1
|
Ko TH, Jeong D, Yu B, Song JE, Le QA, Woo SH, Choi JI. Inhibition of late sodium current via PI3K/Akt signaling prevents cellular remodeling in tachypacing-induced HL-1 atrial myocytes. Pflugers Arch 2023; 475:217-231. [PMID: 36274100 PMCID: PMC9849166 DOI: 10.1007/s00424-022-02754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/04/2022] [Accepted: 09/23/2022] [Indexed: 02/01/2023]
Abstract
An aberrant late sodium current (INa,Late) caused by a mutation in the cardiac sodium channel (Nav1.5) has emerged as a contributor to electrical remodeling that causes susceptibility to atrial fibrillation (AF). Although downregulation of phosphoinositide 3-kinase (PI3K)/Akt signaling is associated with AF, the molecular mechanisms underlying the negative regulation of INa,Late in AF remain unclear, and potential therapeutic approaches are needed. In this work, we constructed a tachypacing-induced cellular model of AF by exposing HL-1 myocytes to rapid electrical stimulation (1.5 V/cm, 4 ms, 10 Hz) for 6 h. Then, we gathered data using confocal Ca2+ imaging, immunofluorescence, patch-clamp recordings, and immunoblots. The tachypacing cells displayed irregular Ca2+ release, delayed afterdepolarization, prolonged action potential duration, and reduced PI3K/Akt signaling compared with controls. Those detrimental effects were related to increased INa,Late and were significantly mediated by treatment with the INa,Late blocker ranolazine. Furthermore, decreased PI3K/Akt signaling via PI3K inhibition increased INa,Late and subsequent aberrant myocyte excitability, which were abolished by INa,Late inhibition, suggesting that PI3K/Akt signaling is responsible for regulating pathogenic INa,Late. These results indicate that PI3K/Akt signaling is critical for regulating INa,Late and electrical remodeling, supporting the use of PI3K/Akt-mediated INa,Late as a therapeutic target for AF.
Collapse
Affiliation(s)
- Tae Hee Ko
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea ,Ion Channel Research Unit, Cardiovascular Research Institute, Korea University, Seoul, Republic of Korea
| | - Daun Jeong
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Byeongil Yu
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Ji Eun Song
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Qui Anh Le
- Laboratory of Pathophysiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Sun-Hee Woo
- Laboratory of Pathophysiology, College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Medical Centre, 73, Goryeodae-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea ,Ion Channel Research Unit, Cardiovascular Research Institute, Korea University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Tse G, Lee S, Gong M, Mililis P, Asvestas D, Bazoukis G, Roever L, Jeevaratnam K, Hothi SS, Li KHC, Liu T, Letsas KP. Restitution metrics in Brugada syndrome: a systematic review and meta-analysis. J Interv Card Electrophysiol 2019; 57:319-327. [PMID: 31836966 DOI: 10.1007/s10840-019-00675-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Brugada syndrome (BrS) is an ion channelopathy that predisposes affected subjects to ventricular tachycardia/fibrillation (VT/VF) and sudden cardiac death. Restitution analysis has been examined in BrS patients but not all studies have reported significant differences between BrS patients and controls. Therefore, we conducted a systematic review and meta-analysis to investigate the different restitution indices used in BrS. METHODS PubMed and Embase were searched until April 7, 2019, identifying 20 and 27 studies. RESULTS A total of ten studies involving 178 BrS (mean age 38 years old, 63% male) and 102 controls (mean age 31 years old, 42% male) were included in this systematic review. Pacing was carried out at the right ventricular outflow tract (RVOT)/right ventricular apex (RPA) (n = 4), RPA (n = 4), or right atrium (RA) (n = 1). Basic cycle lengths of 400 (n = 4), 500 (n = 2), 600 (n = 6) and 750 ms (n = 1) were used. Recording methods include electrograms (n = 4), monophasic action potentials (n = 5), and electrocardiograms (n = 1). Signals were obtained from the RVOT (n = 8), RVA (n = 3), RA (n = 1), or the body surface (n = 1). The maximum restitution slope for endocardial repolarization at the RVOT was 0.87 for BrS patients (n = 5; 95% confidence interval [CI] 0.68-1.07) compared with 0.74 in control subjects (n = 4; 95% CI 0.42-1.06), with a significant mean difference of 0.40 (n = 4; 95% CI 0.11-0.69; P = 0.007). CONCLUSIONS Steeper endocardial repolarization restitution slopes are found in BrS patients compared with controls at baseline. Restitution analysis can provide important information for risk stratification in BrS.
Collapse
Affiliation(s)
- Gary Tse
- Xiamen Cardiovascular Hospital Affiliated to Xiamen University, Xiamen, Fujian, People's Republic of China. .,Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.
| | - Sharen Lee
- Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Hong Kong, SAR, People's Republic of China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Panagiotis Mililis
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Dimitrios Asvestas
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - George Bazoukis
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Leonardo Roever
- Department of Clinical Research, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Sandeep S Hothi
- Heart and Lung Centre, New Cross Hospital, Wolverhampton, UK
| | - Ka Hou Christien Li
- Xiamen Cardiovascular Hospital Affiliated to Xiamen University, Xiamen, Fujian, People's Republic of China.,Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China.,Faculty of Medicine, Newcastle University, Newcastle, UK
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, People's Republic of China
| | - Konstantinos P Letsas
- Second Department of Cardiology, Laboratory of Cardiac Electrophysiology, Evangelismos General Hospital of Athens, Athens, Greece.
| |
Collapse
|
3
|
Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CLH. Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β -/-) murine hearts. Mech Ageing Dev 2018; 173:92-103. [PMID: 29763629 PMCID: PMC6004599 DOI: 10.1016/j.mad.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors. MATERIALS AND METHODS Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA. RESULTS AND DISCUSSION Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.
Collapse
Affiliation(s)
- Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Karan R Chadda
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom
| | - James Cranley
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom; PU-RCSI School of Medicine, Perdana University, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| |
Collapse
|
4
|
Salvage SC, Chandrasekharan KH, Jeevaratnam K, Dulhunty AF, Thompson AJ, Jackson AP, Huang CL. Multiple targets for flecainide action: implications for cardiac arrhythmogenesis. Br J Pharmacol 2018; 175:1260-1278. [PMID: 28369767 PMCID: PMC5866987 DOI: 10.1111/bph.13807] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022] Open
Abstract
Flecainide suppresses cardiac tachyarrhythmias including paroxysmal atrial fibrillation, supraventricular tachycardia and arrhythmic long QT syndromes (LQTS), as well as the Ca2+ -mediated, catecholaminergic polymorphic ventricular tachycardia (CPVT). However, flecainide can also exert pro-arrhythmic effects most notably following myocardial infarction and when used to diagnose Brugada syndrome (BrS). These divergent actions result from its physiological and pharmacological actions at multiple, interacting levels of cellular organization. These were studied in murine genetic models with modified Nav channel or intracellular ryanodine receptor (RyR2)-Ca2+ channel function. Flecainide accesses its transmembrane Nav 1.5 channel binding site during activated, open, states producing a use-dependent antagonism. Closing either activation or inactivation gates traps flecainide within the pore. An early peak INa related to activation of Nav channels followed by rapid de-activation, drives action potential (AP) upstrokes and their propagation. This is diminished in pro-arrhythmic conditions reflecting loss of function of Nav 1.5 channels, such as BrS, accordingly exacerbated by flecainide challenge. Contrastingly, pro-arrhythmic effects attributed to prolonged AP recovery by abnormal late INaL following gain-of-function modifications of Nav 1.5 channels in LQTS3 are reduced by flecainide. Anti-arrhythmic effects of flecainide that reduce triggering in CPVT models mediated by sarcoplasmic reticular Ca2+ release could arise from its primary actions on Nav channels indirectly decreasing [Ca2+ ]i through a reduced [Na+ ]i and/or direct open-state RyR2-Ca2+ channel antagonism. The consequent [Ca2+ ]i alterations could also modify AP propagation velocity and therefore arrhythmic substrate through its actions on Nav 1.5 channel function. This is consistent with the paradoxical differences between flecainide actions upon Na+ currents, AP conduction and arrhythmogenesis under circumstances of normal and increased RyR2 function. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Samantha C Salvage
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordUK
- School of MedicinePerdana University – Royal College of Surgeons IrelandSerdangSelangor Darul EhsanMalaysia
| | - Angela F Dulhunty
- Muscle Research Group, Eccles Institute of Neuroscience, John Curtin School of Medical ResearchAustralian National UniversityActonAustralia
| | | | | | - Christopher L‐H Huang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Physiological LaboratoryUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
Li M, Chadda KR, Matthews GDK, Marr CM, Huang CLH, Jeevaratnam K. Cardiac electrophysiological adaptations in the equine athlete-Restitution analysis of electrocardiographic features. PLoS One 2018. [PMID: 29522557 PMCID: PMC5844547 DOI: 10.1371/journal.pone.0194008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Exercising horses uniquely accommodate 7–8-fold increases in heart rate (HR). The present experiments for the first time analysed the related adaptations in action potential (AP) restitution properties recorded by in vivo telemetric electrocardiography from Thoroughbred horses. The horses were subjected to a period of acceleration from walk to canter. The QRS durations, and QT and TQ intervals yielded AP conduction velocities, AP durations (APDs) and diastolic intervals respectively. From these, indices of active, λ = QT/(QRS duration), and resting, λ0 = TQ/(QRS duration), AP wavelengths were calculated. Critical values of QT and TQ intervals, and of λ and λ0 at which plots of these respective pairs of functions showed unity slope, were obtained. These were reduced by 38.9±2.7% and 86.2±1.8%, and 34.1±3.3% and 85.9±1.2%, relative to their resting values respectively. The changes in λ were attributable to falls in QT interval rather than QRS duration. These findings both suggested large differences between the corresponding critical (129.1±10.8 or 117.4±5.6 bpm respectively) and baseline HRs (32.9±2.1 (n = 7) bpm). These restitution analyses thus separately identified concordant parameters whose adaptations ensure the wide range of HRs over which electrophysiological activation takes place in an absence of heart block or arrhythmias in equine hearts. Since the horse is amenable to this in vivo electrophysiological analysis and displays a unique wide range of heart rates, it could be a novel cardiac electrophysiology animal model for the study of sudden cardiac death in human athletes.
Collapse
Affiliation(s)
- Mengye Li
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Karan R. Chadda
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Celia M. Marr
- Rossdales Equine Hospital and Diagnostic Centre, Exning, Suffolk, United Kingdom
| | - Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Arrhythmogenic drugs can amplify spatial heterogeneities in the electrical restitution in perfused guinea-pig heart: An evidence from assessments of monophasic action potential durations and JT intervals. PLoS One 2018; 13:e0191514. [PMID: 29352276 PMCID: PMC5774816 DOI: 10.1371/journal.pone.0191514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/06/2018] [Indexed: 01/01/2023] Open
Abstract
Non-uniform shortening of the action potential duration (APD90) in different myocardial regions upon heart rate acceleration can set abnormal repolarization gradients and promote arrhythmia. This study examined whether spatial heterogeneities in APD90 restitution can be amplified by drugs with clinically proved proarrhythmic potential (dofetilide, quinidine, procainamide, and flecainide) and, if so, whether these effects can translate to the appropriate changes of the ECG metrics of ventricular repolarization, such as JT intervals. In isolated, perfused guinea-pig heart preparations, monophasic action potentials and volume-conducted ECG were recorded at progressively increased pacing rates. The APD90 measured at distinct ventricular sites, as well as the JTpeak and JTend values were plotted as a function of preceding diastolic interval, and the maximum slopes of the restitution curves were determined at baseline and upon drug administration. Dofetilide, quinidine, and procainamide reverse rate-dependently prolonged APD90 and steepened the restitution curve, with effects being greater at the endocardium than epicardium, and in the right ventricular (RV) vs. the left ventricular (LV) chamber. The restitution slope was increased to a greater extent for the JTend vs. the JTpeak interval. In contrast, flecainide reduced the APD90 restitution slope at LV epicardium without producing effect at LV endocardium and RV epicardium, and reduced the JTpeak restitution slope without changing the JTend restitution. Nevertheless, with all agents, these effects translated to the amplified epicardial-to-endocardial and the LV-to-RV non-uniformities in APD90 restitution, paralleled by the increased JTend vs. JTpeak difference in the restitution slope. In summary, these findings suggest that arrhythmic drug profiles are partly attributable to the accentuated regional heterogeneities in APD90 restitution, which can be indirectly determined through ECG assessments of the JTend vs. JTpeak dynamics at variable pacing rates.
Collapse
|
7
|
Valli H, Ahmad S, Sriharan S, Dean LD, Grace AA, Jeevaratnam K, Matthews HR, Huang CLH. Epac-induced ryanodine receptor type 2 activation inhibits sodium currents in atrial and ventricular murine cardiomyocytes. Clin Exp Pharmacol Physiol 2017; 45:278-292. [PMID: 29027245 PMCID: PMC5814738 DOI: 10.1111/1440-1681.12870] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/23/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
Acute RyR2 activation by exchange protein directly activated by cAMP (Epac) reversibly perturbs myocyte Ca2+ homeostasis, slows myocardial action potential conduction, and exerts pro‐arrhythmic effects. Loose patch‐clamp studies, preserving in vivo extracellular and intracellular conditions, investigated Na+ current in intact cardiomyocytes in murine atrial and ventricular preparations following Epac activation. Depolarising steps to varying test voltages activated typical voltage‐dependent Na+ currents. Plots of peak current against depolarisation from resting potential gave pretreatment maximum atrial and ventricular currents of −20.23 ± 1.48 (17) and −29.8 ± 2.4 (10) pA/μm2 (mean ± SEM [n]). Challenge by 8‐CPT (1 μmol/L) reduced these currents to −11.21 ± 0.91 (12) (P < .004) and −19.3 ± 1.6 (11) pA/μm2 (P < .04) respectively. Currents following further addition of the RyR2 inhibitor dantrolene (10 μmol/L) (−19.91 ± 2.84 (13) and −26.6 ± 1.7 (17)), and dantrolene whether alone (−19.53 ± 1.97 (8) and −27.6 ± 1.9 (14)) or combined with 8‐CPT (−19.93 ± 2.59 (12) and −29.9 ± 2.5(11)), were indistinguishable from pretreatment values (all P >> .05). Assessment of the inactivation that followed by applying subsequent steps to a fixed voltage 100 mV positive to resting potential gave concordant results. Half‐maximal inactivation voltages and steepness factors, and time constants for Na+ current recovery from inactivation in double‐pulse experiments, were similar through all the pharmacological conditions. Intracellular sharp microelectrode membrane potential recordings in intact Langendorff‐perfused preparations demonstrated concordant variations in maximum rates of atrial and ventricular action potential upstroke, (dV/dt)max. We thus demonstrate an acute, reversible, Na+ channel inhibition offering a possible mechanism for previously reported pro‐arrhythmic slowing of AP propagation following modifications of Ca2+ homeostasis, complementing earlier findings from chronic alterations in Ca2+ homeostasis in genetically‐modified RyR2‐P2328S hearts.
Collapse
Affiliation(s)
- Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Sujan Sriharan
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Lydia D Dean
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK.,PU-RCSI School of Medicine, Perdana University, Serdang, Selangor Darul Ehsan, Malaysia
| | - Hugh R Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Valli H, Ahmad S, Fraser JA, Jeevaratnam K, Huang CLH. Pro-arrhythmic atrial phenotypes in incrementally paced murine Pgc1β -/- hearts: effects of age. Exp Physiol 2017; 102:1619-1634. [PMID: 28960529 PMCID: PMC5725712 DOI: 10.1113/ep086589] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022]
Abstract
New Findings What is the central question of this study? Can we experimentally replicate atrial pro‐arrhythmic phenotypes associated with important chronic clinical conditions, including physical inactivity, obesity, diabetes mellitus and metabolic syndrome, compromising mitochondrial function, and clarify their electrophysiological basis? What is the main finding and its importance? Electrocardiographic and intracellular cardiomyocyte recording at progressively incremented pacing rates demonstrated age‐dependent atrial arrhythmic phenotypes in Langendorff‐perfused murine Pgc1β−/− hearts for the first time. We attributed these to compromised action potential conduction and excitation wavefronts, whilst excluding alterations in recovery properties or temporal electrophysiological instabilities, clarifying these pro‐arrhythmic changes in chronic metabolic disease.
Atrial arrhythmias, most commonly manifesting as atrial fibrillation, represent a major clinical problem. The incidence of atrial fibrillation increases with both age and conditions associated with energetic dysfunction. Atrial arrhythmic phenotypes were compared in young (12–16 week) and aged (>52 week) wild‐type (WT) and peroxisome proliferative activated receptor, gamma, coactivator 1 beta (Ppargc1b)‐deficient (Pgc1β−/−) Langendorff‐perfused hearts, previously used to model mitochondrial energetic disorder. Electrophysiological explorations were performed using simultaneous whole‐heart ECG and intracellular atrial action potential (AP) recordings. Two stimulation protocols were used: an S1S2 protocol, which imposed extrasystolic stimuli at successively decremented intervals following regular pulse trains; and a regular pacing protocol at successively incremented frequencies. Aged Pgc1β−/− hearts showed greater atrial arrhythmogenicity, presenting as atrial tachycardia and ectopic activity. Maximal rates of AP depolarization (dV/dtmax) were reduced in Pgc1β−/− hearts. Action potential latencies were increased by the Pgc1β−/− genotype, with an added interactive effect of age. In contrast, AP durations to 90% recovery (APD90) were shorter in Pgc1β−/− hearts despite similar atrial effective recovery periods amongst the different groups. These findings accompanied paradoxical decreases in the incidence and duration of alternans in the aged and Pgc1β−/− hearts. Limiting slopes of restitution curves of APD90 against diastolic interval were correspondingly reduced interactively by Pgc1β−/− genotype and age. In contrast, reduced AP wavelengths were associated with Pgc1β−/− genotype, both independently and interacting with age, through the basic cycle lengths explored, with the aged Pgc1β−/− hearts showing the shortest wavelengths. These findings thus implicate AP wavelength in possible mechanisms for the atrial arrhythmic changes reported here.
Collapse
Affiliation(s)
- Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - James A Fraser
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,PU-RCSI School of Medicine, Perdana University, Serdang, Selangor Darul Ehsan, Malaysia.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Jeevaratnam K, Chadda KR, Salvage SC, Valli H, Ahmad S, Grace AA, Huang CLH. Ion channels, long QT syndrome and arrhythmogenesis in ageing. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:38-45. [PMID: 28024120 PMCID: PMC5763326 DOI: 10.1111/1440-1681.12721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias, particularly after 40 years of age, consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing wild type (WT) murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.
Collapse
Affiliation(s)
- Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,School of Medicine, Perdana University-Royal College of Surgeons Ireland, Serdang, Selangor Darul Ehsan, Malaysia
| | - Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Physiological Laboratory, University of Cambridge, Cambridge, UK
| | | | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew A Grace
- Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
The effects of ageing and adrenergic challenge on electrocardiographic phenotypes in a murine model of long QT syndrome type 3. Sci Rep 2017; 7:11070. [PMID: 28894151 PMCID: PMC5593918 DOI: 10.1038/s41598-017-11210-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/21/2017] [Indexed: 01/19/2023] Open
Abstract
Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to β-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following β-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p < 0.001). Ventricles also showed increased fibrosis with age (p < 0.001). Age and Scn5a+/ΔKPQ interacted in increasing incidences of repolarisation alternans (p = 0.02). Dobutamine increased ventricular rate (p < 0.001) and reduced both atrioventricular conduction (PR segment-p = 0.02; PR interval-p = 0.02) and incidences of repolarisation alternans (p < 0.001) in all mice. However, in Scn5a+/ΔKPQ mice, dobutamine delayed the changes in ventricular repolarisation following corresponding increases in ventricular rate. The present findings implicate interactions between age and Scn5a+/ΔKPQ in prolonging ventricular activation, correlating them with fibrotic change for the first time, adding activation abnormalities to established recovery abnormalities in LQTS3. These findings, together with dynamic electrophysiological responses to β-adrenergic challenge, have therapeutic implications for ageing LQTS patients.
Collapse
|
11
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Abstract
Zebrafish (Danio rerio) are an excellent vertebrate model for studying heart development, regeneration and cardiotoxicity. Zebrafish embryos exposed during the temporal window of epicardium development to the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exhibit severe heart malformations. TCDD exposure prevents both proepicardial organ (PE) and epicardium development. Exposure later in development, after the epicardium has formed, does not produce cardiac toxicity. It is not until the adult zebrafish heart is stimulated to regenerate does TCDD again cause detrimental effects. TCDD exposure prior to ventricular resection prevents cardiac regeneration. It is likely that TCDD-induced inhibition of epicardium development and cardiac regeneration occur via a common mechanism. Here, we describe experiments that focus on the epicardium as a target and sensor of zebrafish heart toxicity.
Collapse
Affiliation(s)
- Peter Hofsteen
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Jessica Plavicki
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Richard E. Peterson
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| | - Warren Heideman
- Department of Pharmaceutical Sciences, University of Wisconsin, 777 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
13
|
Derangeon M, Montnach J, Baró I, Charpentier F. Mouse Models of SCN5A-Related Cardiac Arrhythmias. Front Physiol 2012; 3:210. [PMID: 22737129 PMCID: PMC3381239 DOI: 10.3389/fphys.2012.00210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/29/2012] [Indexed: 12/19/2022] Open
Abstract
Mutations of SCN5A gene, which encodes the α-subunit of the voltage-gated Na+ channel NaV1.5, underlie hereditary cardiac arrhythmic syndromes such as the type 3 long QT syndrome, cardiac conduction diseases, the Brugada syndrome, the sick sinus syndrome, a trial standstill, and numerous overlap syndromes. Patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases. However, they could not clarify how SCN5A mutations can be responsible for such a large spectrum of diseases, for the late age of onset or the progressiveness of some of these diseases and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological mechanisms of cardiac SCN5A-related arrhythmic syndromes and several mouse models have been established. This review presents the results obtained on these models that, for most of them, recapitulate the clinical phenotypes of the patients. This includes two models knocked out for Nav1.5 β1 and β3 auxiliary subunits that are also discussed. Despite their own limitations that we point out, the mouse models still appear as powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the secondary cellular consequences of SCN5A mutations such as the expression remodeling of other genes. This points out the potential role of these genes in the overall human phenotype. Finally, they constitute useful tools for addressing the role of genetic and environmental modifiers on cardiac electrical activity.
Collapse
|
14
|
Martin CA, Matthews GDK, Huang CLH. Sudden cardiac death and inherited channelopathy: the basic electrophysiology of the myocyte and myocardium in ion channel disease. Heart 2012; 98:536-43. [PMID: 22422742 PMCID: PMC3308472 DOI: 10.1136/heartjnl-2011-300953] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations involving cardiac ion channels result in abnormal action potential formation or propagation, leading to cardiac arrhythmias. Despite the large impact on society of sudden cardiac death resulting from such arrhythmias, understanding of the underlying cellular mechanism is poor and clinical risk stratification and treatment consequently limited. Basic research using molecular techniques, as well as animal models, has proved extremely useful in improving our knowledge of inherited arrhythmogenic syndromes. This offers the practitioner tools to accurately diagnose rare disorders and provides novel markers for risk assessment and a basis for new strategies of treatment.
Collapse
Affiliation(s)
- Claire A Martin
- Physiological Laboratory, University of Cambridge, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
15
|
Matthews GDK, Guzadhur L, Grace A, Huang CLH. Nonlinearity between action potential alternans and restitution, which both predict ventricular arrhythmic properties in Scn5a+/- and wild-type murine hearts. J Appl Physiol (1985) 2012; 112:1847-63. [PMID: 22461438 DOI: 10.1152/japplphysiol.00039.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Electrocardiographic QT- and T-wave alternans, presaging ventricular arrhythmia, reflects compromised adaptation of action potential (AP) duration (APD) to altered heart rate, classically attributed to incomplete Na(v)1.5 channel recovery prior to subsequent stimulation. The restitution hypothesis suggests a function whose slope directly relates to APD alternans magnitude, predicting a critical instability condition, potentially generating arrhythmia. The present experiments directly test for such correlations among arrhythmia, APD alternans and restitution. Mice haploinsufficient in the Scn5a, cardiac Na(+) channel gene (Scn5a(+/-)), previously used to replicate Brugada syndrome, were used, owing to their established arrhythmic properties increased by flecainide and decreased by quinidine, particularly in right ventricular (RV) epicardium. Monophasic APs, obtained during pacing with progressively decrementing cycle lengths, were systematically compared at RV and left ventricular epicardial and endocardial recording sites in Langendorff-perfused Scn5a(+/-) and wild-type hearts before and following flecainide (10 μM) or quinidine (5 μM) application. The extent of alternans was assessed using a novel algorithm. Scn5a(+/-) hearts showed greater frequencies of arrhythmic endpoints with increased incidences of ventricular tachycardia, diminished by quinidine, and earlier onsets of ventricular fibrillation, particularly following flecainide challenge. These features correlated directly with increased refractory periods, specifically in the RV, and abnormal restitution and alternans properties in the RV epicardium. The latter variables were related by a unique, continuous higher-order function, rather than a linear relationship with an unstable threshold. These findings demonstrate a specific relationship between alternans and restitution, as well as confirming their capacity to predict arrhythmia, but implicate mechanisms additional to the voltage feedback suggested in the restitution hypothesis.
Collapse
Affiliation(s)
- Gareth D K Matthews
- Physiological Laboratory, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
16
|
Martin CA, Grace AA, Huang CLH. Spatial and temporal heterogeneities are localized to the right ventricular outflow tract in a heterozygotic Scn5a mouse model. Am J Physiol Heart Circ Physiol 2010; 300:H605-16. [PMID: 21097662 PMCID: PMC3044044 DOI: 10.1152/ajpheart.00824.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ventricular tachycardia (VT) in Brugada Syndrome patients often originates in the right ventricular outflow tract (RVOT). We explore the physiological basis for this observation using murine whole heart preparations. Ventricular bipolar electrograms and monophasic action potentials were recorded from seven epicardial positions in Langendorff-perfused wild-type and Scn5a+/− hearts. VT first appeared in the RVOT, implicating it as an arrhythmogenic focus in Scn5a+/− hearts. RVOTs showed the greatest heterogeneity in refractory periods, response latencies, and action potential durations, and the most fractionated electrograms. However, incidences of concordant alternans in dynamic pacing protocol recordings were unaffected by the Scn5a+/− mutation or pharmacological intervention. Conversely, particularly at the RVOT, Scn5a+/− hearts showed earlier and more frequent transitions into discordant alternans. This was accentuated by flecainide, but reduced by quinidine, in parallel with their respective pro- and anti-arrhythmic effects. Discordant alternans preceded all episodes of VT. The RVOT of Scn5a+/− hearts also showed steeper restitution curves, with the diastolic interval at which the gradient equaled one strongly correlating with the diastolic interval at which discordant alternans commenced. We attribute the arrhythmic tendency within the RVOT to the greater spatial heterogeneities in baseline electrophysiological properties. These, in turn, give rise to a tendency to drive concordant alternans phenomena into an arrhythmogenic discordant alternans. Our findings may contribute to future work investigating possible pharmacological treatments for a disease in which the current mainstay of treatment is implantable cardioverter defibrillator implantation.
Collapse
Affiliation(s)
- Claire A Martin
- Physiological Laboratory, Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
17
|
Sabir IN, Ma N, Jones VJ, Goddard CA, Zhang Y, Kalin A, Grace AA, Huang CLH. Alternans in genetically modified langendorff-perfused murine hearts modeling catecholaminergic polymorphic ventricular tachycardia. Front Physiol 2010; 1:126. [PMID: 21423368 PMCID: PMC3059940 DOI: 10.3389/fphys.2010.00126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/29/2010] [Indexed: 11/23/2022] Open
Abstract
The relationship between alternans and arrhythmogenicity was studied in genetically modified murine hearts modeling catecholaminergic polymorphic ventricular tachycardia (CPVT) during Langendorff perfusion, before and after treatment with catecholamines and a β-adrenergic antagonist. Heterozygous (RyR2p/s) and homozygous (RyR2s/s) RyR2-P2328S hearts, and wild-type (WT) controls, were studied before and after treatment with epinephrine (100 nM and 1 μM) and propranolol (100 nM). Monophasic action potential recordings demonstrated significantly greater incidences of arrhythmia in RyR2p/s and RyR2s/s hearts as compared to WTs. Arrhythmogenicity in RyR2s/s hearts was associated with alternans, particularly at short baseline cycle lengths. Both phenomena were significantly accentuated by treatment with epinephrine and significantly diminished by treatment with propranolol, in full agreement with clinical expectations. These changes took place, however, despite an absence of changes in mean action potential durations, ventricular effective refractory periods or restitution curve characteristics. Furthermore pooled data from all hearts in which arrhythmia occurred demonstrated significantly greater alternans magnitudes, but similar restitution curve slopes, to hearts that did not demonstrate arrhythmia. These findings thus further validate the RyR2-P2328S murine heart as a model for human CPVT, confirming an alternans phenotype in common with murine genetic models of the Brugada syndrome and the congenital long-QT syndrome type 3. In contrast to these latter similarities, however, this report demonstrates the dissociation of alternans from changes in the properties of restitution curves for the first time in a murine model of a human arrhythmic syndrome.
Collapse
Affiliation(s)
- Ian N Sabir
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Matthews GDK, Martin CA, Grace AA, Zhang Y, Huang CLH. Regional variations in action potential alternans in isolated murine Scn5a (+/-) hearts during dynamic pacing. Acta Physiol (Oxf) 2010; 200:129-46. [PMID: 20384594 DOI: 10.1111/j.1748-1716.2010.02138.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM clinical observations suggest that alternans in action potential (AP) characteristics presages breakdown of normal ordered cardiac electrical activity culminating in ventricular arrhythmogenesis. We compared such temporal nonuniformities in monophasic action potential (MAP) waveforms in left (LV) and right ventricular (RV) epicardia and endocardia of Langendorff-perfused murine wild-type (WT), and Scn5a(+/-) hearts modelling Brugada syndrome (BrS) for the first time. METHODS a dynamic pacing protocol imposed successively incremented steady pacing rates between 5.5 and 33 Hz. A signal analysis algorithm detected sequences of >10 beats showing alternans. Results were compared before and following the introduction of flecainide (10 microm) and quinidine (5 microm) known to exert pro- and anti-arrhythmic effects in BrS. RESULTS sustained and transient amplitude and duration alternans were both frequently followed by ventricular ectopic beats and ventricular tachycardia or fibrillation. Diastolic intervals (DIs) that coincided with onsets of transient (tr) or sustained (ss) alternans in MAP duration (DI*) and amplitude (DI') were determined. Kruskal-Wallis tests followed by Bonferroni-corrected Mann-Whitney U-tests were applied to these DI results sorted by recording site, pharmacological conditions or experimental populations. WT hearts showed no significant heterogeneities in any DI. Untreated Scn5a (+/-) hearts showed earlier onsets of transient but not sustained duration alternans in LV endocardium compared with RV endocardium or LV epicardium. Flecainide administration caused earlier onsets of both transient and sustained duration alternans selectively in the RV epicardium in the Scn5a (+/-) hearts. CONCLUSION these findings in a genetic model thus implicate RV epicardial changes in the arrhythmogenicity produced by flecainide challenge in previously asymptomatic clinical BrS.
Collapse
Affiliation(s)
- G D K Matthews
- Physiological Laboratory, University of Cambridge, Cambridge
| | | | | | | | | |
Collapse
|
19
|
Bhar-Amato J, Nunn LM, Lambiase PD. A review of the mechanisms of ventricular arrhythmia in brugada syndrome. Indian Pacing Electrophysiol J 2010; 10:410-25. [PMID: 20930959 PMCID: PMC2933369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Brugada syndrome (BrS) is characterised by the triad of coved ST elevation, lethal ventricular arrhythmia in an apparently structurally normal heart. The precise mechanisms responsible for the coved ST elevation and ventricular arrhythmias in this disease have been debated since its initial description in 1992. Indeed the recent recognition of early repolarisation J wave disorders linked to primary VF broadens the mechanistic importance of BrS in sudden cardiac death. It may lie on a spectrum of early repolarisation pathology which is becoming increasingly recognised as a marker of premature cardiovascular death. Mechanistically, abnormalities of both depolarisation and repolarisation in the right ventricular outflow tract, and heterogeneities of conduction between the endocardium and epicardium have been implicated in the electrographic manifestations of BrS and arrhythmogenesis.The initial belief of BrS as a single autosomal dominant ion channel disorder has been challenged. It has become apparent that sodium channel mutations only account for a maximum of 30% of cases and structural myocardial abnormalities have now been described in what was previously thought to be a purely functional condition. It is highly probable that BrS is an umbrella diagnosis for a number of conduction and repolarisation abnormalities which manifest as this syndrome and the coved ST elevation represents the final common pathway of both ion channel and structural derangements. This review will discuss the issues surrounding the mechanisms of lethal arrhythmia in BrS and summarise both basic science and clinical research findings.
Collapse
|
20
|
Blana A, Kaese S, Fortmüller L, Laakmann S, Damke D, van Bragt K, Eckstein J, Piccini I, Kirchhefer U, Nattel S, Breithardt G, Carmeliet P, Carmeliet E, Schotten U, Verheule S, Kirchhof P, Fabritz L. Knock-in gain-of-function sodium channel mutation prolongs atrial action potentials and alters atrial vulnerability. Heart Rhythm 2010; 7:1862-9. [PMID: 20728579 DOI: 10.1016/j.hrthm.2010.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 08/17/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND Patients with long QT syndrome (LQTS) are at increased risk not only for ventricular arrhythmias but also for atrial pathology including atrial fibrillation (AF). Some patients with "lone" AF carry Na(+)-channel mutations. OBJECTIVE The purpose of this study was to determine the mechanisms underlying atrial pathology in LQTS. METHODS In mice with a heterozygous knock-in long QT syndrome type 3 (LQT3) mutant of the cardiac Na(+) channel (ΔKPQ-SCN5A) and wild-type (WT) littermates, atrial size, function, and electrophysiologic parameters were measured in intact Langendorff-perfused hearts, and histologic analysis was performed. RESULTS Atrial action potential duration, effective refractory period, cycle length, and PQ interval were prolonged in ΔKPQ-SCN5A hearts (all P < .05). Flecainide (1 μM) reversed atrial action potential duration prolongation and induced postrepolarization refractoriness (P < .05). Arrhythmias were infrequent during regular rapid atrial rate in both WT and ΔKPQ-SCN5A but were inducible in 15 (38%) of 40 ΔKPQ-SCN5A and 8 (29%) of 28 WT mice upon extrastimulation. Pacing protocols generating rapid alterations in rate provoked atrial extrasystoles and arrhythmias in 6 (66%) of 9 ΔKPQ-SCN5A but in 0 (0%) of 6 WT mice (P < .05). Atrial diameter was increased by nearly 10% in ΔKPQ-SCN5A mice > 5 months old without increase in fibrotic tissue. CONCLUSION Murine hearts bearing an LQT3 mutation show abnormalities in atrial electrophysiology and subtle changes in atrial dimension, including an atrial arrhythmogenic phenotype on provocation. These results support clinical data suggesting that LQTS mutations can cause atrial pathology and arrhythmogenesis and indicate that murine sodium channel LQTS models may be useful for exploring underlying mechanisms.
Collapse
Affiliation(s)
- Andreas Blana
- Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Atrial arrhythmogenicity in aged Scn5a+/DeltaKPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction. Pflugers Arch 2010; 460:593-601. [PMID: 20552221 PMCID: PMC2903684 DOI: 10.1007/s00424-010-0851-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 05/05/2010] [Accepted: 05/26/2010] [Indexed: 12/19/2022]
Abstract
Recent studies have reported that human mutations in Nav1.5 predispose to early age onset atrial arrhythmia. The present experiments accordingly assess atrial arrhythmogenicity in aging Scn5a+/KPQ mice modeling long QT3 syndrome in relationship to cardiac Na(+) channel, Nav1.5, expression. Atrial electrophysiological properties in isolated Langendorff-perfused hearts from 3- and 12-month-old wild type (WT), and Scn5a+/KPQ mice were assessed using programmed electrical stimulation and their Nav1.5 expression assessed by Western blot. Cardiac conduction properties were assessed electrocardiographically in intact anesthetized animals. Monophasic action potential recordings demonstrated increased atrial arrhythmogenicity specifically in aged Scn5a+/DeltaKPQ hearts. These showed greater action potential duration/refractory period ratios but lower atrial Nav1.5 expression levels than aged WT mice. Atrial Nav1.5 levels were higher in young Scn5a+/DeltaKPQ than young WT. These levels increased with age in WT but not Scn5a+/DeltaKPQ. Both young and aged Scn5a+/DeltaKPQ mice showed lower heart rates and longer PR intervals than their WT counterparts. Young Scn5a+/DeltaKPQ mice showed longer QT and QTc intervals than young WT. Aged Scn5a+/DeltaKPQ showed longer QRS durations than aged WT. PR intervals were prolonged and QT intervals were shortened in young relative to aged WT. In contrast, ECG parameters were similar between young and aged Scn5a+/DeltaKPQ. Aged murine Scn5a+/DeltaKPQ hearts thus exhibit an increased atrial arrhythmogenicity. The differing Nav1.5 expression and electrocardiographic indicators of slowed cardiac conduction between Scn5a+/DeltaKPQ and WT, which show further variations associated with aging, may contribute toward atrial arrhythmia in aged Scn5a+/DeltaKPQ hearts.
Collapse
|
22
|
Fabritz L, Damke D, Emmerich M, Kaufmann SG, Theis K, Blana A, Fortmüller L, Laakmann S, Hermann S, Aleynichenko E, Steinfurt J, Volkery D, Riemann B, Kirchhefer U, Franz MR, Breithardt G, Carmeliet E, Schäfers M, Maier SKG, Carmeliet P, Kirchhof P. Autonomic modulation and antiarrhythmic therapy in a model of long QT syndrome type 3. Cardiovasc Res 2010; 87:60-72. [PMID: 20110334 PMCID: PMC2883895 DOI: 10.1093/cvr/cvq029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aims Clinical observations in patients with long QT syndrome carrying sodium channel mutations (LQT3) suggest that bradycardia caused by parasympathetic stimulation may provoke torsades de pointes (TdP). β-Adrenoceptor blockers appear less effective in LQT3 than in other forms of the disease. Methods and results We studied effects of autonomic modulation on arrhythmias in vivo and in vitro and quantified sympathetic innervation by autoradiography in heterozygous mice with a knock-in deletion (ΔKPQ) in the Scn5a gene coding for the cardiac sodium channel and increased late sodium current (LQT3 mice). Cholinergic stimulation by carbachol provoked bigemini and TdP in freely roaming LQT3 mice. No arrhythmias were provoked by physical stress, mental stress, isoproterenol, or atropine. In isolated, beating hearts, carbachol did not prolong action potentials per se, but caused bradycardia and rate-dependent action potential prolongation. The muscarinic inhibitor AFDX116 prevented effects of carbachol on heart rate and arrhythmias. β-Adrenoceptor stimulation suppressed arrhythmias, shortened rate-corrected action potential duration, increased rate, and minimized difference in late sodium current between genotypes. β-Adrenoceptor density was reduced in LQT3 hearts. Acute β-adrenoceptor blockade by esmolol, propranolol or chronic propranolol in vivo did not suppress arrhythmias. Chronic flecainide pre-treatment prevented arrhythmias (all P < 0.05). Conclusion Cholinergic stimulation provokes arrhythmias in this model of LQT3 by triggering bradycardia. β-Adrenoceptor density is reduced, and β-adrenoceptor blockade does not prevent arrhythmias. Sodium channel blockade and β-adrenoceptor stimulation suppress arrhythmias by shortening repolarization and minimizing difference in late sodium current.
Collapse
Affiliation(s)
- Larissa Fabritz
- Department of Cardiology and Angiology, University Hospital Münster, Albert-Schweitzer-Street 33, D-48129 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hothi SS, Thomas G, Killeen MJ, Grace AA, Huang CLH. Empirical correlation of triggered activity and spatial and temporal re-entrant substrates with arrhythmogenicity in a murine model for Jervell and Lange-Nielsen syndrome. Pflugers Arch 2009; 458:819-35. [PMID: 19430811 PMCID: PMC2719739 DOI: 10.1007/s00424-009-0671-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/07/2009] [Indexed: 11/23/2022]
Abstract
KCNE1 encodes the β-subunit of the slow component of the delayed rectifier K+ current. The Jervell and Lange-Nielsen syndrome is characterized by sensorineural deafness, prolonged QT intervals, and ventricular arrhythmogenicity. Loss-of-function mutations in KCNE1 are implicated in the JLN2 subtype. We recorded left ventricular epicardial and endocardial monophasic action potentials (MAPs) in intact, Langendorff-perfused mouse hearts. KCNE1−/− but not wild-type (WT) hearts showed not only triggered activity and spontaneous ventricular tachycardia (VT), but also VT provoked by programmed electrical stimulation. The presence or absence of VT was related to the following set of criteria for re-entrant excitation for the first time in KCNE1−/− hearts: Quantification of APD90, the MAP duration at 90% repolarization, demonstrated alterations in (1) the difference, ∆APD90, between endocardial and epicardial APD90 and (2) critical intervals for local re-excitation, given by differences between APD90 and ventricular effective refractory period, reflecting spatial re-entrant substrate. Temporal re-entrant substrate was reflected in (3) increased APD90 alternans, through a range of pacing rates, and (4) steeper epicardial and endocardial APD90 restitution curves determined with a dynamic pacing protocol. (5) Nicorandil (20 µM) rescued spontaneous and provoked arrhythmogenic phenomena in KCNE1−/− hearts. WTs remained nonarrhythmogenic. Nicorandil correspondingly restored parameters representing re-entrant criteria in KCNE1−/− hearts toward values found in untreated WTs. It shifted such values in WT hearts in similar directions. Together, these findings directly implicate triggered electrical activity and spatial and temporal re-entrant mechanisms in the arrhythmogenesis observed in KCNE1−/− hearts.
Collapse
Affiliation(s)
- Sandeep S Hothi
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | | | | | | | | |
Collapse
|
24
|
Current World Literature. Curr Opin Cardiol 2009; 24:95-101. [DOI: 10.1097/hco.0b013e32831fb366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Charpentier F, Bourgé A, Mérot J. Mouse models of SCN5A-related cardiac arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:230-7. [PMID: 19041666 DOI: 10.1016/j.pbiomolbio.2008.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both gain- and loss-of-function mutations in the SCN5A gene, which encodes the alpha-subunit of the cardiac voltage-gated Na+ channel Na(v)1.5, are well established to underlie hereditary arrhythmic syndromes (cardiac channelopathies) such as the type 3 long QT syndrome, cardiac conduction diseases, Brugada syndrome, sick sinus syndrome, atrial standstill and numerous overlap syndromes. Although patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases, they could not clarify how mutations can be responsible for such a large spectrum of diseases, the late age of onset or the progressiveness of some of them, and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological sequence of cardiac SCN5A-related channelopathies and several mouse models have been established. Here, we review the results obtained on these models that, for most of them, convincingly recapitulate the clinical phenotypes of the patients but that also have their own limitations. Mouse models turn out to be powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the cellular consequences of SCN5A mutations such as the remodelling of other gene expression that might participate in the overall phenotype and explain some of the differences among patients. Finally, they also constitute useful tools for future studies addressing as yet unanswered questions, such as the role of genetic and environmental modifiers on cardiac conduction and repolarisation.
Collapse
|
26
|
Ghais NS, Zhang Y, Grace AA, Huang CLH. Arrhythmogenic actions of the Ca2+ channel agonist FPL-64716 in Langendorff-perfused murine hearts. Exp Physiol 2008; 94:240-54. [PMID: 18978037 PMCID: PMC2705814 DOI: 10.1113/expphysiol.2008.044669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The experiments explored the extent to which alterations in L-type Ca(2+) channel-mediated Ca(2+) entry triggers Ca(2+)-mediated arrhythmogenesis in Langendorff-perfused murine hearts through use of the specific L-type Ca(2+) channel modulator FPL-64716 (FPL). Introduction of FPL (1 microm) resulted in a gradual development (>10 min) of diastolic electrical events and alternans in spontaneously beating hearts from which monophasic action potentials were recorded. In regularly paced hearts, they additionally led to non-sustained and sustained ventricular tachycardia (nsVT and sVT). Programmed electrical stimulation (PES) resulted in nsVT and sVT after 5-10 and >10 min perfusion, respectively. Pretreatments with nifedipine, diltiazem and cyclopiazonic acid abolished arrhythmogenic tendency induced by subsequent introduction of FPL, consistent with its dependence upon both extracellular Ca(2+) entry and the degree of filling of the sarcoplasmic reticular Ca(2+) store. Values for action potential duration at 90% repolarization when any of these agents were applied to FPL-treated hearts became indistinguishable from those shown by untreated control hearts, in contrast to earlier reports of their altering in long QT syndrome type 3 and hypokalaemic murine models for re-entrant arrhythmogenesis. These arrhythmic effects instead correlated with alterations in Ca(2+) homeostasis at the single-cell level found in investigations of the effects of both FPL and the same agents in regularly stimulated fluo-3 loaded myocytes. These findings are compatible with a prolonged extracellular Ca(2+) entry that potentially results in an intracellular Ca(2+) overload and produces the cardiac arrhythmogenecity following addition of FPL.
Collapse
Affiliation(s)
- Nina S Ghais
- Physiological Laboratory, University of Cambridge, UK
| | | | | | | |
Collapse
|
27
|
Sabir IN, Killeen MJ, Grace AA, Huang CLH. Ventricular arrhythmogenesis: Insights from murine models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 98:208-18. [DOI: 10.1016/j.pbiomolbio.2008.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Hothi SS, Gurung IS, Heathcote JC, Zhang Y, Booth SW, Skepper JN, Grace AA, Huang CLH. Epac activation, altered calcium homeostasis and ventricular arrhythmogenesis in the murine heart. Pflugers Arch 2008; 457:253-70. [PMID: 18600344 PMCID: PMC3714550 DOI: 10.1007/s00424-008-0508-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Revised: 03/03/2008] [Accepted: 03/23/2008] [Indexed: 11/02/2022]
Abstract
The recently described exchange protein directly activated by cAMP (Epac) has been implicated in distinct protein kinase A-independent cellular signalling pathways. We investigated the role of Epac activation in adrenergically mediated ventricular arrhythmogenesis. In contrast to observations in control conditions (n = 20), monophasic action potentials recorded in 2 of 10 intrinsically beating and 5 of 20 extrinsically paced Langendorff-perfused wild-type murine hearts perfused with the Epac activator 8-pCPT-2'-O-Me-cAMP (8-CPT, 1 microM) showed spontaneous triggered activity. Three of 20 such extrinsically paced hearts showed spontaneous ventricular tachycardia (VT). Programmed electrical stimulation provoked VT in 10 of 20 similarly treated hearts (P < 0.001; n = 20). However, there were no statistically significant accompanying changes (P > 0.05) in left ventricular epicardial (40.7 +/- 1.2 versus 44.0 +/- 1.7 ms; n = 10) or endocardial action potential durations (APD(90); 51.8 +/- 2.3 versus 51.9 +/- 2.2 ms; n = 10), transmural (DeltaAPD(90)) (11.1 +/- 2.6 versus 7.9 +/- 2.8 ms; n = 10) or apico-basal repolarisation gradients, ventricular effective refractory periods (29.1 +/- 1.7 versus 31.2 +/- 2.4 ms in control and 8-CPT-treated hearts, respectively; n = 10) and APD(90) restitution characteristics. Nevertheless, fluorescence imaging of cytosolic Ca(2+) levels demonstrated abnormal Ca(2+) homeostasis in paced and resting isolated ventricular myocytes. Epac activation using isoproterenol in the presence of H-89 was also arrhythmogenic and similarly altered cellular Ca(2+) homeostasis. Epac-dependent effects were reduced by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibition with 1 microM KN-93. These findings associate VT in an intact cardiac preparation with altered cellular Ca(2+) homeostasis and Epac activation for the first time, in the absence of altered repolarisation gradients previously implicated in reentrant arrhythmias through a mechanism dependent on CaMKII activity.
Collapse
Affiliation(s)
- Sandeep S Hothi
- University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.
| | | | | | | | | | | | | | | |
Collapse
|