degradation of ABC transporters in health and disease. J Bioenerg Biomembr 2008; 39:489-97. [PMID: 17972020 DOI: 10.1007/s10863-007-9120-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ATP binding cassette (ABC) transporters comprise an extended protein family involved in the transport of a broad spectrum of solutes across membranes. They consist of a common architecture including two ATP-binding domains converting chemical energy into conformational changes and two transmembrane domains facilitating transport via alternating access. This review focuses on the biogenesis, and more precisely, on the degradation of mammalian ABC transporters in the endoplasmic reticulum (ER). We enlighten the ER-associated degradation pathway in the context of misfolded, misassembled or tightly regulated ABC transporters with a closer view on the cystic fibrosis transmembrane conductance regulator (CFTR) and the transporter associated with antigen processing (TAP), which plays an essential role in the adaptive immunity. Three rather different scenarios affecting the stability and degradation of ABC transporters are discussed: (1) misfolded domains caused by a lack of proper intra- and intermolecular contacts within the ABC transporters, (2) deficient assembly with auxiliary factors, and (3) arrest and accumulation of an intermediate or 'dead-end' state in the transport cycle, which is prone to be recognized by the ER-associated degradation machinery.
Collapse
Affiliation(s)
- Daphne Nikles
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, 60348 Frankfurt am Main, Germany
| | | |
Collapse
|
22
|
Loch S, Klauschies F, Schölz C, Verweij MC, Wiertz EJHJ, Koch J, Tampé R. Signaling of a varicelloviral factor across the endoplasmic reticulum membrane induces destruction of the peptide-loading complex and immune evasion. J Biol Chem 2008; 283:13428-36. [PMID: 18321854 DOI: 10.1074/jbc.m800226200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cytotoxic T lymphocytes eliminate infected cells upon surface display of antigenic peptides on major histocompatibility complex I molecules. To promote immune evasion, UL49.5 of several varicelloviruses interferes with the pathway of major histocompatibility complex I antigen processing. However, the inhibition mechanism has not been elucidated yet. Within the macromolecular peptide-loading complex we identified the transporter associated with antigen processing (TAP1 and TAP2) as the prime target of UL49.5. Moreover, we determined the active oligomeric state and crucial elements of the viral factor. Remarkably, the last two residues of the cytosolic tail of UL49.5 are essential for endoplasmic reticulum (ER)-associated proteasomal degradation of TAP. However, this process strictly requires additional signaling of an upstream regulatory element in the ER lumenal domain of UL49.5. Within this new immune evasion mechanism, we show for the first time that additive elements of a small viral factor and their signaling across the ER membrane are essential for targeted degradation of a multi-subunit membrane complex.
Collapse
Affiliation(s)
- Sandra Loch
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, D-60438, Frankfurt/Main, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Gruener M, Bravo IG, Momburg F, Alonso A, Tomakidi P. The E5 protein of the human papillomavirus type 16 down-regulates HLA-I surface expression in calnexin-expressing but not in calnexin-deficient cells. Virol J 2007; 4:116. [PMID: 17971213 PMCID: PMC2164959 DOI: 10.1186/1743-422x-4-116] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/30/2007] [Indexed: 02/07/2023] Open
Abstract
The human papillomavirus type 16 E5 protein (HPV16 E5) down-regulates surface expression of HLA-I molecules. The molecular mechanisms underlying this effect are so far unknown. Here we show that HPV16 E5 down-regulates HLA-I surface expression in calnexin-containing but not in calnexin-deficient cells. Immunoprecipitation experiments reveal that calnexin and HPV16E5 can be co-precipitated and that this association depends on the presence of a wild-type first hydrophobic region of E5. When an E5 mutant (M1) in which the first putative transmembrane helix had been disrupted was used for the transfections calnexin-E5 co-precipitation was strongly impaired. In addition, we show that the M1 mutant is only able to marginally down-regulate HLA-I surface expression compared to the wild-type protein. Besides, we demonstrate that E5 forms a ternary complex with calnexin and the heavy chain of HLA-I, which is mediated by the first hydrophobic region of the E5 protein. On the basis of our results we conclude that formation of this complex is responsible for retention of HLA-I molecules in the ER of the cells.
Collapse
Affiliation(s)
- Myriam Gruener
- Division of Cell Differentiation, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
24
|
Rufer E, Leonhardt RM, Knittler MR. Molecular Architecture of the TAP-Associated MHC Class I Peptide-Loading Complex. THE JOURNAL OF IMMUNOLOGY 2007; 179:5717-27. [DOI: 10.4049/jimmunol.179.9.5717] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Plewnia G, Schulze K, Hunte C, Tampé R, Koch J. Modulation of the antigenic peptide transporter TAP by recombinant antibodies binding to the last five residues of TAP1. J Mol Biol 2007; 369:95-107. [PMID: 17418234 DOI: 10.1016/j.jmb.2007.02.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/19/2007] [Accepted: 02/23/2007] [Indexed: 11/30/2022]
Abstract
The transporter associated with antigen processing (TAP) plays a pivotal role in the major histocompatibility complex (MHC) class I mediated immune response against infected or malignantly transformed cells. It belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). Here we describe the generation of recombinant Fv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3. The epitope of the antibody was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in Escherichia coli and purified to homogeneity from periplasmic extracts by affinity chromatography. The monoclonal and recombinant antibodies bind with nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by ELISA and surface plasmon resonance. Strikingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex. At the same time TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Based on our results we suggest that the C terminus of TAP1 modulates TAP function presumably as part of the dimer interface of the NBDs.
Collapse
Affiliation(s)
- Gabriele Plewnia
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-69438 Frankfurt a. M., Germany
| | | | | | | | | |
Collapse
|
26
|
Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 2006; 19:531-45. [PMID: 16847084 PMCID: PMC1539106 DOI: 10.1128/cmr.00017-06] [Citation(s) in RCA: 972] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bats (order Chiroptera, suborders Megachiroptera ["flying foxes"] and Microchiroptera) are abundant, diverse, and geographically widespread. These mammals provide us with resources, but their importance is minimized and many of their populations and species are at risk, even threatened or endangered. Some of their characteristics (food choices, colonial or solitary nature, population structure, ability to fly, seasonal migration and daily movement patterns, torpor and hibernation, life span, roosting behaviors, ability to echolocate, virus susceptibility) make them exquisitely suitable hosts of viruses and other disease agents. Bats of certain species are well recognized as being capable of transmitting rabies virus, but recent observations of outbreaks and epidemics of newly recognized human and livestock diseases caused by viruses transmitted by various megachiropteran and microchiropteran bats have drawn attention anew to these remarkable mammals. This paper summarizes information regarding chiropteran characteristics and information regarding 66 viruses that have been isolated from bats. From these summaries, it is clear that we do not know enough about bat biology; we are doing too little in terms of bat conservation; and there remain a multitude of questions regarding the role of bats in disease emergence.
Collapse
Affiliation(s)
- Charles H Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | |
Collapse
|
27
|
Koch J, Guntrum R, Tampé R. The first N-terminal transmembrane helix of each subunit of the antigenic peptide transporter TAP is essential for independent tapasin binding. FEBS Lett 2006; 580:4091-6. [PMID: 16828748 DOI: 10.1016/j.febslet.2006.06.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/30/2006] [Accepted: 06/16/2006] [Indexed: 01/06/2023]
Abstract
The heterodimeric ABC transporter TAP translocates proteasomal degradation products from the cytosol into the lumen of the endoplasmic reticulum, where these peptides are loaded onto MHC class I molecules by a macromolecular peptide-loading complex (PLC) and subsequently shuttled to the cell surface for inspection by cytotoxic T lymphocytes. Tapasin recruits, as a central adapter protein, other components of the PLC at the unique N-terminal domains of TAP. We found that the N-terminal domains of human TAP1 and TAP2 can independently bind to tapasin, thus providing two separate loading platforms for PLC assembly. Moreover, tapasin binding is dependent on the first N-terminal transmembrane helix of TAP1 and TAP2, demonstrating that these two helices contribute independently to the recruitment of tapasin and associated factors.
Collapse
Affiliation(s)
- Joachim Koch
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie Strasse 9, D-69439 Frankfurt a.M., Germany.
| | | | | |
Collapse
|
28
|
Herget M, Tampé R. Intracellular peptide transporters in human--compartmentalization of the "peptidome". Pflugers Arch 2006; 453:591-600. [PMID: 16710701 DOI: 10.1007/s00424-006-0083-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Accepted: 03/27/2006] [Indexed: 01/09/2023]
Abstract
In the human genome, the five adenosine triphosphate (ATP)-binding cassette (ABC) half transporters ABCB2 (TAP1), ABCB3 (TAP2), ABCB9 (TAP-like), and in part, also ABCB8 and ABCB10 are closely related with regard to their structural and functional properties. Although targeted to different cellular compartments such as the endoplasmic reticulum (ER), lysosomes, and mitochondria, they are involved in intracellular peptide trafficking across membranes. The transporter associated with antigen processing (TAP1 and TAP2) constitute a key machinery in the major histocompatibility complex (MHC) class I-mediated cellular immune defense against infected or malignantly transformed cells. TAP translocates the cellular "peptidome" derived primarily from cytosolic proteasomal degradation into the ER lumen for presentation by MHC class I molecules. The homodimeric ABCB9 (TAP-like) complex located in lysosomal compartments shares structural and functional similarities to TAP; however, its biological role seems to be different from the MHC I antigen processing. ABCB8 and ABCB10 are targeted to the inner mitochondrial membrane. MDL1, the yeast homologue of ABCB10, is involved in the export of peptides derived from proteolysis of inner-membrane proteins into the intermembrane space. As such peptides are presented as minor histocompatibility antigens on the surface of mammalian cells, a physiological role of ABCB10 in the antigen processing can be accounted.
Collapse
Affiliation(s)
- Meike Herget
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
29
|
Abele R, Tampé R. Modulation of the antigen transport machinery TAP by friends and enemies. FEBS Lett 2005; 580:1156-63. [PMID: 16359665 DOI: 10.1016/j.febslet.2005.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2005] [Revised: 11/18/2005] [Accepted: 11/21/2005] [Indexed: 12/12/2022]
Abstract
The transporter associated with antigen processing (TAP) is a key factor of the major histocompatibility complex (MHC) class I antigen presentation pathway. This ABC transporter translocates peptides derived mainly from proteasomal degradation from the cytosol into the ER lumen for loading onto MHC class I molecules. Manifold mechanisms have evolved to regulate TAP activity. During infection, TAP expression is upregulated by interferon-gamma. Furthermore, the assembly and stability of the transport complex is promoted by various auxiliary factors. However, tumors and viruses have developed sophisticated strategies to escape the immune surveillance by suppressing TAP function. The activity of TAP can be impaired on the transcriptional or translational level, by enhanced degradation or by inhibition of peptide translocation. In this review, we briefly summarize existing data concerning the regulation of the TAP complex.
Collapse
Affiliation(s)
- Rupert Abele
- Institute of Biochemistry, Biocenter, Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439 Frankfurt/M., Germany
| | | |
Collapse
|
30
|
Schölz C, Tampé R. The Intracellular Antigen Transport Machinery TAP in Adaptive Immunity and Virus Escape Mechanisms. J Bioenerg Biomembr 2005; 37:509-15. [PMID: 16691491 DOI: 10.1007/s10863-005-9500-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transporter associated with antigen processing (TAP) is a crucial element of the adaptive immune system, which translocates proteasomal degradation products into the endoplasmic reticulum, for transfer of these peptides on major histocompatibility complex (MHC) I molecules within a macromolecular peptide-loading complex. After loading and intracellular transport to the cell surface, these peptide/MHC complexes are monitored by cytotoxic T-lymphocytes. This review summarizes the structural organization and function of the ABC transporter TAP. Furthermore, we discuss human diseases and viral evasion strategies associated with TAP function.
Collapse
Affiliation(s)
- Christian Schölz
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie-Str. 9, D-60439, Frankfurt a.M., Germany
| | | |
Collapse
|