1
|
Mohamad Kamal NS, Safuan S, Shamsuddin S, Foroozandeh P. Aging of the cells: Insight into cellular senescence and detection Methods. Eur J Cell Biol 2020; 99:151108. [PMID: 32800277 DOI: 10.1016/j.ejcb.2020.151108] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/10/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular theory of aging states that human aging is the result of cellular aging, in which an increasing proportion of cells reach senescence. Senescence, from the Latin word senex, means "growing old," is an irreversible growth arrest which occurs in response to damaging stimuli, such as DNA damage, telomere shortening, telomere dysfunction and oncogenic stress leading to suppression of potentially dysfunctional, transformed, or aged cells. Cellular senescence is characterized by irreversible cell cycle arrest, flattened and enlarged morphology, resistance to apoptosis, alteration in gene expression and chromatin structure, expression of senescence associated- β-galactosidase (SA-β-gal) and acquisition of senescence associated secretory phenotype (SASP). In this review paper, different types of cellular senescence including replicative senescence (RS) which occurs due to telomere shortening and stress induced premature senescence (SIPS) which occurs in response to different types of stress in cells, are discussed. Biomarkers of cellular senescence and senescent assays including BrdU incorporation assay, senescence associated- β-galactosidase (SA-β-gal) and senescence-associated heterochromatin foci assays to detect senescent cells are also addressed.
Collapse
Affiliation(s)
- Nor Shaheera Mohamad Kamal
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Sabreena Safuan
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia; USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia
| | - Parisa Foroozandeh
- USM-RIKEN International Centre for Ageing Science (URICAS), Universiti Sains Malaysia, 11800 Georgetown, Penang, Malaysia.
| |
Collapse
|
2
|
Ghanem NZ, Malla SRL, Araki N, Lewis LK. Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae. Exp Cell Res 2019; 381:18-28. [PMID: 31075257 DOI: 10.1016/j.yexcr.2019.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Telomerase-deficient cells of the budding yeast S. cerevisiae experience progressive telomere shortening and undergo senescence in a manner similar to that seen in cultured human fibroblasts. The cells exhibit a DNA damage checkpoint-like stress response, undergo changes in size and morphology, and eventually stop dividing. In this study, a new assay is described that allowed quantitation of senescence in telomerase-deficient est2 cells with applied statistics. Use of the new technique revealed that senescence was strongly accelerated in est2 mutants that had homologous recombination genes RAD51, RAD52 or RAD54 co-inactivated, but was only modestly affected when RAD55, RAD57 or RAD59 were knocked out. Additionally, a new approach for calculating population doublings indicated that loss of growth capacity occurred after approximately 64 generations in est2 cells but only 42 generations in est2 rad52 cells. Phase contrast microscopy experiments demonstrated that senescing est2 cells became enlarged in a time-dependent manner, ultimately exhibiting a 60% increase in cell size. Progressive alterations in physical properties were also observed, including striking changes in light scattering characteristics and cellular sedimentation rates. The results described herein will facilitate future studies of genetic and environmental factors that affect telomere shortening-associated cell senescence rates using the yeast model system.
Collapse
Affiliation(s)
- Neda Z Ghanem
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Shubha R L Malla
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - Naoko Araki
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, 78666, USA.
| |
Collapse
|
3
|
Abstract
The blood-brain interface (BBI) is the subject of a new named series at Brain, Behavior, and Immunity. It is timely to reflect on a number of advances in the field within the last ten years, which may lead to an increased understanding of human behaviour and a wide range of psychiatric and neurological conditions. We cover discoveries made in solute and cell trafficking, endothelial cell and pericyte biology, extracellular matrix and emerging tools, especially those which will enable study of the human BBI. We now recognize the central role of the BBI in a number of immunopsychiatric syndromes, including sickness behaviour, delirium, septic encephalopathy, cognitive side effects of cytokine-based therapies and the frank psychosis observed in neuronal surface antibody syndromes. In addition, we find ourselves interrogating and modulating the brain across the BBI, during diagnostic investigation and treatment of brain disease. The past ten years of BBI research have been exciting but there is more to come.
Collapse
|
4
|
Kaisers W, Boukamp P, Stark HJ, Schwender H, Tigges J, Krutmann J, Schaal H. Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated human dermal fibroblasts. PLoS One 2017; 12:e0175657. [PMID: 28475575 PMCID: PMC5419556 DOI: 10.1371/journal.pone.0175657] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Ageing, the progressive functional decline of virtually all tissues, affects numerous living organisms. Main phenotypic alterations of human skin during the ageing process include reduced skin thickness and elasticity which are related to extracellular matrix proteins. Dermal fibroblasts, the main source of extracellular fibrillar proteins, exhibit complex alterations during in vivo ageing and any of these are likely to be accompanied or caused by changes in gene expression. We investigated gene expression of short term cultivated in vivo aged human dermal fibroblasts using RNA-seq. Therefore, fibroblast samples derived from unaffected skin were obtained from 30 human donors. The donors were grouped by gender and age (Young: 19 to 25 years, Middle: 36 to 45 years, Old: 60 to 66 years). Two samples were taken from each donor, one from a sun-exposed and one from a sun-unexposed site. In our data, no consistently changed gene expression associated with donor age can be asserted. Instead, highly correlated expression of a small number of genes associated with transforming growth factor beta signalling was observed. Also, known gene expression alterations of in vivo aged dermal fibroblasts seem to be non-detectable in cultured fibroblasts.
Collapse
Affiliation(s)
- Wolfgang Kaisers
- Center for Bioinformatics and Biostatistics, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Petra Boukamp
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Holger Schwender
- Center for Bioinformatics and Biostatistics, BMFZ, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Mathematical Institute, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Jean Krutmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Heiner Schaal
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget 2017; 7:8532-45. [PMID: 26885895 PMCID: PMC4890985 DOI: 10.18632/oncotarget.7384] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/30/2016] [Indexed: 02/03/2023] Open
Abstract
The disruption of retinal pigment epithelial (RPE) function and the degeneration of photoreceptors are cardinal features of age related macular degeneration (AMD); however there are still gaps in our understanding of underlying biological processes. Excess homocysteine (Hcy) has been reported to be elevated in plasma of patients with AMD. This study aimed to evaluate the direct effect of hyperhomocysteinemia (HHcy) on structure and function of RPE. Initial studies in a mouse model of HHcy, in which cystathionine-β-synthase (cbs) was deficient, revealed abnormal RPE cell morphology with features similar to that of AMD upon optical coherence tomography (OCT), fluorescein angiography (FA), histological, and electron microscopic examinations. These features include atrophy, vacuolization, hypopigmentation, thickened basal laminar membrane, hyporeflective lucency, choroidal neovascularization (CNV), and disturbed RPE-photoreceptor relationship. Furthermore, intravitreal injection of Hcy per se in normal wild type (WT) mice resulted in diffuse hyper-fluorescence, albumin leakage, and CNV in the area of RPE. In vitro experiments on ARPE-19 showed that Hcy dose-dependently reduced tight junction protein expression, increased FITC dextran leakage, decreased transcellular electrical resistance, and impaired phagocytic activity. Collectively, our results demonstrated unreported effects of excess Hcy levels on RPE structure and function that lead to the development of AMD-like features.
Collapse
|
6
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
7
|
Sunami Y, von Figura G, Kleger A, Strnad P, Hüser N, Hartmann D. The role of telomeres in liver disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 125:159-72. [PMID: 24993702 DOI: 10.1016/b978-0-12-397898-1.00007-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Telomeres stabilize open chromosome ends and protect them against chromosomal end-to-end fusions, breakage, instability, and nonreciprocal translocations. Telomere dysfunction is known to lead to an impaired regenerative capacity of hepatocytes and an increased cirrhosis formation in the context of acute and chronic liver injury. In addition, telomere dysfunction and telomerase mutations have been associated with the induction of chromosomal instability and consequently with cirrhosis development and hepatocarcinogenesis. The identification of molecular mechanisms related to telomere dysfunction and telomerase activation might lead to new therapeutic strategies. In this chapter, we are reviewing the current knowledge about the importance of telomere dysfunction in liver diseases.
Collapse
Affiliation(s)
- Yoshiaki Sunami
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Guido von Figura
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| | - Pavel Strnad
- Department of Internal Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Norbert Hüser
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Daniel Hartmann
- Department of General Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
8
|
Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci 2014; 15:8591-638. [PMID: 24830559 PMCID: PMC4057750 DOI: 10.3390/ijms15058591] [Citation(s) in RCA: 277] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterised by hepatic steatosis and inflammation and, in some patients, progressive fibrosis leading to cirrhosis. An understanding of the pathogenesis of NASH is still evolving but current evidence suggests multiple metabolic factors critically disrupt homeostasis and induce an inflammatory cascade and ensuing fibrosis. The mechanisms underlying these changes and the complex inter-cellular interactions that mediate fibrogenesis are yet to be fully elucidated. Lipotoxicity, in the setting of excess free fatty acids, obesity, and insulin resistance, appears to be the central driver of cellular injury via oxidative stress. Hepatocyte apoptosis and/or senescence contribute to activation of the inflammasome via a variety of intra- and inter-cellular signalling mechanisms leading to fibrosis. Current evidence suggests that periportal components, including the ductular reaction and expansion of the hepatic progenitor cell compartment, may be involved and that the Th17 response may mediate disease progression. This review aims to provide an overview of the pathogenesis of NASH and summarises the evidence pertaining to key mechanisms implicated in the transition from steatosis and inflammation to fibrosis. Currently there are limited treatments for NASH although an increasing understanding of its pathogenesis will likely improve the development and use of interventions in the future.
Collapse
Affiliation(s)
- William Peverill
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Lawrie W Powell
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| | - Richard Skoien
- Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane 4029, Australia.
| |
Collapse
|
9
|
Chen Q, Jiao D, Hu H, Song J, Yan J, Wu L, Xu LQ. Downregulation of LIMK1 level inhibits migration of lung cancer cells and enhances sensitivity to chemotherapy drugs. Oncol Res 2014; 20:491-8. [PMID: 24063279 DOI: 10.3727/096504013x13657689382699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
LIM kinase 1 (LIMK1) is a member of a novel class of serine-threonine protein kinases, which plays an important role in malignant transformation. High expression of LIM kinase 1 (LIMK1) has been detected in various invasive cancers. Here, we showed that LIMK1 was overexpressed in non-small cell lung cancer tissues (NSCLC) and cell lines. Expression of LIMK1 was detected in 115 of 150 lung cancer tissues, the frequency being more significant than in lung tissues. In addition, overexpression of LIMK1 was also associated with high TNM stage and lymph node metastasis in NSCLC patients. Moreover, RNAi-mediated suppression of LIMK1 expression markedly inhibited migration and invasion of 801D lung cancer cells. Furthermore, silencing of LIMK1 sensitized 801D cells to chemotherapeutic drugs of cisplatin and gemcitabine. These results indicate that the overexpression of LIMK1 is tightly associated with an aggressive phenotype of lung cancer cells, knockdown of LIMK1 suppressed cell migration and invasion, enhanced chemosensitivity, suggesting a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Qingyong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hang Zhou, Zhejiang, P.R. China
| | | | | | | | | | | | | |
Collapse
|
10
|
Klement K, Melle C, Murzik U, Diekmann S, Norgauer J, Hemmerich P. Accumulation of annexin A5 at the nuclear envelope is a biomarker of cellular aging. Mech Ageing Dev 2012; 133:508-22. [PMID: 22728018 DOI: 10.1016/j.mad.2012.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 04/20/2012] [Accepted: 06/13/2012] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a permanent cell cycle arrest induced by short telomeres or oncogenic stress in vitro and in vivo. Because no single of the established biomarkers can reliably identify senescent cells, the application of new ones may aid the diagnosis of aged cells. Here we show that annexin A5 accumulates at the nuclear envelope during replicative and drug-induced cellular senescence in primary human fibroblasts. This new cellular aging phenotype that we have termed SA-ANX5 (senescence-associated accumulation at the nuclear envelope of annexin A5) is as efficient and quantitative as the well-established senescence-associated β-galactosidase activity assay and p21 immunoreactivity. SA-ANX5 is also observed in aged human skin where is exclusively detected in DNA damage foci-positive/Ki-67-negative cells. We also observed that depletion of annexin A5 by siRNA in human fibroblasts accelerates premature senescence through the p38MAP kinase pathway. These observations establish SA-ANX5 as a new biomarker for cellular aging and implicate a functional role for annexin A5 in cellular senescence.
Collapse
Affiliation(s)
- Karolin Klement
- Leibniz-Institute for Age Research-Fritz Lipmann Institute, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
11
|
Bazarov AV, Lee WJ, Bazarov I, Bosire M, Hines WC, Stankovich B, Chicas A, Lowe SW, Yaswen P. The specific role of pRb in p16 (INK4A) -mediated arrest of normal and malignant human breast cells. Cell Cycle 2012; 11:1008-13. [PMID: 22333593 DOI: 10.4161/cc.11.5.19492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G 1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation.
Collapse
Affiliation(s)
- Alexey V Bazarov
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Becerra SC, Thambugala HT, Erickson AR, Lee CK, Lewis LK. Reversibility of replicative senescence in Saccharomyces cerevisiae: effect of homologous recombination and cell cycle checkpoints. DNA Repair (Amst) 2011; 11:35-45. [PMID: 22071150 DOI: 10.1016/j.dnarep.2011.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/01/2011] [Accepted: 10/04/2011] [Indexed: 12/13/2022]
Abstract
Primary human somatic cells grown in culture divide a finite number of times, exhibiting progressive changes in metabolism and morphology before cessation of cycling. This telomere-initiated cellular senescence occurs because cells have halted production of telomerase, a DNA polymerase required for stabilization of chromosome ends. Telomerase-deficient Saccharomyces cerevisiae cells undergo a similar process, with most cells arresting growth after approximately 60 generations. In the current study we demonstrate that senescence is largely reversible. Reactivation of telomerase (EST2) expression in the growth-arrested cells led to resumption of cycling and reversal of senescent cell characteristics. Rescue was also observed after mating of senescent haploid cells with telomerase-proficient cells to form stable diploids. Although senescence was reversible in DNA damage checkpoint response mutants (mec3 and/or rad24 cells), survival of recombination-defective rad52 mutants remained low after telomerase reactivation. Telomere lengths in rescued est2 cells were initially half those of wildtype cells, but could be restored to normal by propagation for ∼70 generations in the presence of telomerase. These results place limitations on possible models for senescence and indicate that most cells, despite gross morphological changes and short, resected telomeres, do not experience lethal DNA damage and become irreversibly committed to death.
Collapse
Affiliation(s)
- Sandra C Becerra
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | | | | | | | | |
Collapse
|
13
|
Kim S, Sandler DP, Carswell G, Weinberg CR, Taylor JA. Reliability and short-term intra-individual variability of telomere length measurement using monochrome multiplexing quantitative PCR. PLoS One 2011; 6:e25774. [PMID: 21984947 PMCID: PMC3184167 DOI: 10.1371/journal.pone.0025774] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/09/2011] [Indexed: 12/29/2022] Open
Abstract
Background Studies examining the association between telomere length and cancer risk have often relied on measurement of telomere length from a single blood draw using a real-time PCR technique. We examined the reliability of telomere length measurement using sequential samples collected over a 9-month period. Methods and Findings Relative telomere length in peripheral blood was estimated using a single tube monochrome multiplex quantitative PCR assay in blood DNA samples from 27 non-pregnant adult women (aged 35 to 74 years) collected in 7 visits over a 9-month period. A linear mixed model was used to estimate the components of variance for telomere length measurements attributed to variation among women and variation between time points within women. Mean telomere length measurement at any single visit was not significantly different from the average of 7 visits. Plates had a significant systematic influence on telomere length measurements, although measurements between different plates were highly correlated. After controlling for plate effects, 64% of the remaining variance was estimated to be accounted for by variance due to subject. Variance explained by time of visit within a subject was minor, contributing 5% of the remaining variance. Conclusion Our data demonstrate good short-term reliability of telomere length measurement using blood from a single draw. However, the existence of technical variability, particularly plate effects, reinforces the need for technical replicates and balancing of case and control samples across plates.
Collapse
Affiliation(s)
- Sangmi Kim
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America.
| | | | | | | | | |
Collapse
|
14
|
Recombination can either help maintain very short telomeres or generate longer telomeres in yeast cells with weak telomerase activity. EUKARYOTIC CELL 2011; 10:1131-42. [PMID: 21666075 DOI: 10.1128/ec.05079-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Yeast mutants lacking telomerase are able to elongate their telomeres through processes involving homologous recombination. In this study, we investigated telomeric recombination in several mutants that normally maintain very short telomeres due to the presence of a partially functional telomerase. The abnormal colony morphology present in some mutants was correlated with especially short average telomere length and with a requirement for RAD52 for indefinite growth. Better-growing derivatives of some of the mutants were occasionally observed and were found to have substantially elongated telomeres. These telomeres were composed of alternating patterns of mutationally tagged telomeric repeats and wild-type repeats, an outcome consistent with amplification occurring via recombination rather than telomerase. Our results suggest that recombination at telomeres can produce two distinct outcomes in the mutants we studied. In occasional cells, recombination generates substantially longer telomeres, apparently through the roll-and-spread mechanism. However, in most cells, recombination appears limited to helping to maintain very short telomeres. The latter outcome likely represents a simplified form of recombinational telomere maintenance that is independent of the generation and copying of telomeric circles.
Collapse
|
15
|
Salminen A, Ojala J, Kaarniranta K. Apoptosis and aging: increased resistance to apoptosis enhances the aging process. Cell Mol Life Sci 2011; 68:1021-31. [PMID: 21116678 PMCID: PMC11114781 DOI: 10.1007/s00018-010-0597-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/28/2010] [Accepted: 11/11/2010] [Indexed: 12/14/2022]
Abstract
Apoptosis is a vital component in the evolutionarily conserved host defense system. Apoptosis is the guardian of tissue integrity by removing unfit and injured cells without evoking inflammation. However, apoptosis seems to be a double-edged sword since during low-level chronic stress, such as in aging, increased resistance to apoptosis can lead to the survival of functionally deficient, post-mitotic cells with damaged housekeeping functions. Senescent cells are remarkably resistant to apoptosis, and several studies indicate that host defense mechanisms can enhance anti-apoptotic signaling, which subsequently induces a senescent, pro-inflammatory phenotype during the aging process. At the molecular level, age-related resistance to apoptosis involves (1) functional deficiency in p53 network, (2) increased activity in the NF-κB-IAP/JNK axis, and (3) changes in molecular chaperones, microRNAs, and epigenetic regulation. We will discuss the molecular basis of age-related resistance to apoptosis and emphasize that increased resistance could enhance the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
16
|
Kliche K, Jeggle P, Pavenstädt H, Oberleithner H. Role of cellular mechanics in the function and life span of vascular endothelium. Pflugers Arch 2011; 462:209-17. [DOI: 10.1007/s00424-011-0929-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 01/17/2023]
|
17
|
Melnik BC. Milk signalling in the pathogenesis of type 2 diabetes. Med Hypotheses 2011; 76:553-9. [PMID: 21251764 DOI: 10.1016/j.mehy.2010.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 10/04/2010] [Accepted: 12/23/2010] [Indexed: 01/02/2023]
Abstract
The presented hypothesis identifies milk consumption as an environmental risk factor of Western diet promoting type 2 diabetes (T2D). Milk, commonly regarded as a valuable nutrient, exerts important endocrine functions as an insulinotropic, anabolic and mitogenic signalling system supporting neonatal growth and development. The presented hypothesis substantiates milk's physiological role as a signalling system for pancreatic β-cell proliferation by milk's ability to increase prolactin-, growth hormone and incretin-signalling. The proposed mechanism of milk-induced postnatal β-cell mass expansion mimics the adaptive prolactin-dependent proliferative changes observed in pregnancy. Milk signalling down-regulates the key transcription factor FoxO1 leading to up-regulation of insulin promoter factor-1 which stimulates β-cell proliferation, insulin secretion as well as coexpression of islet amyloid polypeptide (IAPP). The recent finding that adult rodent β-cells only proliferate by self-duplication is of crucial importance, because permanent milk consumption beyond the weaning period may continuously over-stimulate β-cell replication thereby accelerating the onset of replicative β-cell senescence. The long-term use of milk may thus increase endoplasmic reticulum (ER) stress and toxic IAPP oligomer formation by overloading the ER with cytotoxic IAPPs thereby promoting β-cell apoptosis. Both increased β-cell proliferation and β-cell apoptosis are hallmarks of T2D. This hypothesis gets support from clinical states of hyperprolactinaemia and progeria syndromes with early onset of cell senescence which are both associated with an increased incidence of T2D and share common features of milk signalling. Furthermore, the presented milk hypothesis of T2D is compatible with the concept of high ER stress in T2D and the toxic oligomer hypothesis of T2D and may explain the high association of T2D and Alzheimer disease.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
18
|
Giovannelli L, Pitozzi V, Jacomelli M, Mulinacci N, Laurenzana A, Dolara P, Mocali A. Protective Effects of Resveratrol Against Senescence-Associated Changes in Cultured Human Fibroblasts. ACTA ACUST UNITED AC 2010; 66:9-18. [DOI: 10.1093/gerona/glq161] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
19
|
Hamerman D. Can biogerontologists and geriatricians unite to apply aging science to health care in the decade ahead? J Gerontol A Biol Sci Med Sci 2010; 65:1193-7. [PMID: 20591875 DOI: 10.1093/gerona/glq117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biogerontologists and academic geriatricians are both dedicated to promoting a healthier longevity for our society from their perspectives of scientific research on aging and education as part of clinical care for older persons. Yet at the present time, the prospects for translating research advances made by the biogerontologists to improve the outlook for health care provided by the geriatricians are limited by a "gulf" that exists between them, with little shared dialogue or scientific interchange. This article sets forth a basis for a union between both disciplines to prepare for the potential application of basic aging research to the provision of health care, with the aim ultimately to extend "health span" during our life span.
Collapse
Affiliation(s)
- David Hamerman
- International Longevity Center, 60 East 86th Street, New York, NY 10028, USA.
| |
Collapse
|
20
|
Lang F. Molecular determinants of life span. Pflugers Arch 2009; 459:237-8. [DOI: 10.1007/s00424-009-0708-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 07/29/2009] [Indexed: 01/21/2023]
|