1
|
Hladky SB, Barrand MA. Alterations in brain fluid physiology during the early stages of development of ischaemic oedema. Fluids Barriers CNS 2024; 21:51. [PMID: 38858667 PMCID: PMC11163777 DOI: 10.1186/s12987-024-00534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchymal tissue, vasogenic oedema arises from changes in blood-brain barrier permeability, e.g. in peritumoral oedema. Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake of Na+ and Cl- and loss of K+; neuronal swelling; astrocytic uptake of Na+, K+ and anions; swelling of astrocytes; and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased [K+]isf triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial opening of tight junctions between blood-brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood-brain barrier. Oedema resolution is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood-brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain herniation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood flow, providing this can be achieved relatively quickly. One important objective of current research is to find treatments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK
| |
Collapse
|
2
|
Celentano C, Carotenuto L, Miceli F, Carleo G, Corrado B, Baroli G, Iervolino S, Vecchione R, Taglialatela M, Barrese V. Kv7 channel activation reduces brain endothelial cell permeability and prevents kainic acid-induced blood-brain barrier damage. Am J Physiol Cell Physiol 2024; 326:C893-C904. [PMID: 38284124 PMCID: PMC11193483 DOI: 10.1152/ajpcell.00709.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.
Collapse
Affiliation(s)
- Camilla Celentano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Lidia Carotenuto
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Francesco Miceli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Giusy Carleo
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Brunella Corrado
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Giulia Baroli
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Stefania Iervolino
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Ion Channels in Gliomas-From Molecular Basis to Treatment. Int J Mol Sci 2023; 24:ijms24032530. [PMID: 36768856 PMCID: PMC9916861 DOI: 10.3390/ijms24032530] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.
Collapse
|
4
|
Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Res 2022; 1788:147937. [PMID: 35568085 DOI: 10.1016/j.brainres.2022.147937] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic structure that protects the brain from harmful blood-borne, endogenous and exogenous substances and maintains the homeostatic microenvironment. All constituent cell types play indispensable roles in the BBB's integrity, and other structural BBB components, such as tight junction proteins, adherens junctions, and junctional proteins, can control the barrier permeability. Regarding the need to exchange nutrients and toxic materials, solute carriers, ATP-binding case families, and ion transporter, as well as transcytosis regulate the influx and efflux transport, while the difference in localisation and expression can contribute to functional differences in transport properties. Numerous chemical mediators and other factors such as non-physicochemical factors have been identified to alter BBB permeability by mediating the structural components and barrier function, because of the close relationship with inflammation. In this review, we highlight recently gained mechanistic insights into the maintenance and disruption of the BBB. A better understanding of the factors influencing BBB permeability could contribute to supporting promising potential therapeutic targets for protecting the BBB and the delivery of central nervous system drugs via BBB permeability interventions under pathological conditions.
Collapse
Affiliation(s)
- Yibin Zhao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Li Ren
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yubo Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Neurobiology and Acupuncture Research, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Poustforoosh A, Nematollahi MH, Hashemipour H, Pardakhty A. Recent advances in Bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. J Control Release 2022; 343:777-797. [DOI: 10.1016/j.jconrel.2022.02.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
|
7
|
Olivencia MA, Martínez-Casales M, Peraza DA, García-Redondo AB, Mondéjar-Parreño G, Hernanz R, Salaices M, Cogolludo A, Pennington MW, Valenzuela C, Briones AM. K V 1.3 channels are novel determinants of macrophage-dependent endothelial dysfunction in angiotensin II-induced hypertension in mice. Br J Pharmacol 2021; 178:1836-1854. [PMID: 33556997 DOI: 10.1111/bph.15407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE KV 1.3 channels are expressed in vascular smooth muscle cells (VSMCs), where they contribute to proliferation rather than contraction and participate in vascular remodelling. KV 1.3 channels are also expressed in macrophages, where they assemble with KV 1.5 channels (KV 1.3/KV 1.5), whose activation generates a KV current. In macrophages, the KV 1.3/KV 1.5 ratio is increased by classical activation (M1). Whether these channels are involved in angiotensin II (AngII)-induced vascular remodelling, and whether they can modulate the macrophage phenotype in hypertension, remains unknown. We characterized the role of KV 1.3 channels in vascular damage in hypertension. EXPERIMENTAL APPROACH We used AngII-infused mice treated with two selective KV 1.3 channel inhibitors (HsTX[R14A] and [EWSS]ShK). Vascular function and structure were measured using wire and pressure myography, respectively. VSMC and macrophage electrophysiology were studied using the patch-clamp technique; gene expression was analysed using RT-PCR. KEY RESULTS AngII increased KV 1.3 channel expression in mice aorta and peritoneal macrophages which was abolished by HsTX[R14A] treatment. KV 1.3 inhibition did not prevent hypertension, vascular remodelling, or stiffness but corrected AngII-induced macrophage infiltration and endothelial dysfunction in the small mesenteric arteries and/or aorta, via a mechanism independent of electrophysiological changes in VSMCs. AngII modified the electrophysiological properties of peritoneal macrophages, indicating an M1-like activated state, with enhanced expression of proinflammatory cytokines that induced endothelial dysfunction. These effects were prevented by KV 1.3 blockade. CONCLUSIONS AND IMPLICATIONS We unravelled a new role for KV 1.3 channels in the macrophage-dependent endothelial dysfunction induced by AngII in mice which might be due to modulation of macrophage phenotype.
Collapse
Affiliation(s)
- Miguel A Olivencia
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Spain
| | - Marta Martínez-Casales
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Ana B García-Redondo
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Gema Mondéjar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Spain
| | - Raquel Hernanz
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Spain
| | | | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ana M Briones
- Departamento de Farmacología, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz, Madrid, Spain.,Ciber de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
8
|
Fancher IS, Levitan I. Endothelial inwardly-rectifying K + channels as a key component of shear stress-induced mechanotransduction. CURRENT TOPICS IN MEMBRANES 2020; 85:59-88. [PMID: 32402645 DOI: 10.1016/bs.ctm.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been recognized for decades that fluid shear stress plays a major role in vascular function. Acting on the endothelium shear stress induces vasorelaxation of resistance arteries and plays a major role in the propensity of the major arteries to atherosclerosis. Many elements of shear-induced signaling have been identified yet we are just beginning to decipher the roles that mechanosensitive ion channels may play in the signaling pathways initiated by shear stress. Endothelial inwardly-rectifying K+ channels were identified as potential primary mechanosensors in the late 1980s yet until our recent works, highlighted in the forthcoming chapter, the functional effect of a shear-activated K+ current was completely unknown. In this chapter, we present the physiological effects of shear stress in arteries in health and disease and highlight the most prevalent of today's investigated mechanosensitive ion channels. Ultimately, we focus on Kir2.1 channels and discuss in detail our findings regarding the downstream signaling events that are induced by shear-activated endothelial Kir2.1 channels. Most importantly, we examine our findings regarding hypercholesterolemia-induced inhibition of Kir channel shear-sensitivity and the impact on endothelial function in the context of flow (shear)-mediated vasodilation and atherosclerosis.
Collapse
Affiliation(s)
- Ibra S Fancher
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| | - Irena Levitan
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Fischer RA, Roux AL, Wareham LK, Sappington RM. Pressure-dependent modulation of inward-rectifying K + channels: implications for cation homeostasis and K + dynamics in glaucoma. Am J Physiol Cell Physiol 2019; 317:C375-C389. [PMID: 31166711 DOI: 10.1152/ajpcell.00444.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glaucoma is the leading cause of blindness worldwide, resulting from degeneration of retinal ganglion cells (RGCs), which form the optic nerve. Prior to structural degeneration, RGCs exhibit physiological deficits. Müller glia provide homeostatic regulation of ions that supports RGC physiology through a process called K+ siphoning. Recent studies suggest that several retinal conditions, including glaucoma, involve changes in the expression of K+ channels in Müller glia. To clarify whether glaucoma-related stressors directly alter expression and function of K+ channels in Müller glia, we examined changes in the expression of inwardly rectifying K+ (Kir) channels and two-pore domain (K2P) channels in response to elevated intraocular pressure (IOP) in vivo and in vitro in primary cultures of Müller glia exposed to elevated hydrostatic pressure. We then measured outcomes of cell health, cation homeostasis, and cation flux in Müller glia cultures. Transcriptome analysis in a murine model of microbead-induced glaucoma revealed pressure-dependent downregulation of Kir and K2P channels in vivo. Changes in the expression and localization of Kir and K2P channels in response to elevated pressure were also found in Müller glia in vitro. Finally, we found that elevated pressure compromises the plasma membrane of Müller glia and induces cation dyshomeostasis that involves changes in ion flux through cation channels. Pressure-induced changes in cation flux precede both cation dyshomeostasis and membrane compromise. Our findings have implications for Müller glia responses to pressure-related conditions, i.e., glaucoma, and identify cation dyshomeostasis as a potential contributor to electrophysiological impairment observed in RGCs of glaucomatous retina.
Collapse
Affiliation(s)
- Rachel A Fischer
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Abigail L Roux
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rebecca M Sappington
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee.,Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
10
|
Sweeney MD, Zhao Z, Montagne A, Nelson AR, Zlokovic BV. Blood-Brain Barrier: From Physiology to Disease and Back. Physiol Rev 2019; 99:21-78. [PMID: 30280653 PMCID: PMC6335099 DOI: 10.1152/physrev.00050.2017] [Citation(s) in RCA: 1279] [Impact Index Per Article: 213.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) prevents neurotoxic plasma components, blood cells, and pathogens from entering the brain. At the same time, the BBB regulates transport of molecules into and out of the central nervous system (CNS), which maintains tightly controlled chemical composition of the neuronal milieu that is required for proper neuronal functioning. In this review, we first examine molecular and cellular mechanisms underlying the establishment of the BBB. Then, we focus on BBB transport physiology, endothelial and pericyte transporters, and perivascular and paravascular transport. Next, we discuss rare human monogenic neurological disorders with the primary genetic defect in BBB-associated cells demonstrating the link between BBB breakdown and neurodegeneration. Then, we review the effects of genes underlying inheritance and/or increased susceptibility for Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and amyotrophic lateral sclerosis (ALS) on BBB in relation to other pathologies and neurological deficits. We next examine how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders such as stroke, traumatic brain injury, spinal cord injury, and epilepsy. Lastly, we discuss BBB-based therapeutic opportunities. We conclude with lessons learned and future directions, with emphasis on technological advances to investigate the BBB functions in the living human brain, and at the molecular and cellular level, and address key unanswered questions.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Zhen Zhao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Amy R Nelson
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California ; and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
11
|
Kv1.3 activity perturbs the homeostatic properties of astrocytes in glioma. Sci Rep 2018; 8:7654. [PMID: 29769580 PMCID: PMC5955950 DOI: 10.1038/s41598-018-25940-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Glial cells actively maintain the homeostasis of brain parenchyma, regulating neuronal excitability and preserving the physiological composition of the extracellular milieu. Under pathological conditions, some functions of glial cells could be compromised, exacerbating the neurotoxic processes. We investigated if the homeostatic activities of astrocytes and microglia could be modulated by the voltage-gated K+ channel Kv1.3. To this end we used in vitro and in vivo systems to model cell-to-cell interactions in tumoral conditions, using a specific inhibitor of Kv1.3 channels, 5-(4-phenoxybutoxy) psoralen (PAP-1). We demonstrated that PAP-1 increases astrocytic glutamate uptake, reduces glioma-induced neurotoxicity, and decreases microglial migration and phagocytosis. We also found in a tumor blood brain barrier model that Kv1.3 activity is required for its integrity. The crucial role of Kv1.3 channels as modulators of glial cell activity was confirmed in a mouse model of glioma, where PAP-1 treatment reduces tumor volume only in the presence of active glutamate transporters GLT-1. In the same mouse model, PAP-1 reduces astrogliosis and microglial infiltration. PAP-1 also reduces tumor cell invasion. All these findings point to Kv1.3 channels as potential targets to re-instruct glial cells toward their homeostatic functions, in the context of brain tumors.
Collapse
|
12
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, Hakobyan T, Luli J, Graham K, Khayata M, Logan S, Kmetz J, Chilian WM. Kv1.3 channels facilitate the connection between metabolism and blood flow in the heart. Microcirculation 2017; 24:10.1111/micc.12334. [PMID: 28504408 PMCID: PMC5433265 DOI: 10.1111/micc.12334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/23/2016] [Accepted: 11/01/2016] [Indexed: 12/17/2022]
Abstract
The connection between metabolism and flow in the heart, metabolic dilation, is essential for cardiac function. We recently found redox-sensitive Kv1.5 channels play a role in coronary metabolic dilation; however, more than one ion channel likely plays a role in this process as animals null for these channels still showed limited coronary metabolic dilation. Accordingly, we examined the role of another Kv1 family channel, the energetically linked Kv1.3 channel, in coronary metabolic dilation. We measured myocardial blood flow (contrast echocardiography) during norepinephrine-induced increases in cardiac work (heart rate x mean arterial pressure) in WT, WT mice given correolide (preferential Kv1.3 antagonist), and Kv1.3-null mice (Kv1.3-/- ). We also measured relaxation of isolated small arteries mounted in a myograph. During increased cardiac work, myocardial blood flow was attenuated in Kv1.3-/- and in correolide-treated mice. In isolated vessels from Kv1.3-/- mice, relaxation to H2 O2 was impaired (vs WT), but responses to adenosine and acetylcholine were equivalent to WT. Correolide reduced dilation to adenosine and acetylcholine in WT and Kv1.3-/- , but had no effect on H2 O2 -dependent dilation in vessels from Kv1.3-/- mice. We conclude that Kv1.3 channels participate in the connection between myocardial blood flow and cardiac metabolism.
Collapse
Affiliation(s)
- Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | | - Christopher Kolz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Molly Enrick
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Tatevik Hakobyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jordan Luli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kathleen Graham
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | | | - Suzanna Logan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - John Kmetz
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
14
|
Ahn SJ, Fancher IS, Bian JT, Zhang CX, Schwab S, Gaffin R, Phillips SA, Levitan I. Inwardly rectifying K + channels are major contributors to flow-induced vasodilatation in resistance arteries. J Physiol 2016; 595:2339-2364. [PMID: 27859264 PMCID: PMC5374117 DOI: 10.1113/jp273255] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Endothelial inwardly rectifying K+ (Kir2.1) channels regulate flow-induced vasodilatation via nitric oxide (NO) in mouse mesenteric resistance arteries. Deficiency of Kir2.1 channels results in elevated blood pressure and increased vascular resistance. Flow-induced vasodilatation in human resistance arteries is also regulated by inwardly rectifying K+ channels. This study presents the first direct evidence that Kir channels play a critical role in physiological endothelial responses to flow. ABSTRACT Inwardly rectifying K+ (Kir) channels are known to be sensitive to flow, but their role in flow-induced endothelial responses is not known. The goal of this study is to establish the role of Kir channels in flow-induced vasodilatation and to provide first insights into the mechanisms responsible for Kir signalling in this process. First, we establish that primary endothelial cells isolated from murine mesenteric arteries express functional Kir2.1 channels sensitive to shear stress. Then, using the Kir2.1+/- heterozygous mouse model, we establish that downregulation of Kir2.1 results in significant decrease in shear-activated Kir currents and inhibition of endothelium-dependent flow-induced vasodilatation (FIV) assayed in pressurized mesenteric arteries pre-constricted with endothelin-1. Deficiency in Kir2.1 also results in the loss of flow-induced phosphorylation of eNOS and Akt, as well as inhibition of NO generation. All the effects are fully rescued by endothelial cell (EC)-specific overexpression of Kir2.1. A component of FIV that is Kir independent is abrogated by blocking Ca2+ -sensitive K+ channels. Kir2.1 has no effect on endothelium-independent and K+ -induced vasodilatation in denuded arteries. Kir2.1+/- mice also show increased mean blood pressure measured by carotid artery cannulation and increased microvascular resistance measured using a tail-cuff. Importantly, blocking Kir channels also inhibits flow-induced vasodilatation in human subcutaneous adipose microvessels. Endothelial Kir channels contribute to FIV of mouse mesenteric arteries via an NO-dependent mechanism, whereas Ca2+ -sensitive K+ channels mediate FIV via an NO-independent pathway. Kir2 channels also regulate vascular resistance and blood pressure. Finally, Kir channels also contribute to FIV in human subcutaneous microvessels.
Collapse
Affiliation(s)
- Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ibra S Fancher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA.,Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing-Tan Bian
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Chong Xu Zhang
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah Schwab
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Gaffin
- Department of Physiology, Physiology Core Lab, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A Phillips
- Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Hladky SB, Barrand MA. Fluid and ion transfer across the blood-brain and blood-cerebrospinal fluid barriers; a comparative account of mechanisms and roles. Fluids Barriers CNS 2016; 13:19. [PMID: 27799072 PMCID: PMC5508927 DOI: 10.1186/s12987-016-0040-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 12/24/2022] Open
Abstract
The two major interfaces separating brain and blood have different primary roles. The choroid plexuses secrete cerebrospinal fluid into the ventricles, accounting for most net fluid entry to the brain. Aquaporin, AQP1, allows water transfer across the apical surface of the choroid epithelium; another protein, perhaps GLUT1, is important on the basolateral surface. Fluid secretion is driven by apical Na+-pumps. K+ secretion occurs via net paracellular influx through relatively leaky tight junctions partially offset by transcellular efflux. The blood-brain barrier lining brain microvasculature, allows passage of O2, CO2, and glucose as required for brain cell metabolism. Because of high resistance tight junctions between microvascular endothelial cells transport of most polar solutes is greatly restricted. Because solute permeability is low, hydrostatic pressure differences cannot account for net fluid movement; however, water permeability is sufficient for fluid secretion with water following net solute transport. The endothelial cells have ion transporters that, if appropriately arranged, could support fluid secretion. Evidence favours a rate smaller than, but not much smaller than, that of the choroid plexuses. At the blood-brain barrier Na+ tracer influx into the brain substantially exceeds any possible net flux. The tracer flux may occur primarily by a paracellular route. The blood-brain barrier is the most important interface for maintaining interstitial fluid (ISF) K+ concentration within tight limits. This is most likely because Na+-pumps vary the rate at which K+ is transported out of ISF in response to small changes in K+ concentration. There is also evidence for functional regulation of K+ transporters with chronic changes in plasma concentration. The blood-brain barrier is also important in regulating HCO3- and pH in ISF: the principles of this regulation are reviewed. Whether the rate of blood-brain barrier HCO3- transport is slow or fast is discussed critically: a slow transport rate comparable to those of other ions is favoured. In metabolic acidosis and alkalosis variations in HCO3- concentration and pH are much smaller in ISF than in plasma whereas in respiratory acidosis variations in pHISF and pHplasma are similar. The key similarities and differences of the two interfaces are summarized.
Collapse
Affiliation(s)
- Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
16
|
Chen Z, Hu Y, Wang B, Cao Z, Li W, Wu Y. A single conserved basic residue in the potassium channel filter region controls KCNQ1 insensitivity toward scorpion toxins. Biochem Biophys Rep 2015; 3:62-67. [PMID: 29124168 PMCID: PMC5668678 DOI: 10.1016/j.bbrep.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 02/06/2023] Open
Abstract
Although many studies concerning the sensitivity mechanism of scorpion toxin-potassium channel interactions have been reported, few have explored the biochemical insensitivity mechanisms of potassium channel receptors toward natural scorpion toxin peptides, such as the KCNQ1 channel. Here, by sequence alignment analyses of the human KCNQ1 channel and scorpion potassium channel MmKv2, which is completely insensitive to scorpion toxins, we proposed that the insensitivity mechanism of KCNQ1 toward natural scorpion toxins might involve two functional regions, the turret and filter regions. Based on this observation, a series of KCNQ1 mutants were constructed to study molecular mechanisms of the KCNQ1 channel insensitivity toward natural scorpion toxins. Electrophysiological studies of chimera channels showed that the channel filter region controls KCNQ1 insensitivity toward the classical scorpion toxin ChTX. Interestingly, further residue mutant experiments showed that a single basic residue in the filter region determined the insensitivity of KCNQ1 channels toward scorpion toxins. Our present work showed that amino acid residue diversification at common sites controls the sensitivity and insensitivity of potassium channels toward scorpion toxins. The unique insensitivity mechanism of KCNQ1 toward natural scorpion toxins will accelerate the rational design of potent peptide inhibitors toward this channel. Insensitivity mechanism of KCNQ1 towards scorpion toxins was still unclear. A single basic residue in the KCNQ1 filter region controls its insensitivity. Amino acid residue diversification controls KCNQ1 sensitivity and insensitivity. Our work will accelerate rational design of KCNQ1 peptide inhibitors.
Collapse
Affiliation(s)
- Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Hubei University of Medicine, Hubei, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Youtian Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Bin Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei, China
| |
Collapse
|
17
|
Mokgokong R, Wang S, Taylor CJ, Barrand MA, Hladky SB. Ion transporters in brain endothelial cells that contribute to formation of brain interstitial fluid. Pflugers Arch 2014; 466:887-901. [PMID: 24022703 PMCID: PMC4006130 DOI: 10.1007/s00424-013-1342-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/24/2013] [Accepted: 08/24/2013] [Indexed: 02/07/2023]
Abstract
Ions and water transported across the endothelium lining the blood–brain barrier contribute to the fluid secreted into the brain and are important in maintaining appropriate volume and ionic composition of brain interstitial fluid. Changes in this secretion process may occur after stroke. The present study identifies at transcript and protein level ion transporters involved in the movement of key ions and examines how levels of certain of these alter following oxidative stress. Immunohistochemistry provides evidence for Cl−/HCO3− exchanger, AE2, and Na+, HCO3− cotransporters, NBCe1 and NBCn1, on brain microvessels. mRNA analysis by RT-PCR reveals expression of these transporters in cultured rat brain microvascular endothelial cells (both primary and immortalized GPNT cells) and also Na+/H+ exchangers, NHE1 (primary and immortalized) and NHE2 (primary cells only). Knock-down using siRNA in immortalized GPNT cells identifies AE2 as responsible for much of the Cl−/HCO3− exchange following extracellular chloride removal and NHE1 as the transporter that accounts for most of the Na+/H+ exchange following intracellular acidification. Transcript levels of both AE2 and NHE1 are increased following hypoxia/reoxygenation. Further work is now required to determine the localization of the bicarbonate transporters to luminal or abluminal membranes of the endothelial cells as well as to identify and localize additional transport mechanisms that must exist for K+ and Cl−.
Collapse
Affiliation(s)
- Ruth Mokgokong
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Shanshan Wang
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Caroline J. Taylor
- O’Brien Institute and Department of Surgery, University of Melbourne, St. Vincent’s Hospital, 42 Fitzroy Street, Fitzroy, Melbourne, VIC 3065 Australia
- Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC 3065 Australia
| | - Margery A. Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Stephen B. Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
18
|
Chen YJ, Wallace BK, Yuen N, Jenkins DP, Wulff H, O'Donnell ME. Blood-brain barrier KCa3.1 channels: evidence for a role in brain Na uptake and edema in ischemic stroke. Stroke 2014; 46:237-44. [PMID: 25477223 DOI: 10.1161/strokeaha.114.007445] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND PURPOSE KCa3.1, a calcium-activated potassium channel, regulates ion and fluid secretion in the lung and gastrointestinal tract. It is also expressed on vascular endothelium where it participates in blood pressure regulation. However, the expression and physiological role of KCa3.1 in blood-brain barrier (BBB) endothelium has not been investigated. BBB endothelial cells transport Na(+) and Cl(-) from the blood into the brain transcellularly through the co-operation of multiple cotransporters, exchangers, pumps, and channels. In the early stages of cerebral ischemia, when the BBB is intact, edema formation occurs by processes involving increased BBB transcellular Na(+) transport. This study evaluated whether KCa3.1 is expressed on and participates in BBB ion transport. METHODS The expression of KCa3.1 on cultured cerebral microvascular endothelial cells, isolated microvessels, and brain sections was evaluated by Western blot and immunohistochemistry. Activity of KCa3.1 on cerebral microvascular endothelial cells was examined by K(+) flux assays and patch-clamp. Magnetic resonance spectroscopy and MRI were used to measure brain Na(+) uptake and edema formation in rats with focal ischemic stroke after TRAM-34 treatment. RESULTS KCa3.1 current and channel protein were identified on bovine cerebral microvascular endothelial cells and freshly isolated rat microvessels. In situ KCa3.1 expression on BBB endothelium was confirmed in rat and human brain sections. TRAM-34 treatment significantly reduced Na(+) uptake, and cytotoxic edema in the ischemic brain. CONCLUSIONS BBB endothelial cells exhibit KCa3.1 protein and activity and pharmacological blockade of KCa3.1 seems to provide an effective therapeutic approach for reducing cerebral edema formation in the first 3 hours of ischemic stroke.
Collapse
Affiliation(s)
- Yi-Je Chen
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis.
| | - Breanna K Wallace
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Natalie Yuen
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - David P Jenkins
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Heike Wulff
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| | - Martha E O'Donnell
- From the Department of Pharmacology (Y.-J.C., D.P.J., H.W.) and Department of Physiology and Membrane Biology (B.K.W., N.Y., M.E.O.), University of California, Davis
| |
Collapse
|
19
|
Kochukov MY, Balasubramanian A, Abramowitz J, Birnbaumer L, Marrelli SP. Activation of endothelial transient receptor potential C3 channel is required for small conductance calcium-activated potassium channel activation and sustained endothelial hyperpolarization and vasodilation of cerebral artery. J Am Heart Assoc 2014; 3:jah3649. [PMID: 25142058 PMCID: PMC4310376 DOI: 10.1161/jaha.114.000913] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Transient receptor potential C3 (TRPC3) has been demonstrated to be involved in the regulation of vascular tone through endothelial cell (EC) hyperpolarization and endothelium‐dependent hyperpolarization–mediated vasodilation. However, the mechanism by which TRPC3 regulates these processes remains unresolved. We tested the hypothesis that endothelial receptor stimulation triggers rapid TRPC3 trafficking to the plasma membrane, where it provides the source of Ca2+ influx for small conductance calcium‐activated K+ (SKCa) channel activation and sustained EC hyperpolarization. Methods and Results Pressurized artery studies were performed with isolated mouse posterior cerebral artery. Treatment with a selective TRPC3 blocker (Pyr3) produced significant attenuation of endothelium‐dependent hyperpolarization–mediated vasodilation and endothelial Ca2+ response (EC‐specific Ca2+ biosensor) to intraluminal ATP. Pyr3 treatment also resulted in a reduced ATP‐stimulated global Ca2+ and Ca2+ influx in primary cultures of cerebral endothelial cells. Patch‐clamp studies with freshly isolated cerebral ECs demonstrated 2 components of EC hyperpolarization and K+ current activation in response to ATP. The early phase was dependent on intermediate conductance calcium‐activated K+ channel activation, whereas the later sustained phase relied on SKCa channel activation. The SKCa channel–dependent phase was completely blocked with TRPC3 channel inhibition or in ECs of TRPC3 knockout mice and correlated with increased trafficking of TRPC3 (but not SKCa channel) to the plasma membrane. Conclusions We propose that TRPC3 dynamically regulates SKCa channel activation through receptor‐dependent trafficking to the plasma membrane, where it provides the source of Ca2+ influx for sustained SKCa channel activation, EC hyperpolarization, and endothelium‐dependent hyperpolarization–mediated vasodilation.
Collapse
Affiliation(s)
- Mikhail Y Kochukov
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (M.Y.K., A.B., S.P.M.)
| | - Adithya Balasubramanian
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (M.Y.K., A.B., S.P.M.)
| | - Joel Abramowitz
- Division of Intramural Research, National Institute of Environmental Health Sciences Research, Triangle Park, NC (J.A., L.B.)
| | - Lutz Birnbaumer
- Division of Intramural Research, National Institute of Environmental Health Sciences Research, Triangle Park, NC (J.A., L.B.)
| | - Sean P Marrelli
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (M.Y.K., A.B., S.P.M.) Department of Physiology and Biophysics and Graduate Program in Physiology, Cardiovascular Sciences Track, Baylor College of Medicine, Houston, TX (S.P.M.)
| |
Collapse
|
20
|
TREK-King the Blood–Brain-Barrier. J Neuroimmune Pharmacol 2014; 9:293-301. [DOI: 10.1007/s11481-014-9530-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
21
|
The role of potassium channel in silica nanoparticle-induced inflammatory effect in human vascular endothelial cells in vitro. Toxicol Lett 2013; 223:16-24. [DOI: 10.1016/j.toxlet.2013.08.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 11/23/2022]
|
22
|
Kito H, Yamazaki D, Ohya S, Yamamura H, Asai K, Imaizumi Y. Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun 2011; 411:293-8. [DOI: 10.1016/j.bbrc.2011.06.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
|
23
|
Jang SS, Park J, Hur SW, Hong YH, Hur J, Chae JH, Kim SK, Kim J, Kim HS, Kim SJ. Endothelial progenitor cells functionally express inward rectifier potassium channels. Am J Physiol Cell Physiol 2011; 301:C150-61. [PMID: 21411724 DOI: 10.1152/ajpcell.00002.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since the first isolation of endothelial progenitor cells (EPCs) from human peripheral blood in 1997, many researchers have conducted studies to understand the characteristics and therapeutic effects of EPCs in vascular disease models. Nevertheless, the electrophysiological properties of EPCs have yet to be clearly elucidated. The inward rectifier potassium channel (Kir) performs a major role in controlling the membrane potential and cellular events. Here, via the whole cell patch-clamp technique, we found inwardly rectifying currents in EPCs and that these currents were inhibited by Ba(2+) (100 μM) and Cs(+) (1 mM), known as Kir blockers, in a dose-dependent manner (Ba(2+), 91.2 ± 1.4% at -140 mV and Cs(+), 76.1 ± 6.9% at -140 mV, respectively). Next, using DiBAC(3), a fluorescence indicator of membrane potential, we verified that Ba(2+) induced an increase of fluorescence in EPCs (10 μM, 123 ± 2.8%), implying the depolarization of EPCs. At the mRNA and protein levels, we confirmed the existence of several Kir subtypes, including Kir2.x, 3.x, 4.x, and 6.x. In a functional experiment, we observed that, in the presence of Ba(2+), the number of tubes on Matrigel formed by EPCs was dose-dependently reduced (10 μM, 62.3 ± 6.5%). In addition, the proliferation of EPCs was increased in a dose-dependent fashion (10 μM, 157.9 ± 17.4%), and specific inhibition of Kir2.1 by small interfering RNA also increased the proliferation of EPCs (116.2 ± 2.5%). Our results demonstrate that EPCs express several types of Kir which may modulate the endothelial function and proliferation of EPCs.
Collapse
Affiliation(s)
- Sung-Soo Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yamazaki D, Kito H, Yamamoto S, Ohya S, Yamamura H, Asai K, Imaizumi Y. Contribution of K(ir)2 potassium channels to ATP-induced cell death in brain capillary endothelial cells and reconstructed HEK293 cell model. Am J Physiol Cell Physiol 2010; 300:C75-86. [PMID: 20980552 DOI: 10.1152/ajpcell.00135.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular turnover of brain capillary endothelial cells (BCECs) by the balance of cell proliferation and death is essential for maintaining the homeostasis of the blood-brain barrier. Stimulation of metabotropic ATP receptors (P2Y) transiently increased intracellular Ca²(+) concentration ([Ca²(+)](i)) in t-BBEC 117, a cell line derived from bovine BCECs. The [Ca²(+)](i) rise induced membrane hyperpolarization via the activation of apamin-sensitive small-conductance Ca²(+)-activated K(+) channels (SK2) and enhanced cell proliferation in t-BBEC 117. Here, we found anomalous membrane hyperpolarization lasting for over 10 min in response to ATP in ∼15% of t-BBEC 117, in which inward rectifier K(+) channel (K(ir)2.1) was extensively expressed. Once anomalous hyperpolarization was triggered by ATP, it was removed by Ba²(+) but not by apamin. Prolonged exposure to ATPγS increased the relative population of t-BBEC 117, in which the expression of K(ir)2.1 mRNAs was significantly higher and Ba²(+)-sensitive anomalous hyperpolarization was observed. The cultivation of t-BBEC 117 in serum-free medium also increased this population and reduced the cell number. The reduction of cell number was enhanced by the addition of ATPγS and the enhancement was antagonized by Ba²(+). In the human embryonic kidney 293 cell model, where SK2 and K(ir)2.1 were heterologously coexpressed, [Ca²(+)](i) rise by P2Y stimulation triggered anomalous hyperpolarization and cell death. In conclusion, P2Y stimulation in BCECs enhances cell proliferation by SK2 activation in the majority of cells but also triggers cell death in a certain population showing a substantial expression of K(ir)2.1. This dual action of P2Y stimulation may effectively facilitate BCEC turnover.
Collapse
Affiliation(s)
- Daiju Yamazaki
- Department of Molecular and Cellular Pharmacology, Nagoya City University, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Vascular activity of a natural diterpene isolated from Croton zambesicus and of a structurally similar synthetic trachylobane. Vascul Pharmacol 2010; 52:63-9. [DOI: 10.1016/j.vph.2009.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/03/2009] [Accepted: 11/23/2009] [Indexed: 11/18/2022]
|
26
|
Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 2008; 88:1407-47. [PMID: 18923186 DOI: 10.1152/physrev.00002.2008] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific populations of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits coassemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed to determine the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels.
Collapse
Affiliation(s)
- Helene Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|