1
|
Kanaoka Y, Mori T, Nagaike W, Itaya S, Nonaka Y, Kohga H, Haruyama T, Sugano Y, Miyazaki R, Ichikawa M, Uchihashi T, Tsukazaki T. AFM observation of protein translocation mediated by one unit of SecYEG-SecA complex. Nat Commun 2025; 16:225. [PMID: 39779699 PMCID: PMC11711467 DOI: 10.1038/s41467-024-54875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Protein translocation across cellular membranes is an essential and nano-scale dynamic process. In the bacterial cytoplasmic membrane, the core proteins in this process are a membrane protein complex, SecYEG, corresponding to the eukaryotic Sec61 complex, and a cytoplasmic protein, SecA ATPase. Despite more than three decades of extensive research on Sec proteins, from genetic experiments to cutting-edge single-molecule analyses, no study has visually demonstrated protein translocation. Here, we visualize the translocation, via one unit of a SecYEG-SecA-embedded nanodisc, of an unfolded substrate protein by high-speed atomic force microscopy (HS-AFM). Additionally, the uniform unidirectional distribution of nanodiscs on a mica substrate enables the HS-AFM image data analysis, revealing dynamic structural changes in the polypeptide-crosslinking domain of SecA between wide-open and closed states depending on nucleotides. The nanodisc-AFM approach will allow us to execute detailed analyses of Sec proteins as well as visualize nano-scale events of other membrane proteins.
Collapse
Grants
- JPMJKP23H2 MEXT | Japan Science and Technology Agency (JST)
- JPMJPR20E1 MEXT | Japan Science and Technology Agency (JST)
- hp230209, hp240215, hp240277 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMXP1323015482 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 24ZR1403800 Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality)
- Naito Foundation
- Takeda Science Foundation
- JSPS/MEXT KAKENHI (Grant Nos. JP22H02567, JP22H02586, JP21H05155, JP21H05153, JP21K19226, JP21KK0125 to T.T.) The Chemo-Sero-Therapeutic Research Institute, the Institute for Fermentation (Osaka), and Yamada Science Foundation
- JSPS/MEXT KAKENHI (Grant Nos. JP21H05157, JP24K03035) MEXT as “Program for Promoting Researches on the Supercomputer Fugaku”(JPMXP1020230119)
- JSPS/MEXT KAKENHI (Grant No. JP23K14146 to H.K)
- JSPS/MEXT KAKENHI (Grant Nos. JP22K15061, JP22H05567 to R.M)
- JSPS/MEXT KAKENHI (Grant Nos. JP22K15075, JP20K15733)
- JSPS/MEXT KAKENHI (Grant Nos. JP21H000393, JP24K01309 to T.U.)
Collapse
Affiliation(s)
- Yui Kanaoka
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takaharu Mori
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan.
| | - Wataru Nagaike
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Seira Itaya
- Nara Institute of Science and Technology, Nara, Japan
| | - Yuto Nonaka
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | | | | | | | | | - Muneyoshi Ichikawa
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Takayuki Uchihashi
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan.
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Science, Okazaki, Aichi, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi, Japan.
| | | |
Collapse
|
2
|
Yagi-Utsumi M, Kanaoka Y, Miyajima S, Itoh SG, Yanagisawa K, Okumura H, Uchihashi T, Kato K. Single-Molecule Kinetic Observation of Antibody Interactions with Growing Amyloid β Fibrils. J Am Chem Soc 2024; 146:31518-31528. [PMID: 39445702 PMCID: PMC11583206 DOI: 10.1021/jacs.4c08841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Understanding the dynamic assembly process of amyloid β (Aβ) during fibril formation is essential for developing effective therapeutic strategies against Alzheimer's disease. Here, we employed high-speed atomic force microscopy to observe the growth of Aβ fibrils at the single-molecule level, focusing specifically on their interaction with anti-Aβ antibodies. Our findings show that fibril growth consists of intermittent periods of elongation and pausing, which are dictated by the alternating addition of Aβ monomers to protofilaments. We highlight the distinctive interaction of antibody 4396C, which specifically binds to the fibril ends in the paused state, suggesting a unique mechanism to hinder fibril elongation. Through real-time visualization of fibril growth and antibody interactions combined with molecular simulation, this study provides a refined understanding of Aβ assembly during fibril formation and suggests novel strategies for Alzheimer's therapy aimed at inhibiting the fibril elongation.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shogo Miyajima
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Satoru G Itoh
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Katsuhiko Yanagisawa
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8550, Japan
- Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Hisashi Okumura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Aichi 464-0814, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi 465-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
3
|
Ngo KX, Vu HT, Umeda K, Trinh MN, Kodera N, Uyeda T. Deciphering the actin structure-dependent preferential cooperative binding of cofilin. eLife 2024; 13:RP95257. [PMID: 39093938 PMCID: PMC11296705 DOI: 10.7554/elife.95257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0-6.3 nm) than the MAD within typical helices (4.3-5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.
Collapse
Affiliation(s)
- Kien Xuan Ngo
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Huong T Vu
- Centre for Mechanochemical Cell Biology, Warwick Medical SchoolCoventryUnited Kingdom
| | - Kenichi Umeda
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Minh-Nhat Trinh
- School of Electrical and Electronic Engineering, Hanoi University of Science and TechnologyHanoiViet Nam
| | - Noriyuki Kodera
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa UniversityKanazawaJapan
| | - Taro Uyeda
- Department of Physics, Faculty of Advanced Science and Engineering, Waseda University, ShinjukuTokyoJapan
| |
Collapse
|
4
|
Akter L, Flechsig H, Marchesi A, Franz CM. Observing Dynamic Conformational Changes within the Coiled-Coil Domain of Different Laminin Isoforms Using High-Speed Atomic Force Microscopy. Int J Mol Sci 2024; 25:1951. [PMID: 38396630 PMCID: PMC10888245 DOI: 10.3390/ijms25041951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Laminins are trimeric glycoproteins with important roles in cell-matrix adhesion and tissue organization. The laminin α, ß, and γ-chains have short N-terminal arms, while their C-termini are connected via a triple coiled-coil domain, giving the laminin molecule a well-characterized cross-shaped morphology as a result. The C-terminus of laminin alpha chains contains additional globular laminin G-like (LG) domains with important roles in mediating cell adhesion. Dynamic conformational changes of different laminin domains have been implicated in regulating laminin function, but so far have not been analyzed at the single-molecule level. High-speed atomic force microscopy (HS-AFM) is a unique tool for visualizing such dynamic conformational changes under physiological conditions at sub-second temporal resolution. After optimizing surface immobilization and imaging conditions, we characterized the ultrastructure of laminin-111 and laminin-332 using HS-AFM timelapse imaging. While laminin-111 features a stable S-shaped coiled-coil domain displaying little conformational rearrangement, laminin-332 coiled-coil domains undergo rapid switching between straight and bent conformations around a defined central molecular hinge. Complementing the experimental AFM data with AlphaFold-based coiled-coil structure prediction enabled us to pinpoint the position of the hinge region, as well as to identify potential molecular rearrangement processes permitting hinge flexibility. Coarse-grained molecular dynamics simulations provide further support for a spatially defined kinking mechanism in the laminin-332 coiled-coil domain. Finally, we observed the dynamic rearrangement of the C-terminal LG domains of laminin-111 and laminin-332, switching them between compact and open conformations. Thus, HS-AFM can directly visualize molecular rearrangement processes within different laminin isoforms and provide dynamic structural insight not available from other microscopy techniques.
Collapse
Affiliation(s)
- Lucky Akter
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
| | - Holger Flechsig
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
| | - Arin Marchesi
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Via Tronto, 10/A Torrette di Ancona, 60126 Ancona, Italy
| | - Clemens M. Franz
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1167, Japan; (L.A.); (H.F.); (A.M.)
| |
Collapse
|
5
|
Feng Y, Roos WH. Atomic Force Microscopy: An Introduction. Methods Mol Biol 2024; 2694:295-316. [PMID: 37824010 DOI: 10.1007/978-1-0716-3377-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Imaging of nano-sized particles and sample features is crucial in a variety of research fields, for instance, in biological sciences, where it is paramount to investigate structures at the single particle level. Often, two-dimensional images are not sufficient, and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. New developments in AFM are discussed, and by including approaches such as bimodal AFM and high-speed AFM (HS-AFM), we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
- Yuzhen Feng
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike instituut, Rijksuniversiteit Groningen, Groningen, the Netherlands.
| |
Collapse
|
6
|
Pan Y, Zhan J, Jiang Y, Xia D, Scheuring S. A concerted ATPase cycle of the protein transporter AAA-ATPase Bcs1. Nat Commun 2023; 14:6369. [PMID: 37821516 PMCID: PMC10567702 DOI: 10.1038/s41467-023-41806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Bcs1, a homo-heptameric transmembrane AAA-ATPase, facilitates folded Rieske iron-sulfur protein translocation across the inner mitochondrial membrane. Structures in different nucleotide states (ATPγS, ADP, apo) provided conformational snapshots, but the kinetics and structural transitions of the ATPase cycle remain elusive. Here, using high-speed atomic force microscopy (HS-AFM) and line scanning (HS-AFM-LS), we characterized single-molecule Bcs1 ATPase cycling. While the ATP conformation had ~5600 ms lifetime, independent of the ATP-concentration, the ADP/apo conformation lifetime was ATP-concentration dependent and reached ~320 ms at saturating ATP-concentration, giving a maximum turnover rate of 0.17 s-1. Importantly, Bcs1 ATPase cycle conformational changes occurred in concert. Furthermore, we propose that the transport mechanism involves opening the IMS gate through energetically costly straightening of the transmembrane helices, potentially driving rapid gate resealing. Overall, our results establish a concerted ATPase cycle mechanism in Bcs1, distinct from other AAA-ATPases that use a hand-over-hand mechanism.
Collapse
Affiliation(s)
- Yangang Pan
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Jingyu Zhan
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yining Jiang
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Program, Weill Cornell Graduate School of Biomedical Sciences, New York, USA
| | - Di Xia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology & Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
7
|
Yagi-Utsumi M, Miura H, Ganser C, Watanabe H, Hiranyakorn M, Satoh T, Uchihashi T, Kato K, Okazaki KI, Aoki K. Molecular Design of FRET Probes Based on Domain Rearrangement of Protein Disulfide Isomerase for Monitoring Intracellular Redox Status. Int J Mol Sci 2023; 24:12865. [PMID: 37629048 PMCID: PMC10454184 DOI: 10.3390/ijms241612865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Multidomain proteins can exhibit sophisticated functions based on cooperative interactions and allosteric regulation through spatial rearrangements of the multiple domains. This study explored the potential of using multidomain proteins as a basis for Förster resonance energy transfer (FRET) biosensors, focusing on protein disulfide isomerase (PDI) as a representative example. PDI, a well-studied multidomain protein, undergoes redox-dependent conformational changes, enabling the exposure of a hydrophobic surface extending across the b' and a' domains that serves as the primary binding site for substrates. Taking advantage of the dynamic domain rearrangements of PDI, we developed FRET-based biosensors by fusing the b' and a' domains of thermophilic fungal PDI with fluorescent proteins as the FRET acceptor and donor, respectively. Both experimental and computational approaches were used to characterize FRET efficiency in different redox states. In vitro and in vivo evaluations demonstrated higher FRET efficiency of this biosensor in the oxidized form, reflecting the domain rearrangement and its responsiveness to intracellular redox environments. This novel approach of exploiting redox-dependent domain dynamics in multidomain proteins offers promising opportunities for designing innovative FRET-based biosensors with potential applications in studying cellular redox regulation and beyond.
Collapse
Affiliation(s)
- Maho Yagi-Utsumi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Haruko Miura
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Hiroki Watanabe
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Methanee Hiranyakorn
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 465-8603, Japan
| | - Kei-ichi Okazaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
| | - Kazuhiro Aoki
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
8
|
Dumitru AC, Koehler M. Recent advances in the application of atomic force microscopy to structural biology. J Struct Biol 2023; 215:107963. [PMID: 37044358 DOI: 10.1016/j.jsb.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The application of atomic force microscopy (AFM) for (functional) imaging and manipulating biomolecules at all levels of organization has enabled great progress in the structural biology field over the last decades, contributing to the discovery of novel structural entities of biological significance across many disciplines ranging from biochemistry, biomedicine and biophysics to molecular and cell biology, up to food systems and beyond. AFM has the capability to generate high-resolution topographic images spanning from the submolecular to the (sub)cellular range and can probe biochemical and biophysical sample properties in close to native conditions with excellent temporal resolution. Instrumental developments in the past decade enable dynamical structural and conformational studies of single biomolecules and new techniques for structural and chemical modification of the AFM probe have converted the cantilever into a versatile tool to study different biological phenomena, such as the mechanical stability of biomolecular complexes or the force induced dynamic changes of mechanically stressed proteins at the nanoscopic level. To improve the functionality of AFM and approach dynamic processes of complex biological systems ex vivo, AFM is combined with complementary microscopy, nanoscopy and spectroscopy tools. These multimethodological approaches provide unprecedented possibilities of probing physical, chemical and biological properties of complex cellular systems with high spatio-temporal resolution, leading to novel applications that correlate structural results with functional biochemical, biophysical, immunological, or genetic data on the system under study.
Collapse
Affiliation(s)
- Andra C Dumitru
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.
| | - Melanie Koehler
- Leibniz Institute for Food Systems Biology at the Technical University Munich, Freising, Germany.
| |
Collapse
|
9
|
Housmans JAJ, Wu G, Schymkowitz J, Rousseau F. A guide to studying protein aggregation. FEBS J 2023; 290:554-583. [PMID: 34862849 DOI: 10.1111/febs.16312] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/18/2021] [Accepted: 12/03/2021] [Indexed: 02/04/2023]
Abstract
Disrupted protein folding or decreased protein stability can lead to the accumulation of (partially) un- or misfolded proteins, which ultimately cause the formation of protein aggregates. Much of the interest in protein aggregation is associated with its involvement in a wide range of human diseases and the challenges it poses for large-scale biopharmaceutical manufacturing and formulation of therapeutic proteins and peptides. On the other hand, protein aggregates can also be functional, as observed in nature, which triggered its use in the development of biomaterials or therapeutics as well as for the improvement of food characteristics. Thus, unmasking the various steps involved in protein aggregation is critical to obtain a better understanding of the underlying mechanism of amyloid formation. This knowledge will allow a more tailored development of diagnostic methods and treatments for amyloid-associated diseases, as well as applications in the fields of new (bio)materials, food technology and therapeutics. However, the complex and dynamic nature of the aggregation process makes the study of protein aggregation challenging. To provide guidance on how to analyse protein aggregation, in this review we summarize the most commonly investigated aspects of protein aggregation with some popular corresponding methods.
Collapse
Affiliation(s)
- Joëlle A J Housmans
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Guiqin Wu
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Waite JR, Tan SY, Saha H, Sarkar S, Sarkar A. Few-shot deep learning for AFM force curve characterization of single-molecule interactions. PATTERNS (NEW YORK, N.Y.) 2023; 4:100672. [PMID: 36699737 PMCID: PMC9868661 DOI: 10.1016/j.patter.2022.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023]
Abstract
Deep learning (DL)-based analytics has the scope to transform the field of atomic force microscopy (AFM) with regard to fast and bias-free measurement characterization. For example, AFM force-distance curves can help estimate important parameters of binding kinetics, such as the most probable rupture force, binding probability, association, and dissociation constants, as well as receptor density on live cells. Other than the ideal single-rupture event in the force-distance curves, there can be no-rupture, double-rupture, or multiple-rupture events. The current practice is to go through such datasets manually, which can be extremely tedious work for the experimentalists. We address this issue by adopting a few-shot learning approach to build sample-efficient DL models that demonstrate better performance than shallow ML models while matching the performance of moderately trained humans. We also release our AFM force curve dataset and annotations publicly as a benchmark for the research community.
Collapse
Affiliation(s)
- Joshua R. Waite
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Sin Yong Tan
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Homagni Saha
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Soumik Sarkar
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Anwesha Sarkar
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA,Corresponding author
| |
Collapse
|
11
|
Chen J, Zou Q. Data-driven dynamics-based optimal filtering of acoustic noise at arbitrary location in atomic force microscope imaging. Ultramicroscopy 2022; 242:113614. [PMID: 36155329 DOI: 10.1016/j.ultramic.2022.113614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This paper presents a post-filtering approach to eliminate distortions in atomic force microscope (AFM) images caused by acoustic noise from an unknown location. AFM operations are sensitive to external disturbances including acoustic noise, as disturbances to the probe-sample interaction directly results in distortions in the sample images obtained. Although conventional passive noise cancellation has been employed, limitation exists and residual noise still persists. Advanced online control techniques face difficulty in capturing the complex noise dynamic and limited system bandwidth imposed by robustness requirement. In this work, we propose a dynamics-based optimal filtering technique to remove the acoustic-caused distortions in AFM images. A dictionary-approach is integrated with time-delay measurement to localize the noise source and estimate the corresponding acoustic dynamics. Then a noise-to-image coherence minimization approach is proposed to minimize the acoustic-caused image distortion via a gradient-based optimization to seek an optimal modulator to the acoustic dynamics. Finally, the filter is obtained as the finite-impulse response of the optimized acoustic dynamics. Experimental implementation is presented and discussed to illustrate the proposed technique.
Collapse
Affiliation(s)
- Jiarong Chen
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
12
|
Review on the applications of atomic force microscopy imaging in proteins. Micron 2022; 159:103293. [DOI: 10.1016/j.micron.2022.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
13
|
Diffracted X-ray Tracking Method for Measuring Intramolecular Dynamics of Membrane Proteins. Int J Mol Sci 2022; 23:ijms23042343. [PMID: 35216461 PMCID: PMC8880040 DOI: 10.3390/ijms23042343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins change their conformations in response to chemical and physical stimuli and transmit extracellular signals inside cells. Several approaches have been developed for solving the structures of proteins. However, few techniques can monitor real-time protein dynamics. The diffracted X-ray tracking method (DXT) is an X-ray-based single-molecule technique that monitors the internal motion of biomolecules in an aqueous solution. DXT analyzes trajectories of Laue spots generated from the attached gold nanocrystals with a two-dimensional axis by tilting (θ) and twisting (χ). Furthermore, high-intensity X-rays from synchrotron radiation facilities enable measurements with microsecond-timescale and picometer-spatial-scale intramolecular information. The technique has been applied to various membrane proteins due to its superior spatiotemporal resolution. In this review, we introduce basic principles of DXT, reviewing its recent and extended applications to membrane proteins and living cells, respectively.
Collapse
|
14
|
Willaert RG, Kasas S. High-Speed Atomic Force Microscopy Visualization of Protein-DNA Interactions Using DNA Origami Frames. Methods Mol Biol 2022; 2516:157-167. [PMID: 35922627 DOI: 10.1007/978-1-0716-2413-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct, live imaging of protein-DNA interactions under physiological conditions is invaluable for understanding the mechanism and kinetics of binding and understanding the topological changes of the DNA strand. The DNA origami technology allows for precise placement of target molecules in a designed nanostructure. Here, we describe a protocol for the self-assembly of DNA origami frames with 2 stretched DNA sequences containing the binding site of a transcription factor, i.e., the Protein FadR, which is a TetR-family tanscription factor regulator for fatty acid metabolism in the archaeal organism Sulfolobus acidocaldarius. These frames can be used to study the dynamics of transcription factor binding using high-speed AFM and obtain mechanistic insights into the mechanism of action of transcription factors.
Collapse
Affiliation(s)
- Ronnie G Willaert
- Research Group Structural Biology Brussels, Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), Brussels, Belgium.
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Brussels, Belgium.
| | - Sandor Kasas
- International Joint Research Group VUB-EPFL BioNanotechnology & NanoMedicine, Brussels, Belgium
- Laboratory of Biological Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Centre Universitaire Romand de Médecine Légale, UFAM, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Pulling the springs of a cell by single-molecule force spectroscopy. Emerg Top Life Sci 2021; 5:77-87. [PMID: 33284963 DOI: 10.1042/etls20200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The fundamental unit of the human body comprises of the cells which remain embedded in a fibrillar network of extracellular matrix proteins which in turn provides necessary anchorage the cells. Tissue repair, regeneration and reprogramming predominantly involve a traction force mediated signalling originating in the ECM and travelling deep into the cell including the nucleus via circuitry of spring-like filamentous proteins like microfilaments or actin, intermediate filaments and microtubules to elicit a response in the form of mechanical movement as well as biochemical changes. The 'springiness' of these proteins is highlighted in their extension-contraction behaviour which is manifested as an effect of differential traction force. Atomic force microscope (AFM) provides the magic eye to visualize and quantify such force-extension/indentation events in these filamentous proteins as well as in whole cells. In this review, we have presented a summary of the current understanding and advancement of such measurements by AFM based single-molecule force spectroscopy in the context of cytoskeletal and nucleoskeletal proteins which act in tandem to facilitate mechanotransduction.
Collapse
|
16
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
17
|
Heath GR, Lin YC, Matin TR, Scheuring S. Structural dynamics of channels and transporters by high-speed atomic force microscopy. Methods Enzymol 2021; 652:127-159. [PMID: 34059280 DOI: 10.1016/bs.mie.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Channels and transporters are vital for transmembrane transport of ions and solutes, and also of larger compounds such as lipids and macromolecules. Therefore, they are crucial in many biological processes such as sensing, signal transduction, and the regulation of the distribution of molecules. Dysfunctions of these membrane proteins are associated to numerous diseases, and their interaction with drugs is critical in medicine. Understanding the behavior of channels and transporters requires structural and dynamic information to decipher the molecular mechanisms underlying their function. High-Speed Atomic Force Microscopy (HS-AFM) now allows the study of single transmembrane channels and transporters in action under physiological conditions, i.e., at ambient temperature and pressure, in physiological buffer and in a membrane, and in a most direct, label-free manner. In this chapter, we discuss the HS-AFM sample preparation, application, and data analysis protocols to study the structural and conformational dynamics of membrane-embedded channels and transporters.
Collapse
Affiliation(s)
- George R Heath
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Yi-Chih Lin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Tina R Matin
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, United States; Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, United States.
| |
Collapse
|
18
|
Yamashita S, O Kamatari Y, Honda R, Niwa A, Tomiata H, Hara A, Kuwata K. Monomeric a-synuclein (aS) inhibits amyloidogenesis of human prion protein (hPrP) by forming a stable aS-hPrP hetero-dimer. Prion 2021; 15:37-43. [PMID: 33849375 PMCID: PMC8049198 DOI: 10.1080/19336896.2021.1910176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular interaction between hPrP and αS was investigated using high-speed atomic force microscopy, dynamic light scattering, and nuclear magnetic resonance. We found that hPrP spontaneously gathered and naturally formed oligomers. Upon addition of monomer αS with a disordered conformation, poly-dispersive property of hPrP was lost, and hetero-dimer formation started quite coherently, and further oligomerization was not observed. Solution structure of hPrP-αS dimer was firstly characterized using hetero-nuclear NMR spectroscopy. In this hetero-dimeric complex, C-terminal helical region of hPrP was in the molten-globule like state, while specific sites including hot spot and C-terminal region of αS selectively interacted with hPrP. Thus αS may suppress amyloidogenesis of hPrP by trapping the hPrP intermediate by the formation of a stable hetero-dimer with hPrP. Abbreviations: hPrP, human prion protein of amino acid residues of 23-231; PrPC, cellular form of prion protein; PrPSc, scrapie form of prion protein, HS-AFM; high speed atomic force microscopy; αS, α-synuclein; DLS, dynamic light scattering
Collapse
Affiliation(s)
- Satoshi Yamashita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Hiroyuki Tomiata
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Department of Gene and Development, Gifu University School of Medicine, Tokai National Higher Education and Research System, Gifu, Japan
| |
Collapse
|
19
|
Fujita J, Sugiyama S, Terakado H, Miyazaki M, Ozawa M, Ueda N, Kuroda N, Tanaka SI, Yoshizawa T, Uchihashi T, Matsumura H. Dynamic Assembly/Disassembly of Staphylococcus aureus FtsZ Visualized by High-Speed Atomic Force Microscopy. Int J Mol Sci 2021; 22:ijms22041697. [PMID: 33567659 PMCID: PMC7914567 DOI: 10.3390/ijms22041697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
FtsZ is a key protein in bacterial cell division and is assembled into filamentous architectures. FtsZ filaments are thought to regulate bacterial cell division and have been investigated using many types of imaging techniques such as atomic force microscopy (AFM), but the time scale of the method was too long to trace the filament formation process. Development of high-speed AFM enables us to achieve sub-second time resolution and visualize the formation and dissociation process of FtsZ filaments. The analysis of the growth and dissociation rates of the C-terminal truncated FtsZ (FtsZt) filaments indicate the net growth and dissociation of FtsZt filaments in the growth and dissociation conditions, respectively. We also analyzed the curvatures of the full-length FtsZ (FtsZf) and FtsZt filaments, and the comparative analysis indicated the straight-shape preference of the FtsZt filaments than those of FtsZf. These findings provide insights into the fundamental dynamic behavior of FtsZ protofilaments and bacterial cell division.
Collapse
Affiliation(s)
- Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Shogo Sugiyama
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan;
| | - Haruna Terakado
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
| | - Maho Miyazaki
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
| | - Mayuki Ozawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
| | - Nanami Ueda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
| | - Natsuko Kuroda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
| | - Shun-ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan;
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Correspondence: (T.U.); (H.M.); Tel.: +81-52-789-2885 (T.U.); +81-77-561-4809 (H.M.)
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan; (H.T.); (M.M.); (M.O.); (N.U.); (N.K.); (S.-i.T.); (T.Y.)
- Correspondence: (T.U.); (H.M.); Tel.: +81-52-789-2885 (T.U.); +81-77-561-4809 (H.M.)
| |
Collapse
|
20
|
Casuso I, Redondo-Morata L, Rico F. Biological physics by high-speed atomic force microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190604. [PMID: 33100165 PMCID: PMC7661283 DOI: 10.1098/rsta.2019.0604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While many fields have contributed to biological physics, nanotechnology offers a new scale of observation. High-speed atomic force microscopy (HS-AFM) provides nanometre structural information and dynamics with subsecond resolution of biological systems. Moreover, HS-AFM allows us to measure piconewton forces within microseconds giving access to unexplored, fast biophysical processes. Thus, HS-AFM provides a tool to nourish biological physics through the observation of emergent physical phenomena in biological systems. In this review, we present an overview of the contribution of HS-AFM, both in imaging and force spectroscopy modes, to the field of biological physics. We focus on examples in which HS-AFM observations on membrane remodelling, molecular motors or the unfolding of proteins have stimulated the development of novel theories or the emergence of new concepts. We finally provide expected applications and developments of HS-AFM that we believe will continue contributing to our understanding of nature, by serving to the dialogue between biology and physics. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Ignacio Casuso
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
| | - Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, 59000 Lille, France
| | - Felix Rico
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
- e-mail:
| |
Collapse
|
21
|
Kawasaki Y, Ariyama H, Motomura H, Fujinami D, Noshiro D, Ando T, Kohda D. Two-State Exchange Dynamics in Membrane-Embedded Oligosaccharyltransferase Observed in Real-Time by High-Speed AFM. J Mol Biol 2020; 432:5951-5965. [PMID: 33010307 DOI: 10.1016/j.jmb.2020.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/23/2023]
Abstract
Oligosaccharyltransferase (OST) is a membrane-bound enzyme that catalyzes the transfer of oligosaccharide chains from lipid-linked oligosaccharides (LLO) to asparagine residues in polypeptide chains. Using high-speed atomic force microscopy (AFM), we investigated the dynamic properties of OST molecules embedded in biomembranes. An archaeal single-subunit OST protein was immobilized on a mica support via biotin-avidin interactions and reconstituted in a lipid bilayer. The distance between the top of the protein molecule and the upper surface of the lipid bilayer was monitored in real-time. The height of the extramembranous part exhibited a two-step variation with a difference of 1.8 nm. The high and low states are designated as state 1 and state 2, respectively. The transition processes between the two states fit well to single exponential functions, suggesting that the observed dynamic exchange is an intrinsic property of the archaeal OST protein. The two sets of cross peaks in the NMR spectra of the protein supported the conformational changes between the two states in detergent-solubilized conditions. Considering the height values measured in the AFM measurements, state 1 is closer to the crystal structure, and state 2 has a more compact form. Subsequent AFM experiments indicated that the binding of the sugar donor LLO decreased the structural fluctuation and shifted the equilibrium almost completely to state 1. This dynamic behavior is likely necessary for efficient catalytic turnover. Presumably, state 2 facilitates the immediate release of the bulky glycosylated polypeptide product, thus allowing OST to quickly prepare for the next catalytic cycle.
Collapse
Affiliation(s)
- Yuki Kawasaki
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hirotaka Ariyama
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hajime Motomura
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Fujinami
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daisuke Noshiro
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Toshio Ando
- Nano Life Science Institute (WPI NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
22
|
Resolving the data asynchronicity in high-speed atomic force microscopy measurement via the Kalman Smoother. Sci Rep 2020; 10:18393. [PMID: 33110182 PMCID: PMC7592071 DOI: 10.1038/s41598-020-75463-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
High-speed atomic force microscopy (HS-AFM) is a scanning probe microscopy that can capture structural dynamics of biomolecules in real time at single molecule level near physiological condition. Albeit much improvement, while scanning one frame of HS-AFM movies, biomolecules often change their conformations largely. Thus, the obtained frame images can be hampered by the time-difference, the asynchronicity, in the data acquisition. Here, to resolve this data asynchronicity in the HS-AFM movie, we developed Kalman filter and smoother methods, some of the sequential Bayesian filtering approaches. The Kalman filter/smoother methods use alternative steps of a short time-propagation by a linear dynamical system and a correction by the likelihood of AFM data acquired pixel by pixel. We first tested the method using a toy model of a diffusing cone, showing that the Kalman smoother method outperforms to reproduce the ground-truth movie. We then applied the Kalman smoother to a synthetic movie for conformational change dynamics of a motor protein, i.e., dynein, confirming the superiority of the Kalman smoother. Finally, we applied the Kalman smoother to two real HS-AFM movies, FlhAC and centralspindlin, reducing distortion and noise in the AFM movies. The method is general and can be applied to any HS-AFM movies.
Collapse
|
23
|
Redondo-Morata L, Losada-Pérez P, Giannotti MI. Lipid bilayers: Phase behavior and nanomechanics. CURRENT TOPICS IN MEMBRANES 2020; 86:1-55. [PMID: 33837691 DOI: 10.1016/bs.ctm.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.
Collapse
Affiliation(s)
- Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille, France
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libre de Bruxelles, Brussels, Belgium
| | - Marina Inés Giannotti
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
24
|
Andersson J, Bilotto P, Mears LLE, Fossati S, Ramach U, Köper I, Valtiner M, Knoll W. Solid-supported lipid bilayers - A versatile tool for the structural and functional characterization of membrane proteins. Methods 2020; 180:56-68. [PMID: 32920130 DOI: 10.1016/j.ymeth.2020.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
The cellular membrane is central to the development of single-and multicellular life, as it separates the delicate cellular interior from the hostile environment. It exerts tight control over entry and exit of substances, is responsible for signaling with other cells in multicellular organisms and prevents pathogens from entering the cell. In the case of bacteria and viruses, the cellular membrane also hosts the proteins enabling invasion of the host organism. In a very real sense therefore, the cellular membrane is central to all life. The study of the cell membrane and membrane proteins in particular has therefore attracted significant attention. Due to the enormous variety of tasks performed by the membrane, it is a highly complex and challenging structure to study. Ideally, membrane components would be studied in isolation from this environment, but unlike water soluble proteins, the amphiphilic environment provided by the cellular membrane is key to the structure and function of the cell membrane. Therefore, model membranes have been developed to provide an environment in which a membrane protein can be studied. This review presents a set of tools that enable the comprehensive characterization of membrane proteins: electrochemical tools, surface plasmon resonance, neutron scattering, the surface forces apparatus and atomic force microscopy are discussed, with a particular focus on experimental technique and data evaluation.
Collapse
Affiliation(s)
| | - Pierluigi Bilotto
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Laura L E Mears
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Stefan Fossati
- AIT Austrian Institute of Technology, 1210 Vienna, Austria; Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria
| | - Ulrich Ramach
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| | - Ingo Köper
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Markus Valtiner
- Institute of Applied Physics, Vienna University of Technology, Vienna 1040, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology, 1210 Vienna, Austria; CEST Kompetenzzentrum für elektrochemische Oberflächentechnologie, Wiener Neustadt 2700, Austria
| |
Collapse
|
25
|
Flexure Structural Scanner of Tip Scan Type for High-speed Scanning Tunneling Microscopy. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2020. [DOI: 10.1380/ejssnt.2020.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Venkateshaiah A, Padil VV, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers (Basel) 2020; 12:E512. [PMID: 32120773 PMCID: PMC7182842 DOI: 10.3390/polym12030512] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.
Collapse
Affiliation(s)
- Abhilash Venkateshaiah
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Vinod V.T. Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Malladi Nagalakshmaiah
- IMT Lille Douai, Department of Polymers and Composites Technology and Mechanical Engineering (TPCIM), 941 rue Charles Bourseul, CS10838, F-59508 Douai, France
| | - Stanisław Waclawek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
27
|
Supramolecular tholos-like architecture constituted by archaeal proteins without functional annotation. Sci Rep 2020; 10:1540. [PMID: 32001743 PMCID: PMC6992696 DOI: 10.1038/s41598-020-58371-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022] Open
Abstract
Euryarchaeal genomes encode proteasome-assembling chaperone homologs, PbaA and PbaB, although archaeal proteasome formation is a chaperone-independent process. Homotetrameric PbaB functions as a proteasome activator, while PbaA forms a homopentamer that does not interact with the proteasome. Notably, PbaA forms a complex with PF0014, an archaeal protein without functional annotation. In this study, based on our previous research on PbaA crystal structure, we performed an integrative analysis of the supramolecular structure of the PbaA/PF0014 complex using native mass spectrometry, solution scattering, high-speed atomic force microscopy, and electron microscopy. The results indicated that this highly thermostable complex constitutes ten PbaA and ten PF0014 molecules, which are assembled into a dumbbell-shaped structure. Two PbaA homopentameric rings correspond to the dumbbell plates, with their N-termini located outside of the plates and C-terminal segments left mobile. Furthermore, mutant PbaA lacking the mobile C-terminal segment retained the ability to form a complex with PF0014, allowing 3D modeling of the complex. The complex shows a five-column tholos-like architecture, in which each column comprises homodimeric PF0014, harboring a central cavity, which can potentially accommodate biomacromolecules including proteins. Our findings provide insight into the functional roles of Pba family proteins, offering a novel framework for designing functional protein cages.
Collapse
|
28
|
Piontek MC, Lira RB, Roos WH. Active probing of the mechanical properties of biological and synthetic vesicles. Biochim Biophys Acta Gen Subj 2019; 1865:129486. [PMID: 31734458 DOI: 10.1016/j.bbagen.2019.129486] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The interest in mechanics of synthetic and biological vesicles has been continuously growing during the last decades. Liposomes serve as model systems for investigating fundamental membrane processes and properties. More recently, extracellular vesicles (EVs) have been investigated mechanically as well. EVs are widely studied in fundamental and applied sciences, but their material properties remained elusive until recently. Elucidating the mechanical properties of vesicles is essential to unveil the mechanisms behind a variety of biological processes, e.g. budding, vesiculation and cellular uptake mechanisms. SCOPE OF REVIEW The importance of mechanobiology for studies of vesicles and membranes is discussed, as well as the different available techniques to probe their mechanical properties. In particular, the mechanics of vesicles and membranes as obtained by nanoindentation, micropipette aspiration, optical tweezers, electrodeformation and electroporation experiments is addressed. MAJOR CONCLUSIONS EVs and liposomes possess an astonishing rich, diverse behavior. To better understand their properties, and for optimization of their applications in nanotechnology, an improved understanding of their mechanical properties is needed. Depending on the size of the vesicles and the specific scientific question, different techniques can be chosen for their mechanical characterization. GENERAL SIGNIFICANCE Understanding the mechanical properties of vesicles is necessary to gain deeper insight in the fundamental biological mechanisms involved in vesicle generation and cellular uptake. This furthermore facilitates technological applications such as using vesicles as targeted drug delivery vehicles. Liposome studies provide insight into fundamental membrane processes and properties, whereas the role and functioning of EVs in biology and medicine are increasingly elucidated.
Collapse
Affiliation(s)
- Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
29
|
Alipour A, Coskun MB, Moheimani SOR. A high bandwidth microelectromechanical system-based nanopositioner for scanning tunneling microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:073706. [PMID: 31370492 DOI: 10.1063/1.5109900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Limited Z-axis bandwidth of piezotube scanners employed in conventional Scanning Tunneling Microscopes (STMs) has been a major limiting factor in achieving high scan speeds in STM applications. Slow Z-axis dynamics of typical piezotube scanners combined with the weight of the STM tip/tip holder assembly, that the scanner has to carry, substantially limit the achievable Z-axis bandwidth in both imaging and lithography modes. To tackle this issue, we propose a high bandwidth microelectromechanical-system-based nanopositioner to be integrated into an existing STM scanner. The device is designed to replace the STM tip and fine Z-positioning mechanisms in the conventional STM setup, while providing an order of magnitude higher bandwidth in Z axis. The device is microfabricated using double silicon-on-isolator technology, and standard cleanroom processes. Experiments show that tunneling current between the device tip and a highly ordered pyrolytic graphite sample can be successfully established and maintained in air using the proposed device in a feedback loop. Results indicate that the proposed device uniquely combines a very high resolution and a large stroke with a substantially larger Z-axis bandwidth compared to that of conventional STM piezotube scanners, enabling higher scanning speeds in STM operations.
Collapse
Affiliation(s)
- Afshin Alipour
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - M Bulut Coskun
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - S O Reza Moheimani
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
30
|
Characterisation of the Material and Mechanical Properties of Atomic Force Microscope Cantilevers with a Plan-View Trapezoidal Geometry. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cantilever devices have found applications in numerous scientific fields and instruments, including the atomic force microscope (AFM), and as sensors to detect a wide range of chemical and biological species. The mechanical properties, in particular, the spring constant of these devices is crucial when quantifying adhesive forces, material properties of surfaces, and in determining deposited mass for sensing applications. A key component in the spring constant of a cantilever is the plan-view shape. In recent years, the trapezoidal plan-view shape has become available since it offers certain advantages to fast-scanning AFM and can improve sensor performance in fluid environments. Euler beam equations relating cantilever stiffness to the cantilever dimensions and Young’s modulus have been proven useful and are used extensively to model cantilever mechanical behaviour and calibrate the spring constant. In this work, we derive a simple correction factor to the Euler beam equation for a beam-shaped cantilever that is applicable to any cantilever with a trapezoidal plan-view shape. This correction factor is based upon previous analytical work and simplifies the application of the previous researchers formula. A correction factor to the spring constant of an AFM cantilever is also required to calculate the torque produced by the tip when it contacts the sample surface, which is also dependent on the plan-view shape. In this work, we also derive a simple expression for the torque for triangular plan-view shaped cantilevers and show that for the current generation of trapezoidal plan-view shaped AFM cantilevers, this will be a good approximation. We shall apply both these correction factors to determine Young’s modulus for a range of trapezoidal-shaped AFM cantilevers, which are specially designed for fast-scanning. These types of AFM probes are much smaller in size when compared to standard AFM probes. In the process of analysing the mechanical properties of these cantilevers, important insights are also gained into their spring constant calibration and dimensional factors that contribute to the variability in their spring constant.
Collapse
|
31
|
Shi C, He Y, Ding M, Wang Y, Zhong J. Nanoimaging of food proteins by atomic force microscopy. Part I: Components, imaging modes, observation ways, and research types. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Kori S, Ferry L, Matano S, Jimenji T, Kodera N, Tsusaka T, Matsumura R, Oda T, Sato M, Dohmae N, Ando T, Shinkai Y, Defossez PA, Arita K. Structure of the UHRF1 Tandem Tudor Domain Bound to a Methylated Non-histone Protein, LIG1, Reveals Rules for Binding and Regulation. Structure 2019; 27:485-496.e7. [PMID: 30639225 DOI: 10.1016/j.str.2018.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/19/2018] [Accepted: 11/28/2018] [Indexed: 12/21/2022]
Abstract
The protein UHRF1 is crucial for DNA methylation maintenance. The tandem Tudor domain (TTD) of UHRF1 binds histone H3K9me2/3 with micromolar affinity, as well as unmethylated linker regions within UHRF1 itself, causing auto-inhibition. Recently, we showed that a methylated histone-like region of DNA ligase 1 (LIG1K126me2/me3) binds the UHRF1 TTD with nanomolar affinity, permitting UHRF1 recruitment to chromatin. Here we report the crystal structure of the UHRF1 TTD bound to a LIG1K126me3 peptide. The data explain the basis for the high TTD-binding affinity of LIG1K126me3 and reveal that the interaction may be regulated by phosphorylation. Binding of LIG1K126me3 switches the overall structure of UHRF1 from a closed to a flexible conformation, suggesting that auto-inhibition is relieved. Our results provide structural insight into how UHRF1 performs its key function in epigenetic maintenance.
Collapse
Affiliation(s)
- Satomi Kori
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Laure Ferry
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France
| | - Shohei Matano
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Tomohiro Jimenji
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Tsusaka
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Rumie Matsumura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| | - Pierre-Antoine Defossez
- University of Paris Diderot, Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, 75013 Paris, France.
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
33
|
Nasrallah H, Vial A, Pocholle N, Soulier J, Costa L, Godefroy C, Bourillot E, Lesniewska E, Milhiet PE. Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy. Methods Mol Biol 2019; 1886:45-59. [PMID: 30374861 DOI: 10.1007/978-1-4939-8894-5_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supported lipid bilayers represent a very attractive way to mimic biological membranes, especially to investigate molecular mechanisms associated with the lateral segregation of membrane components. Observation of these model membranes with high-speed atomic force microscopy (HS-AFM) allows the capture of both topography and dynamics of membrane components, with a spatial resolution in the nanometer range and image capture time of less than 1 s. In this context, we have developed new protocols adapted for HS-AFM to form supported lipid bilayers on small mica disks using the vesicle fusion or Langmuir-Blodgett methods. In this chapter we describe in detail the protocols to fabricate supported artificial bilayers as well as the main guidelines for HS-AFM imaging of such samples.
Collapse
Affiliation(s)
- Hussein Nasrallah
- INSERM, U1054, Montpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048, Montpellier, France
| | - Anthony Vial
- INSERM, U1054, Montpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048, Montpellier, France
| | - Nicolas Pocholle
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France
| | - Jérémy Soulier
- INSERM, U1054, Montpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048, Montpellier, France
| | - Luca Costa
- INSERM, U1054, Montpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048, Montpellier, France
| | - Cédric Godefroy
- INSERM, U1054, Montpellier, France
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048, Montpellier, France
| | - Eric Bourillot
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France
| | - Eric Lesniewska
- ICB UMR CNRS 6303, University of Bourgogne Franche-Comte, Dijon, France
| | - Pierre-Emmanuel Milhiet
- INSERM, U1054, Montpellier, France.
- Centre de Biochimie Structurale, Université de Montpellier, CNRS, UMR 5048, Montpellier, France.
| |
Collapse
|
34
|
Evans CT, Payton O, Picco L, Allen MJ. Algal Viruses: The (Atomic) Shape of Things to Come. Viruses 2018; 10:E490. [PMID: 30213102 PMCID: PMC6165301 DOI: 10.3390/v10090490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/30/2018] [Accepted: 09/07/2018] [Indexed: 01/15/2023] Open
Abstract
Visualization of algal viruses has been paramount to their study and understanding. The direct observation of the morphological dynamics of infection is a highly desired capability and the focus of instrument development across a variety of microscopy technologies. However, the high temporal (ms) and spatial resolution (nm) required, combined with the need to operate in physiologically relevant conditions presents a significant challenge. Here we present a short history of virus structure study and its relation to algal viruses and highlight current work, concentrating on electron microscopy and atomic force microscopy, towards the direct observation of individual algae⁻virus interactions. Finally, we make predictions towards future algal virus study direction with particular focus on the exciting opportunities offered by modern high-speed atomic force microscopy methods and instrumentation.
Collapse
Affiliation(s)
- Christopher T Evans
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK.
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
| | - Oliver Payton
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
| | - Loren Picco
- Interface Analysis Centre, Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK.
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Michael J Allen
- Plymouth Marine Laboratory, Plymouth PL1 3DH, UK.
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
35
|
Santillan JJ, Itani T. Characterization Studies on Metal-based EUV Resist Film Properties. J PHOTOPOLYM SCI TEC 2018. [DOI: 10.2494/photopolymer.31.663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Toshiro Itani
- Evolving nano process Infrastructure Development Center, Inc. (EIDEC)
| |
Collapse
|
36
|
Alsharif N, Burkatovsky A, Lissandrello C, Jones KM, White AE, Brown KA. Design and Realization of 3D Printed AFM Probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800162. [PMID: 29603624 DOI: 10.1002/smll.201800162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Atomic force microscope (AFM) probes and AFM imaging by extension are the product of exceptionally refined silicon micromachining, but are also restricted by the limitations of these fabrication techniques. Here, the nanoscale additive manufacturing technique direct laser writing is explored as a method to print monolithic cantilevered probes for AFM. Not only are 3D printed probes found to function effectively for AFM, but they also confer several advantages, most notably the ability to image in intermittent contact mode with a bandwidth approximately ten times larger than analogous silicon probes. In addition, the arbitrary structural control afforded by 3D printing is found to enable programming the modal structure of the probe, a capability that can be useful in the context of resonantly amplifying nonlinear tip-sample interactions. Collectively, these results show that 3D printed probes complement those produced using conventional silicon micromachining and open the door to new imaging techniques.
Collapse
Affiliation(s)
- Nourin Alsharif
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Anna Burkatovsky
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Charles Lissandrello
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Keith M Jones
- Oxford Instruments Asylum Research, Inc., 6310 Hollister Avenue, Santa Barbara, CA, 93117, USA
| | - Alice E White
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
- Physics Department and Division of Materials Science and Engineering, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| | - Keith A Brown
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
- Physics Department and Division of Materials Science and Engineering, 590 Commonwealth Avenue, Boston, MA, 02215, USA
| |
Collapse
|
37
|
Somnath S, Law KJH, Morozovska AN, Maksymovych P, Kim Y, Lu X, Alexe M, Archibald R, Kalinin SV, Jesse S, Vasudevan RK. Ultrafast current imaging by Bayesian inversion. Nat Commun 2018; 9:513. [PMID: 29410417 PMCID: PMC5802759 DOI: 10.1038/s41467-017-02455-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
Abstract
Spectroscopic measurements of current–voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference. This general-mode I–V method allows three orders of magnitude faster measurement rates than presently possible. The technique is demonstrated by acquiring I–V curves in ferroelectric nanocapacitors, yielding >100,000 I–V curves in <20 min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid I–V measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy. Scanning probe microscopy is widely used to characterize material properties with atomic resolution, yet electronic property mapping is normally constrained by slow data acquisition. Somnath et al. show a current–voltage method, which enables fast electronic spectroscopy mapping over micrometer-sized areas.
Collapse
Affiliation(s)
- S Somnath
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - K J H Law
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - A N Morozovska
- Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, Kyiv, 03028, Ukraine
| | - P Maksymovych
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Y Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - X Lu
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - M Alexe
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - R Archibald
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - S V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - S Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - R K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. .,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
38
|
Abstract
Imaging of nano-sized particles and sample features is crucial in a variety of research fields. For instance in biological sciences, where it is paramount to investigate structures at the single particle level. Often two-dimensional images are not sufficient and further information such as topography and mechanical properties are required. Furthermore, to increase the biological relevance, it is desired to perform the imaging in close to physiological environments. Atomic force microscopy (AFM) meets these demands in an all-in-one instrument. It provides high-resolution images including surface height information leading to three-dimensional information on sample morphology. AFM can be operated both in air and in buffer solutions. Moreover, it has the capacity to determine protein and membrane material properties via the force spectroscopy mode. Here we discuss the principles of AFM operation and provide examples of how biomolecules can be studied. By including new approaches such as high-speed AFM (HS-AFM) we show how AFM can be used to study a variety of static and dynamic single biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
- Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
39
|
Yeow N, Tabor RF, Garnier G. Atomic force microscopy: From red blood cells to immunohaematology. Adv Colloid Interface Sci 2017; 249:149-162. [PMID: 28515013 DOI: 10.1016/j.cis.2017.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
Atomic force microscopy (AFM) offers complementary imaging modes that can provide morphological and structural details of red blood cells (RBCs), and characterize interactions between specific biomolecules and RBC surface antigen. This review describes the applications of AFM in determining RBC health by the observation of cell morphology, elasticity and surface roughness. Measurement of interaction forces between plasma proteins and antibodies against RBC surface antigen using the AFM also brought new information to the immunohaematology field. With constant improvisation of the AFM in resolution and imaging time, the reaction of RBC to changes in the physico-chemistry of its environment and the presence of RBC surface antigen specific-biomolecules is achievable.
Collapse
|
40
|
Fukuda N, Noi K, Weng L, Kobashigawa Y, Miyazaki H, Wakeyama Y, Takaki M, Nakahara Y, Tatsuno Y, Uchida-Kamekura M, Suwa Y, Sato T, Ichikawa-Tomikawa N, Nomizu M, Fujiwara Y, Ohsaka F, Saitoh T, Maenaka K, Kumeta H, Shinya S, Kojima C, Ogura T, Morioka H. Production of Single-Chain Fv Antibodies Specific for GA-Pyridine, an Advanced Glycation End-Product (AGE), with Reduced Inter-Domain Motion. Molecules 2017; 22:molecules22101695. [PMID: 28994732 PMCID: PMC6151396 DOI: 10.3390/molecules22101695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Due to their lower production cost compared with monoclonal antibodies, single-chain variable fragments (scFvs) have potential for use in several applications, such as for diagnosis and treatment of a range of diseases, and as sensor elements. However, the usefulness of scFvs is limited by inhomogeneity through the formation of dimers, trimers, and larger oligomers. The scFv protein is assumed to be in equilibrium between the closed and open states formed by assembly or disassembly of VH and VL domains. Therefore, the production of an scFv with equilibrium biased to the closed state would be critical to overcome the problem in inhomogeneity of scFv for industrial or therapeutic applications. In this study, we obtained scFv clones stable against GA-pyridine, an advanced glycation end-product (AGE), by using a combination of a phage display system and random mutagenesis. Executing the bio-panning at 37 °C markedly improved the stability of scFvs. We further evaluated the radius of gyration by small-angle X-ray scattering (SAXS), obtained compact clones, and also visualized open.
Collapse
Affiliation(s)
- Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
- CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Lidong Weng
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Hiromi Miyazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yukari Wakeyama
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Michiyo Takaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yusuke Nakahara
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yuka Tatsuno
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Makiyo Uchida-Kamekura
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Yoshiaki Suwa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Naoki Ichikawa-Tomikawa
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Motoyoshi Nomizu
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Fumina Ohsaka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Takashi Saitoh
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Katsumi Maenaka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Hiroyuki Kumeta
- Global Station of Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-15 Nishi-8, Kita-ku, Sapporo 060-0815, Japan.
| | - Shoko Shinya
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Chojiro Kojima
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
- CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
41
|
Kasas S, Dietler G. DNA-protein interactions explored by atomic force microscopy. Semin Cell Dev Biol 2017; 73:231-239. [PMID: 28716606 DOI: 10.1016/j.semcdb.2017.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 11/30/2022]
Abstract
DNA-protein interactions play an important role in all living organisms on Earth. The advent of atomic force microscopy permitted for the first time to follow and to characterize interaction forces between these two molecular species. After a short description of the AFM and its imaging modes we review, in a chronological order some of the studies that we think importantly contributed to the field.
Collapse
Affiliation(s)
- S Kasas
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Plateforme de Morphologie, Faculté de Médecine, Université de Lausanne, Bugnion 9, 1005 Lausanne, Switzerland.
| | - G Dietler
- Laboratoire de Physique de la Matière Vivante, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy. SENSORS 2017; 17:s17010200. [PMID: 28117741 PMCID: PMC5298773 DOI: 10.3390/s17010200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 12/23/2022]
Abstract
The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.
Collapse
|
43
|
Yong YK, Wadikhaye SP, Fleming AJ. High speed single- and dual-stage vertical positioners. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:085104. [PMID: 27587157 DOI: 10.1063/1.4960080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This article presents a high-speed single- and dual-stage vertical positioners for applications in optical systems. Each positioner employs a unique end-constraint method with orthogonal flexures to preload a piezoelectric stack actuator. This end-constraint method also significantly increases the first mechanical resonance frequency. The single-stage positioner has a displacement range of 7.6 μm and a first resonance frequency of 46.8 kHz. The dual-stage design consists of a long-range slow-stage and a short-range fast-stage. An inertial counterbalance technique was implemented on the fast-stage to cancel inertial forces resulting from high-speed motion. The dual-stage positioner has a combined travel range of approximately 10 μm and a first evident resonance frequency of 130 kHz.
Collapse
Affiliation(s)
- Yuen K Yong
- School of Electrical Engineering and Computer Science at The University of Newcastle, Callaghan, NSW, Australia
| | - Sachin P Wadikhaye
- School of Electrical Engineering and Computer Science at The University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J Fleming
- School of Electrical Engineering and Computer Science at The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
44
|
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M. Recent progressive use of atomic force microscopy in biomedical applications. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Tselev A, Velmurugan J, Ievlev AV, Kalinin SV, Kolmakov A. Seeing through Walls at the Nanoscale: Microwave Microscopy of Enclosed Objects and Processes in Liquids. ACS NANO 2016; 10:3562-3570. [PMID: 26866377 PMCID: PMC5424529 DOI: 10.1021/acsnano.5b07919] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Noninvasive in situ nanoscale imaging in liquid environments is a current imperative in the analysis of delicate biomedical objects and electrochemical processes at reactive liquid-solid interfaces. Microwaves of a few gigahertz frequencies offer photons with energies of ≈10 μeV, which can affect neither electronic states nor chemical bonds in condensed matter. Here, we describe an implementation of scanning near-field microwave microscopy for imaging in liquids using ultrathin molecular impermeable membranes separating scanning probes from samples enclosed in environmental cells. We imaged a model electroplating reaction as well as individual live cells. Through a side-by-side comparison of the microwave imaging with scanning electron microscopy, we demonstrate the advantage of microwaves for artifact-free imaging.
Collapse
Affiliation(s)
- Alexander Tselev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jeyavel Velmurugan
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Maryland NanoCenter, University of Maryland, College Park, MD 20742
| | - Anton V. Ievlev
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sergei V. Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrei Kolmakov
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899
| |
Collapse
|
46
|
Zhong J, Yan J. Seeing is believing: atomic force microscopy imaging for nanomaterial research. RSC Adv 2016. [DOI: 10.1039/c5ra22186b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Atomic force microscopy can image nanomaterial properties such as the topography, elasticity, adhesion, friction, electrical properties, and magnetism.
Collapse
Affiliation(s)
- Jian Zhong
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| | - Juan Yan
- College of Food Science & Technology
- Shanghai Ocean University
- Shanghai 201306
- People's Republic of China
| |
Collapse
|
47
|
Baranwal M, Gorugantu RS, Salapaka SM. Fast and robust control of nanopositioning systems: Performance limits enabled by field programmable analog arrays. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:085004. [PMID: 26329226 DOI: 10.1063/1.4929379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper aims at control design and its implementation for robust high-bandwidth precision (nanoscale) positioning systems. Even though modern model-based control theoretic designs for robust broadband high-resolution positioning have enabled orders of magnitude improvement in performance over existing model independent designs, their scope is severely limited by the inefficacies of digital implementation of the control designs. High-order control laws that result from model-based designs typically have to be approximated with reduced-order systems to facilitate digital implementation. Digital systems, even those that have very high sampling frequencies, provide low effective control bandwidth when implementing high-order systems. In this context, field programmable analog arrays (FPAAs) provide a good alternative to the use of digital-logic based processors since they enable very high implementation speeds, moreover with cheaper resources. The superior flexibility of digital systems in terms of the implementable mathematical and logical functions does not give significant edge over FPAAs when implementing linear dynamic control laws. In this paper, we pose the control design objectives for positioning systems in different configurations as optimal control problems and demonstrate significant improvements in performance when the resulting control laws are applied using FPAAs as opposed to their digital counterparts. An improvement of over 200% in positioning bandwidth is achieved over an earlier digital signal processor (DSP) based implementation for the same system and same control design, even when for the DSP-based system, the sampling frequency is about 100 times the desired positioning bandwidth.
Collapse
Affiliation(s)
- Mayank Baranwal
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ram S Gorugantu
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Srinivasa M Salapaka
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Lopez BJ, Valentine MT. Molecular control of stress transmission in the microtubule cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [PMID: 26225932 DOI: 10.1016/j.bbamcr.2015.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this article, we will summarize recent progress in understanding the mechanical origins of rigidity, strength, resiliency and stress transmission in the MT cytoskeleton using reconstituted networks formed from purified components. We focus on the role of network architecture, crosslinker compliance and dynamics, and molecular determinants of single filament elasticity, while highlighting open questions and future directions for this work.
Collapse
Affiliation(s)
- Benjamin J Lopez
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA
| | - Megan T Valentine
- Department of Mechanical Engineering and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-5070, USA.
| |
Collapse
|
49
|
FRET-based genetically-encoded sensors for quantitative monitoring of metabolites. Biotechnol Lett 2015; 37:1919-28. [DOI: 10.1007/s10529-015-1873-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
50
|
Schuh A, Bozchalooi IS, Rangelow IW, Youcef-Toumi K. Multi-eigenmode control for high material contrast in bimodal and higher harmonic atomic force microscopy. NANOTECHNOLOGY 2015; 26:235706. [PMID: 25994333 DOI: 10.1088/0957-4484/26/23/235706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High speed imaging and mapping of nanomechanical properties in atomic force microscopy (AFM) allows the observation and characterization of dynamic sample processes. Recent developments involve several cantilever frequencies in a multifrequency approach. One method actuates the first eigenmode for topography imaging and records the excited higher harmonics to map nanomechanical properties of the sample. To enhance the higher frequencies' response two or more eigenmodes are actuated simultaneously, where the higher eigenmode(s) are used to quantify the nanomechanics. In this paper, we combine each imaging methodology with a novel control approach. It modifies the Q factor and resonance frequency of each eigenmode independently to enhance the force sensitivity and imaging bandwidth. It allows us to satisfy the different requirements for the first and higher eigenmode. The presented compensator is compatible with existing AFMs and can be simply attached with minimal modifications. Different samples are used to demonstrate the improvement in nanomechanical contrast mapping and imaging speed of tapping mode AFM in air. The experiments indicate most enhanced nanomechanical contrast with low Q factors of the first and high Q factors of the higher eigenmode. In this scenario, the cantilever topography imaging rate can also be easily improved by a factor of 10.
Collapse
Affiliation(s)
- Andreas Schuh
- Massachusetts Institute of Technology, Department of Mechanical Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Ilmenau University of Technology, Faculty of Electrical Engineering and Information Technology, Dept. of Microelectronic and Nanoelectronic Systems, Gustav-Kirchhoff-Str. 1, 98684 Ilmenau, Germany
| | | | | | | |
Collapse
|