1
|
Rudell JC, McLoon LK. Effects of Short-Term Treatment of Rabbit Extraocular Muscle With Ciliary Neurotrophic Factor. Invest Ophthalmol Vis Sci 2024; 65:41. [PMID: 39330989 PMCID: PMC11437687 DOI: 10.1167/iovs.65.11.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Purpose Little is known about the effect of ciliary neurotrophic factor (CNTF) on extraocular muscles, but microarray studies suggested CNTF might play a role in the development and/or maintenance of strabismus. The effect of short-term treatment of adult rabbit extraocular muscle with injected CNTF was examined for its ability to alter muscle characteristics. Methods Eight adult New Zealand white rabbits received an injection into one superior rectus muscle of 2 µg/100 µL CNTF on 3 consecutive days. One week after the first injection, the rabbits were euthanized, and the treated and contralateral superior rectus muscles were assessed for force generation capacity and contraction characteristics using an in vitro stimulation protocol and compared to naïve control superior rectus muscles. All muscles were analyzed to determine mean cross-sectional areas and expression of slow twitch myosin heavy chain isoform. Results Short-term treatment of rabbit superior rectus muscles with CNTF resulted in a significant decrease in muscle force generation, but only at the higher stimulation frequencies. Significantly decreased myofiber cross-sectional areas of the treated muscles correlated with the decreased generated force. In addition, there were significant changes to contractile properties of the treated muscles, as well as a decrease in the number of myofibers expressing slow twitch myosin heavy chain. Conclusions We show that short-term treatment of a single rabbit superior rectus muscle results in decreased myofiber size, decreased force, and altered contractile characteristics. Further studies are needed to determine if it can play a role in improving alignment in animal models of strabismus.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Linda K McLoon
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Hao J, Wang M, Liu J, Yusufu M, Cao K, Fu J. Alteration of Neurotrophic Factors and Innervation in Extraocular Muscles of Individuals With Concomitant Esotropia. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38441891 PMCID: PMC10916883 DOI: 10.1167/iovs.65.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose To determine whether neurotrophic factors and innervation in extraocular muscles (EOMs) were altered in different types of concomitant esotropia, and to explore the possible association between neurotrophic factors and innervation of EOMs in humans. Methods Patients with concomitant esotropia who required strabismus surgery were recruited from January to December 2022. Lateral rectus EOMs were obtained from patients, and controls were obtained from deceased organ donors. Immunofluorescence (IF) was performed to detect innervation of EOMs (neurofilament and synaptophysin), and immunohistochemistry (IHC) was used to detect the neurotrophic factors insulin-like growth factor-1 (IGF-1), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and neurotrophin-3 (NT-3). The positive IHC results were further verified using western blotting (WB). One-way ANOVA followed by a Dunnett's multiple comparison post hoc test was used for continuous variables and the χ2 test for categorical variables. Spearman correlation analysis was used for the correlation analysis. Results We collected lateral rectus EOM samples from acute and chronic types of concomitant esotropia and controls. Consistent with IHC, WB showed that IGF-1 was significantly increased in patients with acute acquired comitant esotropia or essential infantile esotropia compared with controls. In IF, synaptophysins were significantly increased only in acute acquired comitant esotropia compared with controls. Furthermore, Spearman correlation analysis showed that the correlation between IGF-1 and synaptophysin was borderline (P = 0.057) for patients with acute acquired comitant esotropia. Conclusions Our study highlights the role of IGF-1 and altered innervation of EOMs in acute acquired comitant esotropia, suggesting that an effect of increased IGF-1 on nerve innervation may temporarily cause a compensatory increase in the strength of lateral rectus muscles.
Collapse
Affiliation(s)
- Jie Hao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing, China
| | - Meixu Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing, China
| | - Jiawen Liu
- Industrial Engineering and Operations Research, University of California, Berkeley, California, United States
| | - Mayinuer Yusufu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Australia
| | - Kai Cao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing, China
| | - Jing Fu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Ophthalmology & Visual Sciences, Beijing, China
| |
Collapse
|
3
|
Schiaffino S, Hughes SM, Murgia M, Reggiani C. MYH13, a superfast myosin expressed in extraocular, laryngeal and syringeal muscles. J Physiol 2024; 602:427-443. [PMID: 38160435 DOI: 10.1113/jp285714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
MYH13 is a unique type of sarcomeric myosin heavy chain (MYH) first detected in mammalian extraocular (EO) muscles and later also in vocal muscles, including laryngeal muscles of some mammals and syringeal muscles of songbirds. All these muscles are specialized in generating very fast contractions while producing relatively low force, a design appropriate for muscles acting against a much lower load than most skeletal muscles inserting into the skeleton. The definition of the physiological properties of muscle fibres containing MYH13 has been complicated by the mixed fibre type composition of EO muscles and the coexistence of different MYH types within the same fibre. A major advance in this area came from studies on isolated recombinant myosin motors and the demonstration that the affinity of actin-bound human MYH13 for ADP is much weaker than those of fast-type MYH1 (type 2X) and MYH2 (type 2A). This property is consistent with a very fast detachment of myosin from actin, a major determinant of shortening velocity. The MYH13 gene arose early during vertebrate evolution but was characterized only in mammals and birds and appears to have been lost in some teleost fish. The MYH13 gene is located at the 3' end of the mammalian fast/developmental gene cluster and in a similar position to the orthologous cluster in syntenic regions of the songbird genome. MYH13 gene regulation is controlled by a super-enhancer in the mammalian locus and deletion of the neighbouring fast MYH1 and MYH4 genes leads to abnormal MYH13 expression in mouse leg muscles.
Collapse
Affiliation(s)
| | - Simon M Hughes
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College, London, UK
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
4
|
Zehra Z, Khan N, Nadeem M, Siddiqui SN, von Bartheld CS, Azam M, Qamar R. Association of IGF1 polymorphisms with exotropia in a Pakistani cohort. Mol Vis 2022; 28:369-377. [PMID: 36338665 PMCID: PMC9603902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023] Open
Abstract
PURPOSE Strabismus (STBMS) is a multifactorial ocular disorder in children that leads to misalignment of the eyes. Insulin-like growth factor 1 (IGF1) has been shown to be involved in the development of extraocular muscles and myopia; however, data are limited on the genetic associations of IGF1 with STBMS in Pakistan. METHODS Two hundred seventy-four STBMS cases and 272 unaffected controls were recruited, and their DNA was extracted. Two IGF1 single nucleotide polymorphisms, rs6214 and rs5742632, were genotyped using PCR-restriction fragment length polymorphism. Univariate logistic regression analysis was performed to determine the association of these single nucleotide polymorphisms with STBMS, and the results were adjusted for age and sex. In addition, 26 extraocular muscle tissues were collected from patients with STBMS undergoing squint correction surgery, along with 3 deceased control samples. IGF1 mRNA expression was measured by quantitative PCR; the Mann-Whitney U test was applied, and fold change was calculated. Logistic regression analysis was applied to determine the association of RNA expression and fold change with genotype. RESULTS Multivariate logistic regression analysis revealed that rs5742632 (odds ratio [95% confidence interval] = 1.05[1.01-1.06], p = 0.03) is associated with STBM. Moreover, rs6214 (1.03[1.01-1.05], p = 0.03) and rs5742632 (1.09[1.04-1.11], p = 0.04) were associated with exotropia. Statistically, no significant difference in IGF1 mRNA expression in the extraocular muscles between the STBMS cases and the controls was observed. CONCLUSIONS IGF1 polymorphisms rs5742632 (A>G) and rs6214 (C>T) are plausible risk factors for the development of exotropia. However, the physiologic mechanism requires further evaluation.
Collapse
Affiliation(s)
- Zainab Zehra
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV
| | - Netasha Khan
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Minhal Nadeem
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | | | - Maleeha Azam
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Raheel Qamar
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
- Science and Technology Sector, ICESCO, Rabat, Morocco
| |
Collapse
|
5
|
Rudell JC, McLoon LK. Effect of Fibroblast Growth Factor 2 on Extraocular Muscle Structure and Function. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 34293078 PMCID: PMC8300058 DOI: 10.1167/iovs.62.9.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in the fibroblast growth factor (FGF) receptor can result in strabismus, but little is known about how FGFs affect extraocular muscle structure and function. These were assessed after short-term and long-term exposure to exogenously applied FGF2 to determine the effect of enhanced signaling. Methods One superior rectus muscle of adult rabbits received either a series of three injections of 500 ng, 1 µg, or 5 µg FGF2 and examined after 1 week, or received sustained treatment with FGF2 and examined after 1, 2, or 3 months. Muscles were assessed for alterations in force generation, myofiber size, and satellite cell number after each treatment. Results One week after the 5 µg FGF2 injections, treated muscles showed significantly increased force generation compared with naïve controls, which correlated with increased myofiber cross-sectional areas and Pax7-positive satellite cells. In contrast, 3 months of sustained FGF2 treatment resulted in decreased force generation, which correlated with decreased myofiber size and decreased satellite cells compared with naïve control and the untreated contralateral side. Conclusions FGF2 had distinctly different effects when short-term and long-term treatments were compared. The decreased size and ability to generate force correlated with decreased myofiber areas seen in individuals with Apert syndrome, where there is sustained activation of FGF signaling. Knowing more about signaling pathways critical for extraocular muscle function, development, and disease will pave the way for improved treatment options for strabismus patients with FGF abnormalities in craniofacial disease, which also may be applicable to other strabismus patients.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University of California San Diego, San Diego, California, United States
| | - Linda K McLoon
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
6
|
Rudell JC, Fleuriet J, Mustari MJ, McLoon LK. Childhood Onset Strabismus: A Neurotrophic Factor Hypothesis. J Binocul Vis Ocul Motil 2021; 71:35-40. [PMID: 33872122 PMCID: PMC8102408 DOI: 10.1080/2576117x.2021.1893585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Strabismus is a genetically heterogeneous disorder with complex molecular and neurophysiological causes. Evidence in the literature suggests a strong role for motor innervation in the etiology of strabismus, which connects central neural processes to the peripheral extraocular muscles. Current treatments of strabismus through surgery show that an inherent sensorimotor plasticity in the ocular motor system decreases the effectiveness of treatment, often driving eye alignment back toward its misaligned pre-surgical state by altering extraocular muscle tonus. There is recent interest in capitalizing on existing biological processes in extraocular muscles to overcome these compensatory mechanisms. Neurotrophins are trophic factors that regulate survival and development in neurons and muscle, including extraocular muscles. Local administration of neurotrophins to extraocular muscles partially reversed strabismus in an animal model of strabismus. The hypothesis is that sustained release of neurotrophins gives more time for the ocular motor system to adapt to a slow change in alignment in the desired direction. The effect of neurotrophins on extraocular muscles is complex, as different neurotrophic factors have diverse effects on extraocular muscle contraction profiles, patterns of innervation, and density of extraocular muscle precursor cells. Neurotrophic factors show promise as a therapeutic option for strabismus, which may help to improve treatment outcomes and offset devastating amblyopia and psychosocial effects of disease in strabismus patients.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University California San Diego, San Diego, California
| | - Jérome Fleuriet
- Assistance Publique-Hôpitaux de Paris, Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
7
|
Eye alignment changes caused by sustained GDNF treatment of an extraocular muscle in infant non-human primates. Sci Rep 2020; 10:11927. [PMID: 32681083 PMCID: PMC7368047 DOI: 10.1038/s41598-020-68743-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
The ability of sustained treatment of a single extraocular muscle with glial cell line-derived neurotrophic factor (GDNF) to produce a strabismus in infant non-human primates was tested. Six infant non-human primates received a pellet containing GDNF, releasing 2 µg/day for 90 days, on one medial rectus muscle. Eye alignment was assessed up to 6 months. Five of the six animals showed a slow decrease in eye misalignment from the significant exotropia present at birth, ending with approximately 10° of exotropia. Controls became orthotropic. Misalignment averaged 8° three months after treatment ended. After sustained GDNF treatment, few changes were seen in mean myofiber cross-sectional areas compared to age-matched naïve controls. Neuromuscular junction number was unaltered in the medial rectus muscles, but were significantly reduced in the untreated lateral recti. Neuromuscular junctions on slow fibers became multiply innervated after this sustained GDNF treatment. Pitx2-positive cells significantly decreased in treated and contralateral medial rectus muscles. Our study suggests that balanced GDNF signaling plays a role in normal development and maintenance of orthotropia. Sustained GDNF treatment of one medial rectus muscle resulted in a measurable misalignment largely maintained 3 months after treatment ended. Structural changes suggest mechanisms for producing an imbalance in muscle function.
Collapse
|
8
|
Fleuriet J, McLoon LK. Visualizing Neuronal Adaptation Over Time After Treatment of Strabismus. Invest Ophthalmol Vis Sci 2018; 59:5022-5024. [PMID: 30326069 PMCID: PMC6188464 DOI: 10.1167/iovs.18-25651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, Minneapolis, Minnesota, United States;
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
9
|
Fitzpatrick KR, Cucak A, McLoon LK. Changing muscle function with sustained glial derived neurotrophic factor treatment of rabbit extraocular muscle. PLoS One 2018; 13:e0202861. [PMID: 30142211 PMCID: PMC6108505 DOI: 10.1371/journal.pone.0202861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
Recent microarray and RNAseq experiments provided evidence that glial derived neurotrophic factor (GDNF) levels were decreased in extraocular muscles from human strabismic subjects compared to age-matched controls. We assessed the effect of sustained GDNF treatment of the superior rectus muscles of rabbits on their physiological and morphological characteristics, and these were compared to naïve control muscles. Superior rectus muscles of rabbits were implanted with a sustained release pellet of GDNF to deliver 2μg/day, with the contralateral side receiving a placebo pellet. After one month, the muscles were assessed using in vitro physiological methods. The muscles were examined histologically for alteration in fiber size, myosin expression patterns, neuromuscular junction size, and stem cell numbers and compared to age-matched naïve control muscles. GDNF resulted in decreased force generation, which was also seen on the untreated contralateral superior rectus muscles. Muscle relaxation times were increased in the GDNF treated muscles. Myofiber mean cross-sectional areas were increased after the GDNF treatment, but there was a compensatory increase in expression of developmental, neonatal, and slow tonic myosin heavy chain isoforms. In addition, in the GDNF treated muscles there was a large increase in Pitx2-positive myogenic precursor cells. One month of GDNF resulted in significant extraocular muscle adaptation. These changes are interesting relative to the decreased levels of GDNF in the muscles from subjects with strabismus and preliminary data in infant non-human primates where sustained GDNF treatment produced a strabismus. These data support the view that GDNF has the potential for improving eye alignment in subjects with strabismus.
Collapse
Affiliation(s)
- Krysta R. Fitzpatrick
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anja Cucak
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ophthalmology and Visual Neurosciences and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
10
|
Agarwal AB, Christensen AJ, Feng CY, Wen D, Johnson LA, von Bartheld CS. Expression of schizophrenia biomarkers in extraocular muscles from patients with strabismus: an explanation for the link between exotropia and schizophrenia? PeerJ 2017; 5:e4214. [PMID: 29302405 PMCID: PMC5742522 DOI: 10.7717/peerj.4214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/10/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies have implicated exotropia as a risk factor for schizophrenia. We determined whether schizophrenia biomarkers have abnormal levels of expression in extraocular muscles from patients with strabismus and explored whether differences in gene expression between medial and lateral rectus muscles may explain the specific association of schizophrenia with exotropia but not esotropia. Samples from horizontal extraocular muscles were obtained during strabismus surgery and compared with age- and muscle type-matched normal muscles from organ donors. We used PCR arrays to identify differences in gene expression among 417 signaling molecules. We then focused on established schizophrenia-related growth factors, cytokines, and regulators of the extracellular matrix. Among 36 genes with significantly altered gene expression in dysfunctional horizontal rectus muscles, over one third were schizophrenia-related: CTGF, CXCR4, IL1B, IL10RA, MIF, MMP2, NPY1R, NRG1, NTRK2, SERPINA3, TIMP1, TIMP2, and TNF (adjusted p value ≤ 0.016667). By PCR array, expression of three of these genes was significantly different in medial rectus muscles, while eleven were significantly altered in lateral rectus muscles. Comparing baseline levels between muscle types, three schizophrenia-related genes (NPY1R, NTRK2, TIMP2) had lower levels of expression in medial rectus muscles. Despite the surprisingly large number of schizophrenia-related genes with altered gene expression levels in dysfunctional muscles, the lack of specificity for medial rectus muscles undermines a model of shared, region-specific gene expression abnormalities between exotropia and schizophrenia, but rather suggests consideration of the alternative model: that exotropia-induced aberrant early visual experiences may enable and/or contribute as a causative factor to the development of schizophrenia.
Collapse
Affiliation(s)
- Andrea B. Agarwal
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Austin J. Christensen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Cheng-Yuan Feng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Dan Wen
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | | | | |
Collapse
|
11
|
Nel M, Jalali Sefid Dashti M, Gamieldien J, Heckmann JM. Exome sequencing identifies targets in the treatment-resistant ophthalmoplegic subphenotype of myasthenia gravis. Neuromuscul Disord 2017; 27:816-825. [PMID: 28673556 DOI: 10.1016/j.nmd.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 12/25/2022]
Abstract
Treatment-resistant ophthalmoplegia (OP-MG) is not uncommon in individuals with African genetic ancestry and myasthenia gravis (MG). To identify OP-MG susceptibility genes, extended whole exome sequencing was performed using extreme phenotype sampling (11 OP-MG vs 4 control-MG) all with acetylcholine receptor-antibody positive MG. This approach identified 356 variants that were twice as frequent in OP-MG compared to control-MG individuals. After performing probability test estimates and filtering variants according to those 'suggestive' of association with OP-MG (p < 0.05), only three variants remained which were expressed in extraocular muscles. Validation in 25 OP-MG and 50 control-MG cases supported the association of DDX17delG (p = 0.014) and SPTLC3insACAC (p = 0.055) with OP-MG, but ST8SIA1delCCC could not be verified by Sanger sequencing. A parallel approach, using a semantic model informed by current knowledge of MG-pathways, identified an African-specific interleukin-6 receptor (IL6R) variant, IL6R c.*3043 T>C, that was more frequent in OP-MG compared to control-MG cases (p = 0.069) and population controls (p = 0.043). A weighted genetic risk score, derived from the odds ratios of association of these variants with OP-MG, correlated with the OP-MG phenotype as opposed to control MG. This unbiased approach implicates several potentially functional gene variants in the gangliosphingolipid and myogenesis pathways in the development of the OP-MG subphenotype.
Collapse
Affiliation(s)
- Melissa Nel
- Neurology Division, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Junaid Gamieldien
- South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| | - Jeannine M Heckmann
- Neurology Division, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
12
|
Agarwal AB, Feng CY, Altick AL, Quilici DR, Wen D, Johnson LA, von Bartheld CS. Altered Protein Composition and Gene Expression in Strabismic Human Extraocular Muscles and Tendons. Invest Ophthalmol Vis Sci 2017; 57:5576-5585. [PMID: 27768799 PMCID: PMC5080916 DOI: 10.1167/iovs.16-20294] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose To determine whether structural protein composition and expression of key regulatory genes are altered in strabismic human extraocular muscles. Methods Samples from strabismic horizontal extraocular muscles were obtained during strabismus surgery and compared with normal muscles from organ donors. We used proteomics, standard and customized PCR arrays, and microarrays to identify changes in major structural proteins and changes in gene expression. We focused on muscle and connective tissue and its control by enzymes, growth factors, and cytokines. Results Strabismic muscles showed downregulation of myosins, tropomyosins, troponins, and titin. Expression of collagens and regulators of collagen synthesis and degradation, the collagenase matrix metalloproteinase (MMP)2 and its inhibitors, tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2, was upregulated, along with tumor necrosis factor (TNF), TNF receptors, and connective tissue growth factor (CTGF), as well as proteoglycans. Growth factors controlling extracellular matrix (ECM) were also upregulated. Among 410 signaling genes examined by PCR arrays, molecules with downregulation in the strabismic phenotype included GDNF, NRG1, and PAX7; CTGF, CXCR4, NPY1R, TNF, NTRK1, and NTRK2 were upregulated. Signaling molecules known to control extraocular muscle plasticity were predominantly expressed in the tendon rather than the muscle component. The two horizontal muscles, medial and lateral rectus, displayed similar changes in protein and gene expression, and no obvious effect of age. Conclusions Quantification of proteins and gene expression showed significant differences in the composition of extraocular muscles of strabismic patients with respect to important motor proteins, elements of the ECM, and connective tissue. Therefore, our study supports the emerging view that the molecular composition of strabismic muscles is substantially altered.
Collapse
Affiliation(s)
- Andrea B Agarwal
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| | - Cheng-Yuan Feng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| | - Amy L Altick
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| | - David R Quilici
- Mick Hitchcock Nevada Proteomics Center, University of Nevada, Reno, Nevada, United States
| | - Dan Wen
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - L Alan Johnson
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States 4Sierra Eye Associates, Reno, Nevada, United States
| | - Christopher S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States
| |
Collapse
|
13
|
Altick AL, Feng CY, Schlauch K, Johnson LA, von Bartheld CS. Differences in gene expression between strabismic and normal human extraocular muscles. Invest Ophthalmol Vis Sci 2012; 53:5168-77. [PMID: 22786898 DOI: 10.1167/iovs.12-9785] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Strabismic extraocular muscles (EOMs) differ from normal EOMs in structural and functional properties, but the gene expression profile of these two types of EOM has not been examined. Differences in gene expression may inform about causes and effects of the strabismic condition in humans. METHODS EOM samples were obtained during corrective surgery from patients with horizontal strabismus and from deceased organ donors with normal EOMs. Microarrays and quantitative PCR identified significantly up- and down-regulated genes in EOM samples. Analysis was performed on probe sets with more than 3-fold differential expression between normal and strabismic samples, with an adjusted P value of ≤ 0.05. RESULTS Microarray analysis showed that 604 genes in these samples had significantly different expression. Expression predominantly was upregulated in genes involved in extracellular matrix structure, and down-regulated in genes related to contractility. Expression of genes associated with signaling, calcium handling, mitochondria function and biogenesis, and energy homeostasis also was significantly different between normal and strabismic EOM. Skeletal muscle PCR array identified 22 (25%) of 87 muscle-specific genes that were significantly down-regulated in strabismic EOMs; none was significantly upregulated. CONCLUSIONS Differences in gene expression between strabismic and normal human EOMs point to a relevant contribution of the peripheral oculomotor system to the strabismic condition. Decreases in expression of contractility genes and increases of extracellular matrix-associated genes indicate imbalances in EOM structure. We conclude that gene regulation of proteins fundamental to contractile mechanics and extracellular matrix structure is involved in pathogenesis and/or consequences of strabismus, suggesting potential novel therapeutic targets.
Collapse
Affiliation(s)
- Amy L Altick
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | | | | | |
Collapse
|
14
|
Analysis of spontaneous and nerve-evoked calcium transients in intact extraocular muscles in vitro. Exp Eye Res 2012; 100:73-85. [PMID: 22579493 DOI: 10.1016/j.exer.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/29/2012] [Accepted: 04/18/2012] [Indexed: 12/22/2022]
Abstract
Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2(max) duration of 2-12 s, velocity of 25-50 μm/s) and two fast "flash-like" types (Type 1, 30-90 ms; Type 2, 90-150 ms 1/2(max) duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs.
Collapse
|
15
|
Willoughby CL, Christiansen SP, Mustari MJ, McLoon LK. Effects of the sustained release of IGF-1 on extraocular muscle of the infant non-human primate: adaptations at the effector organ level. Invest Ophthalmol Vis Sci 2012; 53:68-75. [PMID: 22125277 DOI: 10.1167/iovs.11-8356] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors have demonstrated that prolonged exposure of adult rabbit extraocular muscle (EOM) to insulin-like growth factor-1 (IGF-1) results in significantly increased cross-sectional area and muscle force generation lasting over 3 months. Here the authors assess the effects on EOM of sustained IGF-1 treatment on normal binocular infant Macaca mulatta. METHODS Sustained-release IGF-1 pellets were implanted bilaterally in each medial rectus (MR) muscle of two normal infant non-human primates. Eye position was examined using corneal light reflex testing. After 3 months, morphometric analyses of myofiber cross-sectional area and innervation density in treated MR muscles were compared with an age-matched control and with antagonist lateral rectus (LR) muscles. RESULTS After 3 months, the slow-release pellets remained at the implantation site in all four MR muscles treated. The treated MR showed pronounced increases in cross-sectional area and nerve density, mirrored in the untreated antagonist LR. CONCLUSIONS Three months of bilateral sustained IGF-1 release in infant non-human primate MR resulted in increased muscle size and innervation density, mirrored in the untreated antagonist LR. It appears that bilateral MR treatment resulted in slow adaptation of both treated MR and contralateral LR muscles over time such that functional homeostasis and near-normal alignment were maintained. Further work is needed to determine what signaling mechanisms maintain proportional innervation when EOMs are forced to adapt to an externally applied perturbation.
Collapse
Affiliation(s)
- Christy L Willoughby
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
16
|
Feng CY, von Bartheld CS. Expression of insulin-like growth factor 1 isoforms in the rabbit oculomotor system. Growth Horm IGF Res 2011; 21:228-232. [PMID: 21703892 PMCID: PMC3140565 DOI: 10.1016/j.ghir.2011.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/03/2011] [Accepted: 06/04/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The insulin-like growth factor-1 (IGF-1) gene encodes two isoforms, IGF-1Ea and IGF-1Eb. Both isoforms can regulate skeletal muscle growth and strength. It has been suggested that IGF-Eb may be more potent in promoting skeletal muscle hypertrophy. Precise contractile force regulation is particularly important in the oculomotor system. However, expression of these isoforms in mammalian extraocular muscles (EOMs) is unknown. Here, we examined their expression in rabbit EOMs and the innervating nerve, two potential sources for myogenic growth factors, and compared isoform expression between EOMs and limb skeletal muscles. DESIGN Expression of IGF-1 isoforms was quantified by real-time RT-PCR in adult rabbit EOMs, trochlear and ophthalmic nerves, and compared with expression in rabbit limb skeletal muscles. The presence of mature IGF-1 peptide in the muscles was further examined by Western blot. RESULTS Both IGF-1Ea and IGF-1Eb were expressed in the EOM and the trochlear nerve. Both isoforms were expressed at significantly higher levels (9-fold) in EOM than in limb skeletal muscle. Transcripts of IGF-1 isoforms, of IGF-1 receptor and of IGF binding proteins showed a gradient distribution along the EOM from proximal to distal. The mature IGF-1 protein showed the same gradient distribution in the EOM. CONCLUSIONS Expression of relatively abundant amounts of both IGF-1 splicing isoforms in EOMs, and at a significantly higher level than in limb skeletal muscle, underscores the potential relevance of these myogenic growth factors in EOM plasticity and force regulation.
Collapse
Affiliation(s)
- Cheng-Yuan Feng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|