1
|
Jones ML, Dahl KN, Lele TP, Conway DE, Shenoy V, Ghosh S, Szczesny SE. The Elephant in the Cell: Nuclear Mechanics and Mechanobiology. J Biomech Eng 2022; 144:080802. [PMID: 35147160 PMCID: PMC8990742 DOI: 10.1115/1.4053797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/28/2022] [Indexed: 11/08/2022]
Abstract
The 2021 Summer Biomechanics, Bioengineering, and Biotransport Conference (SB3C) featured a workshop titled "The Elephant in the Room: Nuclear Mechanics and Mechanobiology." The goal of this workshop was to provide a perspective from experts in the field on the current understanding of nuclear mechanics and its role in mechanobiology. This paper reviews the major themes and questions discussed during the workshop, including historical context on the initial methods of measuring the mechanical properties of the nucleus and classifying the primary structures dictating nuclear mechanics, physical plasticity of the nucleus, the emerging role of the linker of nucleoskeleton and cytoskeleton (LINC) complex in coupling the nucleus to the cytoplasm and driving the behavior of individual cells and multicellular assemblies, and the computational models currently in use to investigate the mechanisms of gene expression and cell signaling. Ongoing questions and controversies, along with promising future directions, are also discussed.
Collapse
Affiliation(s)
| | - Kris Noel Dahl
- Department of Chemical Engineering, Carnegie Mellon University, Doherty Hall, 5000 Forbes Avenue, Pittsburgh, PA 15213; Forensics Department, Thornton Tomasetti, 120 Broadway 15th Floor, New York City, NY 10271
| | - Tanmay P. Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Chemical Engineering, Texas A&M University, 101 Bizzell Street, College Station, TX 77840; Department of Translational Medical Sciences, Texas A&M University, 101 Bizzell Street, College Station, TX 77840
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, P.O. Box 843068, Richmond, VA 23284
| | - Vivek Shenoy
- Materials Science and Engineering Bioengineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Mechanical Engineering and Applied Mechanics, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104; Center for Engineering Mechanobiology, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA 19104
| | - Soham Ghosh
- Department of Mechanical Engineering, School of Biomedical Engineering, Translational Medicine Institute, Colorado State University, 400 Isotope Drive, Fort Collins, CO 80521
| | - Spencer E. Szczesny
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802; Department of Orthopaedics and Rehabilitation, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
2
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
3
|
Panhwar MH, Czerwinski F, Dabbiru VAS, Komaragiri Y, Fregin B, Biedenweg D, Nestler P, Pires RH, Otto O. High-throughput cell and spheroid mechanics in virtual fluidic channels. Nat Commun 2020; 11:2190. [PMID: 32366850 PMCID: PMC7198589 DOI: 10.1038/s41467-020-15813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Microfluidics by soft lithography has proven to be of key importance for biophysics and life science research. While being based on replicating structures of a master mold using benchtop devices, design modifications are time consuming and require sophisticated cleanroom equipment. Here, we introduce virtual fluidic channels as a flexible and robust alternative to microfluidic devices made by soft lithography. Virtual channels are liquid-bound fluidic systems that can be created in glass cuvettes and tailored in three dimensions within seconds for rheological studies on a wide size range of biological samples. We demonstrate that the liquid-liquid interface imposes a hydrodynamic stress on confined samples, and the resulting strain can be used to calculate rheological parameters from simple linear models. In proof-of-principle experiments, we perform high-throughput rheology inside a flow cytometer cuvette and show the Young's modulus of isolated cells exceeds the one of the corresponding tissue by one order of magnitude.
Collapse
Affiliation(s)
- Muzaffar H Panhwar
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Fabian Czerwinski
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Venkata A S Dabbiru
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Yesaswini Komaragiri
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Bob Fregin
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Doreen Biedenweg
- Klinik für Innere Medizin B, Universitätsmedizin Greifswald, Fleischmannstr. 8, 17475, Greifswald, Germany
| | - Peter Nestler
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Ricardo H Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany.
- Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Standort Greifswald, Universitätsmedizin Greifswald, Fleischmannstr. 42, 17489, Greifswald, Germany.
| |
Collapse
|
4
|
Bashant KR, Toepfner N, Day CJ, Mehta NN, Kaplan MJ, Summers C, Guck J, Chilvers ER. The mechanics of myeloid cells. Biol Cell 2020; 112:103-112. [DOI: 10.1111/boc.201900084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Kathleen R Bashant
- Department of MedicineUniversity of Cambridge Cambridge UK
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | - Nicole Toepfner
- Center for Molecular and Cellular BioengineeringBiotechnology Center, Technische Universität Dresden Dresden Germany
- Department of PediatricsUniversity Clinic Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| | | | - Nehal N Mehta
- National Heart Lung and Blood InstituteNational Institutes of Health Bethesda MD USA
| | - Mariana J Kaplan
- Systemic Autoimmunity BranchNational Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of Health Bethesda Maryland USA
| | | | - Jochen Guck
- Max‐Planck‐Institut für die Physik des Lichts & Max‐Planck‐Zentrum für Physik und Medizin Erlangen Germany
| | | |
Collapse
|
5
|
Guck J. Some thoughts on the future of cell mechanics. Biophys Rev 2019; 11:667-670. [PMID: 31529360 PMCID: PMC6815292 DOI: 10.1007/s12551-019-00597-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 01/26/2023] Open
Affiliation(s)
- Jochen Guck
- Max-Planck-Institut für die Physik des Lichts & Max-Planck-Zentrum für Physik und Medizin, Staudtstr. 2, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
High-Throughput, Time-Resolved Mechanical Phenotyping of Prostate Cancer Cells. Sci Rep 2019; 9:5742. [PMID: 30952895 PMCID: PMC6450875 DOI: 10.1038/s41598-019-42008-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 03/08/2019] [Indexed: 11/09/2022] Open
Abstract
Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices.
Collapse
|
7
|
Abstract
A central question in mechanobiology is how cellular-scale structures are established and regulated. In bacteria, the cell envelope is essential for mechanical integrity, protecting against environmental stresses and bearing the load from high turgor pressures. Trivedi et al. (mBio 9:e01340-18, 2018, https://doi.org/10.1128/mBio.01340-18) screened a Pseudomonas aeruginosa transposon library and identified genes that influence cell stiffness by measuring cell growth while cells were embedded in an agarose gel. Their findings provide a broad knowledge base for how biochemical pathways regulate cellular mechanical properties in this pathogen. Dozens of genes across diverse functional categories were implicated, suggesting that cellular mechanics is a systems-level emergent property. Furthermore, changes in d-alanine levels in a dadA (d-alanine dehydrogenase) mutant resulted in decreases in the expression of cell wall enzymes, cross-linking density, and cell stiffness. These insights into the biochemical and mechanical roles of dadA highlight the importance of systems-level investigations into the physical properties of cells.
Collapse
|
8
|
Girardo S, Träber N, Wagner K, Cojoc G, Herold C, Goswami R, Schlüßler R, Abuhattum S, Taubenberger A, Reichel F, Mokbel D, Herbig M, Schürmann M, Müller P, Heida T, Jacobi A, Ulbricht E, Thiele J, Werner C, Guck J. Standardized microgel beads as elastic cell mechanical probes. J Mater Chem B 2018; 6:6245-6261. [PMID: 32254615 DOI: 10.1039/c8tb01421c] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell mechanical measurements are gaining increasing interest in biological and biomedical studies. However, there are no standardized calibration particles available that permit the cross-comparison of different measurement techniques operating at different stresses and time-scales. Here we present the rational design, production, and comprehensive characterization of poly-acrylamide (PAAm) microgel beads mimicking size and overall mechanics of biological cells. We produced mono-disperse beads at rates of 20-60 kHz by means of a microfluidic droplet generator, where the pre-gel composition was adjusted to tune the beads' elasticity in the range of cell and tissue relevant mechanical properties. We verified bead homogeneity by optical diffraction tomography and Brillouin microscopy. Consistent elastic behavior of microgel beads at different shear rates was confirmed by AFM-enabled nanoindentation and real-time deformability cytometry (RT-DC). The remaining inherent variability in elastic modulus was rationalized using polymer theory and effectively reduced by sorting based on forward-scattering using conventional flow cytometry. Our results show that PAAm microgel beads can be standardized as mechanical probes, to serve not only for validation and calibration of cell mechanical measurements, but also as cell-scale stress sensors.
Collapse
Affiliation(s)
- S Girardo
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Otto O, Rosendahl P, Golfier S, Mietke A, Herbig M, Jacobi A, Topfner N, Herold C, Klaue D, Girardo S, Winzi M, Fischer-Friedrich E, Guck J. Real-time deformability cytometry as a label-free indicator of cell function. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:1861-4. [PMID: 26736644 DOI: 10.1109/embc.2015.7318744] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanical properties of cells are known to be a label-free, inherent marker of biological function in health and disease. Wide-spread utilization has so far been impeded by the lack of a convenient measurement technique with sufficient throughput. To address this unmet need, we have recently introduced real-time deformability cytometry (RT-DC) for continuous mechanical single-cell classification of heterogeneous cell populations at rates of several hundred cells per second. Cells are driven through the constriction zone of a microfluidic chip leading to cell deformations due to hydrodynamic stresses only. Our custom-built image processing software performs image acquisition, image analysis and data storage on the fly. The ensuing deformations can be quantified and an analytical model enables the derivation of cell material properties. Performing RT-DC we highlight its potential to identify rare objects in heterogeneous suspensions and to track drug-induced changes in cells. In summary, RT-DC enables marker-free, quantitative phenotyping of heterogeneous cell populations with a throughput comparable to standard flow cytometry.
Collapse
|
10
|
Abstract
Bruising and other mechanical damage to fruit caused by external forces during and postharvesting is manifested at the macroscale but is ultimately the result of failure of cells at the microscale. However, fruits have internal structures and cells from different tissue types react differently to application of an external force. Not much is known about the effects of such forces on single cells within tissues and one reason for this is the lack of multiscale models linking macro- (organ or whole fruit), meso- (tissue), and micro- (cell) mechanics. This review concerns tomato fruits specifically as this is an important crop and is an excellent exemplar of past and proposed research in this field. The first consideration is the multiscale anatomy of tomato fruits that provides the basis for mechanical modeling. The literature on experimental methods for studying multiscale mechanics of fruit is then reviewed, as are recent results from using those methods. Finally, future research directions are discussed, in particular the combination of work over all scales. It is clear that a bottom-up approach incorporating single-cell mechanics in finite element models of whole fruit assumed to have internal structures is a promising way forward for tomato fruits but further method developments may be needed for these and other fruits and vegetables, in particular recovery of representative single cells from tissues for mechanical characterization.
Collapse
Affiliation(s)
- Zhiguo Li
- a School of Mechanics and Power Engineering, Henan Polytechnic University , Jiaozuo , China
| | - Colin Thomas
- b School of Chemical Engineering, University of Birmingham , Edgbaston, Birmingham , UK
| |
Collapse
|
11
|
Cancer Cell Mechanics. PHYSICAL SCIENCES AND ENGINEERING ADVANCES IN LIFE SCIENCES AND ONCOLOGY 2016. [DOI: 10.1007/978-3-319-17930-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Kilpatrick JI, Revenko I, Rodriguez BJ. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy. Adv Healthc Mater 2015. [PMID: 26200464 DOI: 10.1002/adhm.201500229] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications.
Collapse
Affiliation(s)
- Jason I. Kilpatrick
- Conway Institute of Biomolecular and Biomedical Research; University College Dublin; Belfield Dublin 4 Ireland
| | - Irène Revenko
- Asylum Research an Oxford Instruments Company; 6310 Hollister Avenue Santa Barbara CA 93117 USA
| | - Brian J. Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield, Dublin 4, Ireland; School of Physics; University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|
13
|
Lee LM, Liu AP. The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells. J Nanotechnol Eng Med 2014; 5:0408011-408016. [PMID: 26155329 DOI: 10.1115/1.4029936] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/24/2015] [Indexed: 11/08/2022]
Abstract
Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by micro/nanotechnology, several novel microfluidic devices have been developed recently with better accuracy, sensitivity, and throughput. Further technical advancements of microfluidics-based micropipette aspiration would have broad applications in both fundamental cell mechanics studies and for disease diagnostics.
Collapse
Affiliation(s)
- Lap Man Lee
- Department of Mechanical Engineering, University of Michigan , 2350 Hayward Street , Ann Arbor, MI 48109-2125 e-mail:
| | - Allen P Liu
- Department of Mechanical Engineering, Biomedical Engineering, Cell and Molecular Biology Program, Biophysics Program, University of Michigan , 2350 Hayward Street , Ann Arbor, MI 48109-2125 e-mail:
| |
Collapse
|
14
|
|
15
|
Lee HJ, Li N, Evans SM, Diaz MF, Wenzel PL. Biomechanical force in blood development: extrinsic physical cues drive pro-hematopoietic signaling. Differentiation 2013; 86:92-103. [PMID: 23850217 DOI: 10.1016/j.diff.2013.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
Abstract
The hematopoietic system is dynamic during development and in adulthood, undergoing countless spatial and temporal transitions during the course of one's life. Microenvironmental cues in the many unique hematopoietic niches differ, characterized by distinct soluble molecules, membrane-bound factors, and biophysical features that meet the changing needs of the blood system. Research from the last decade has revealed the importance of substrate elasticity and biomechanical force in determination of stem cell fate. Our understanding of the role of these factors in hematopoiesis is still relatively poor; however, the developmental origin of blood cells from the endothelium provides a model for comparison. Many endothelial mechanical sensors and second messenger systems may also determine hematopoietic stem cell fate, self renewal, and homing behaviors. Further, the intimate contact of hematopoietic cells with mechanosensitive cell types, including osteoblasts, endothelial cells, mesenchymal stem cells, and pericytes, places them in close proximity to paracrine signaling downstream of mechanical signals. The objective of this review is to present an overview of the sensors and intracellular signaling pathways activated by mechanical cues and highlight the role of mechanotransductive pathways in hematopoiesis.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Children's Regenerative Medicine Program, Department of Pediatric Surgery, University of Texas Medical School at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
16
|
Dufrêne YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. NANOSCALE 2013; 5:4094-4104. [PMID: 23535827 DOI: 10.1039/c3nr00340j] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
17
|
Mechanical cues in cellular signalling and communication. Cell Tissue Res 2012; 352:77-94. [PMID: 23224763 DOI: 10.1007/s00441-012-1531-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/14/2012] [Indexed: 12/19/2022]
Abstract
Multicellular organisms comprise an organized array of individual cells surrounded by a meshwork of biomolecules and fluids. Cells have evolved various ways to communicate with each other, so that they can exchange information and thus fulfil their specified and unique functions. At the same time, cells are also physical entities that are subjected to a variety of local and global mechanical cues arising in the microenvironment. Cells are equipped with several different mechanisms to sense the physical properties of the microenvironment and the mechanical forces arising within it. These mechanical cues can elicit a variety of responses that have been shown to play a crucial role in vivo. In this review, we discuss the current views and understanding of cell mechanics and demonstrate the emerging evidence of the interplay between physiological mechanical cues and cell-cell communication pathways.
Collapse
|
18
|
Nanoscale mechanical properties of lipid bilayers and their relevance in biomembrane organization and function. Micron 2012; 43:1212-23. [DOI: 10.1016/j.micron.2012.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 12/27/2022]
|
19
|
Wolff L, Kroy K. Minimal model for the inelastic mechanics of biopolymer networks and cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:040901. [PMID: 23214521 DOI: 10.1103/physreve.86.040901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 09/05/2012] [Indexed: 06/01/2023]
Abstract
We explore the mechanism behind the ambiguous nonlinear mechanical response of biopolymer networks and cells. Our theoretical analysis is based on the inelastic glassy wormlike chain model (iGWLC), which accounts for simultaneous softening and stiffening in terms of two antagonistic mechanisms: viscoelastic stress stiffening caused by polymer stretching, and inelastic fluidization caused by bond breaking. On this basis, we derive a set of simple schematic constitutive equations that faithfully reproduce the rich inelastic phenomenology of biopolymer networks and cells.
Collapse
Affiliation(s)
- Lars Wolff
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100920, 04009 Leipzig, Germany
| | | |
Collapse
|
20
|
Fernandes AN, Chen X, Scotchford CA, Walker J, Wells DM, Roberts CJ, Everitt NM. Mechanical properties of epidermal cells of whole living roots of Arabidopsis thaliana: an atomic force microscopy study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021916. [PMID: 22463253 DOI: 10.1103/physreve.85.021916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 08/10/2011] [Indexed: 05/06/2023]
Abstract
The knowledge of mechanical properties of root cell walls is vital to understand how these properties interact with relevant genetic and physiological processes to bring about growth. Expansion of cell walls is an essential component of growth, and the regulation of cell wall expansion is one of the ways in which the mechanics of growth is controlled, managed and directed. In this study, the inherent surface mechanical properties of living Arabidopsis thaliana whole-root epidermal cells were studied at the nanoscale using the technique of atomic force microscopy (AFM). A novel methodology was successfully developed to adapt AFM to live plant roots. Force-Indentation (F-I) experiments were conducted to investigate the mechanical properties along the length of the root. F-I curves for epidermal cells of roots were also generated by varying turgor pressure. The F-I curves displayed a variety of features due to the heterogeneity of the surface. Hysteresis is observed. Application of conventional models to living biological systems such as cell walls in nanometer regimes tends to increase error margins to a large extent. Hence information from the F-I curves were used in a preliminary semiquantitative analysis to infer material properties and calculate two parameters. The work done in the loading and unloading phases (hysteresis) of the force measurements were determined separately and were expressed in terms of "Index of Plasticity" (η), which characterized the elasticity properties of roots as a viscoelastic response. Scaling approaches were used to find the ratio of hardness to reduced modulus (H/E(*)).
Collapse
Affiliation(s)
- Anwesha N Fernandes
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, England LE12 5RD.
| | | | | | | | | | | | | |
Collapse
|
21
|
Stewart MP, Toyoda Y, Hyman AA, Müller DJ. Tracking mechanics and volume of globular cells with atomic force microscopy using a constant-height clamp. Nat Protoc 2012; 7:143-54. [DOI: 10.1038/nprot.2011.434] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Wen Q, Janmey PA. Polymer physics of the cytoskeleton. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2011; 15:177-182. [PMID: 22081758 PMCID: PMC3210450 DOI: 10.1016/j.cossms.2011.05.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cytoskeleton is generally visualized by light or electron microscopy as a meshwork of protein filaments that spans the space between the nuclear envelope and the plasma membrane. In most cell types, this meshwork is formed by a three dimensional composite network of actin filaments, microtubules (MT), and intermediate filaments (IF) together with the host of proteins that bind to the sides or ends of these linear polymers. Cytoskeletal binding proteins regulate filament length, crosslink filaments to each other, and apply forces to the filaments. One approach to modeling the mechanical properties of the cytoskeleton and of cell in general is to consider the elements of the cytoskeleton as polymers, using experimental methods and theoretical models developed for traditional polymers but modified for the much larger, stiffer, and fragile biopolymers comprising the cytoskeleton. The presence of motor proteins that move actin filaments and microtubules also creates a new class of active materials that are out of thermodynamic equilibrium, and unconstrained by limitations of the fluctuation-dissipation theorem. These active materials create rich opportunities for experimental design and theoretical developments. The degree to which the mechanics of live cells can usefully be modeled as highly complex polymer networks is by no means certain, and this article will discuss recent progress in quantitatively measuring cytoskeletal polymer systems and relating them to the properties of the cell.
Collapse
Affiliation(s)
- Qi Wen
- Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, Philadelphia, PA 19104
| | | |
Collapse
|
23
|
Müller DJ, Dufrêne YF. Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 2011; 21:461-9. [PMID: 21664134 DOI: 10.1016/j.tcb.2011.04.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/22/2011] [Accepted: 04/27/2011] [Indexed: 12/14/2022]
Abstract
Atomic force microscopy (AFM) techniques provide a versatile platform for imaging and manipulating living cells to single-molecule resolution, thereby enabling us to address pertinent questions in key areas of cell biology, including cell adhesion and signalling, embryonic and tissue development, cell division and shape, and microbial pathogenesis. In this review, we describe the principles of AFM, and survey recent breakthroughs made in AFM-based cell nanoscopy, showing how the technology has increased our molecular understanding of the organization, mechanics, interactions and processes of the cell surface. We also discuss the advantages and limitations of AFM techniques, and the challenges remaining to be addressed in future research.
Collapse
Affiliation(s)
- Daniel J Müller
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland.
| | | |
Collapse
|
24
|
Azeloglu EU, Costa KD. Atomic force microscopy in mechanobiology: measuring microelastic heterogeneity of living cells. Methods Mol Biol 2011; 736:303-29. [PMID: 21660735 DOI: 10.1007/978-1-61779-105-5_19] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent findings clearly demonstrate that cells feel mechanical forces, and respond by altering their -phenotype and modulating their mechanical environment. Atomic force microscope (AFM) indentation can be used to mechanically stimulate cells and quantitatively characterize their elastic properties, providing critical information for understanding their mechanobiological behavior. This review focuses on the experimental and computational aspects of AFM indentation in relation to cell biomechanics and pathophysiology. Key aspects of the indentation protocol (including preparation of substrates, selection of indentation parameters, methods for contact point detection, and further post-processing of data) are covered. Historical perspectives on AFM as a mechanical testing tool as well as studies of cell mechanics and physiology are also highlighted.
Collapse
Affiliation(s)
- Evren U Azeloglu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
25
|
Cell sheet integrity and nanomechanical breakdown during programmed cell death. Med Biol Eng Comput 2010; 48:1015-22. [DOI: 10.1007/s11517-010-0640-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 05/17/2010] [Indexed: 11/26/2022]
|
26
|
Affiliation(s)
- Shang-You Tee
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
27
|
Microfabricated Devices for Studying Cellular Biomechanics and Mechanobiology. CELLULAR AND BIOMOLECULAR MECHANICS AND MECHANOBIOLOGY 2010. [DOI: 10.1007/8415_2010_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Ziebarth NM, Rico F, Moy VT. Structural and Mechanical Mechanisms of Ocular Tissues Probed by AFM. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-3-642-03535-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Abstract
Physical factors drive evolution and play important roles in motility and attachment as well as in differentiation. As animal cells adhere to survive, they generate force and 'feel' various mechanical features of their surroundings, with mechanosensory mechanisms based in part on force-induced conformational changes. Single-molecule methods for in vitro nano-manipulation, together with new in situ proteomic approaches that exploit mass spectrometry, are helping to identify and characterize the molecules and mechanics of structural transitions within cells and matrices. Given the diversity of cell and molecular responses, networks of biomolecules with conformations and interactions sculpted by force seem more likely than singular mechanosensors. Elaboration of the proteins that unfold and change structure in the extracellular matrix and in cells is needed - particularly with regard to the force-driven kinetics - in order to understand the systems biology of signaling in development, differentiation, and disease.
Collapse
Affiliation(s)
- André E X Brown
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
30
|
Pelling AE, Veraitch FS, Chu CPK, Mason C, Horton MA. Mechanical dynamics of single cells during early apoptosis. ACTA ACUST UNITED AC 2009; 66:409-22. [PMID: 19492400 DOI: 10.1002/cm.20391] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamic mechanical properties of cells are becoming recognized as indicators and regulators of physiological processes such as differentiation, malignant phenotypes and mitosis. A key process in development and homeostasis is apoptosis and whilst the molecular control over this pathway is well studied, little is known about the mechanical consequences of cell death. Here, we study the caspase-dependent mechanical kinetics of single cells during early apoptosis initiated with the general protein-kinase inhibitor staurosporine. This results in internal remodelling of the cytoskeleton and nucleus which is reflected in dynamic changes in the mechanical properties of the cell. Utilizing simultaneous confocal and atomic force microscopy (AFM), we measured distinct mechanical dynamics in the instantaneous cellular Young's Modulus and longer timescale viscous deformation. This allowed us to visualize time-dependent nuclear and cytoskeletal control of force dissipation with fluorescent fusion proteins throughout the cell. This work reveals that the cell death program not only orchestrates biochemical dynamics but also controls the mechanical breakdown of the cell. Importantly, the consequences of mechanical disregulation during apoptosis may be a contributing factor to several human pathologies through the poorly timed release of dead cells and cell debris.
Collapse
Affiliation(s)
- Andrew E Pelling
- Centre for Nanomedicine, The London Centre for Nanotechnology, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Lorenz B, Mey I, Steltenkamp S, Fine T, Rommel C, Müller MM, Maiwald A, Wegener J, Steinem C, Janshoff A. Elasticity mapping of pore-suspending native cell membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:832-838. [PMID: 19242949 DOI: 10.1002/smll.200800930] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The mechanics of cellular membranes are governed by a non-equilibrium composite framework consisting of the semiflexible filamentous cytoskeleton and extracellular matrix proteins linked to the lipid bilayer. While elasticity information of plasma membranes has mainly been obtained from whole cell analysis, techniques that allow addressing local mechanical properties of cell membranes are desirable to learn how their lipid and protein composition is reflected in the elastic behavior on local length scales. Introduced here is an approach based on basolateral membranes of polar epithelial Madin-Darby canine kidney (MDCK) II cells, prepared on a highly ordered porous substrate that allows elastic mapping on a submicrometer-length scale. A strong correlation between the density of actin filaments and the measured membrane elasticity is found. Spatially resolved indentation experiments carried out with atomic force and fluorescence microscope permit relation of the supramolecular structure to the elasticity of cellular membranes. It is shown that the elastic response of the pore spanning cell membranes is governed by local bending modules rather than lateral tension.
Collapse
Affiliation(s)
- Bärbel Lorenz
- Institute of Physical Chemistry, University of Göttingen Tammannstr. 6, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cyclic Hydraulic Pressure and Fluid Flow Differentially Modulate Cytoskeleton Re-Organization in MC3T3 Osteoblasts. Cell Mol Bioeng 2008; 2:133-143. [PMID: 20161062 DOI: 10.1007/s12195-008-0038-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mechanical loads are essential towards maintaining bone mass and skeletal integrity. Such loads generate various stimuli at the cellular level, including cyclic hydraulic pressure (CHP) and fluid shear stress (FSS). To gain insight into the anabolic responses of osteoblasts to CHP and FSS, we subjected MC3T3-E1 preosteoblasts to either FSS (12 dynes/cm(2)) or CHP varying from 0 to 68 kPa at 0.5 Hz. As with FSS, CHP produced a significant increase in ATP release over static controls within 5 min of onset. Cell stiffness examined by atomic force microscopy increased after 15 min of either CHP or FSS stimulation, which was attenuated when extracellular ATP was hydrolyzed with apyrase. As previously shown FSS induced polymerization of actins into stress fibers. However, the microtubule network was completely disrupted under FSS. In contrast, CHP appeared to maintain strong microtubule and f-actin networks. The purinergic signaling was found to be involved in the remodeling of f-actin, but not microtubule. Both CHP and FSS applied for 1 hour increased expression of COX-2. These data indicate that, while CHP and FSS produce similar anabolic responses, these stimuli have very different effects on the cytoskeleton remodeling and could contribute to loss of mechanosensitivity with extended loading.
Collapse
|