1
|
Renaud JM, Ørtenblad N, McKenna MJ, Overgaard K. Exercise and fatigue: integrating the role of K +, Na + and Cl - in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol 2023; 123:2345-2378. [PMID: 37584745 PMCID: PMC10615939 DOI: 10.1007/s00421-023-05270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.
Collapse
Affiliation(s)
- Jean-Marc Renaud
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Kutz LC, Cui X, Xie JX, Mukherji ST, Terrell KC, Huang M, Wang X, Wang J, Martin AJ, Pessoa MT, Cai L, Zhu H, Heiny JA, Shapiro JI, Blanco G, Xie Z, Pierre SV. The Na/K-ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance. Acta Physiol (Oxf) 2021; 232:e13652. [PMID: 33752256 PMCID: PMC8570534 DOI: 10.1111/apha.13652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023]
Abstract
AIM Highly prevalent diseases such as insulin resistance and heart failure are characterized by reduced metabolic flexibility and reserve. We tested whether Na/K-ATPase (NKA)-mediated regulation of Src kinase, which requires two NKA sequences specific to the α1 isoform, is a regulator of metabolic capacity that can be targeted pharmacologically. METHODS Metabolic capacity was challenged functionally by Seahorse metabolic flux analyses and glucose deprivation in LLC-PK1-derived cells expressing Src binding rat NKA α1, non-Src-binding rat NKA α2 (the most abundant NKA isoform in the skeletal muscle), and Src binding gain-of-function mutant rat NKA α2. Mice with skeletal muscle-specific ablation of NKA α1 (skα1-/-) were generated using a MyoD:Cre-Lox approach and were subjected to treadmill testing and Western diet. C57/Bl6 mice were subjected to Western diet with or without pharmacological inhibition of NKA α1/Src modulation by treatment with pNaKtide, a cell-permeable peptide designed by mapping one of the sites of NKA α1/Src interaction. RESULTS Metabolic studies in mutant cell lines revealed that the Src binding regions of NKA α1 are required to maintain metabolic reserve and flexibility. Skα1-/- mice had decreased exercise endurance and mitochondrial Complex I dysfunction. However, skα1-/- mice were resistant to Western diet-induced insulin resistance and glucose intolerance, a protection phenocopied by pharmacological inhibition of NKA α1-mediated Src regulation with pNaKtide. CONCLUSIONS These results suggest that NKA α1/Src regulatory function may be targeted in metabolic diseases. Because Src regulatory capability by NKA α1 is exclusive to endotherms, it may link the aerobic scope hypothesis of endothermy evolution to metabolic dysfunction.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoyu Cui
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeffrey X. Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kayleigh C Terrell
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Minqi Huang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jiayan Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Adam J Martin
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Marco T Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Hua Zhu
- Department of Surgery, Wexner Medical Center, Ohio State University, Columbus, OH
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH
| | - Joseph I Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo Blanco
- Department of Molecular and Integrative Physiology, and The Kidney Institute, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
3
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Felipe SMDS, de Freitas RM, Penha EDDS, Pacheco C, Martins DL, Alves JO, Soares PM, Loureiro ACC, Lima T, Silveira LR, Ferraz ASM, de Souza JES, Leal-Cardoso JH, Carvalho DP, Ceccatto VM. Transcriptional profile in rat muscle: down-regulation networks in acute strenuous exercise. PeerJ 2021; 9:e10500. [PMID: 33859869 PMCID: PMC8020866 DOI: 10.7717/peerj.10500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022] Open
Abstract
Background Physical exercise is a health promotion factor regulating gene expression and causing changes in phenotype, varying according to exercise type and intensity. Acute strenuous exercise in sedentary individuals appears to induce different transcriptional networks in response to stress caused by exercise. The objective of this research was to investigate the transcriptional profile of strenuous experimental exercise. Methodology RNA-Seq was performed with Rattus norvegicus soleus muscle, submitted to strenuous physical exercise on a treadmill with an initial velocity of 0.5 km/h and increments of 0.2 km/h at every 3 min until animal exhaustion. Twenty four hours post-physical exercise, RNA-seq protocols were performed with coverage of 30 million reads per sample, 100 pb read length, paired-end, with a list of counts totaling 12816 genes. Results Eighty differentially expressed genes (61 down-regulated and 19 up-regulated) were obtained. Reactome and KEGG database searches revealed the most significant pathways, for down-regulated gene set, were: PI3K-Akt signaling pathway, RAF-MAP kinase, P2Y receptors and Signaling by Erbb2. Results suggest PI3K-AKT pathway inactivation by Hbegf, Fgf1 and Fgr3 receptor regulation, leading to inhibition of cell proliferation and increased apoptosis. Cell signaling transcription networks were found in transcriptome. Results suggest some metabolic pathways which indicate the conditioning situation of strenuous exercise induced genes encoding apoptotic and autophagy factors, indicating cellular stress. Conclusion Down-regulated networks showed cell transduction and signaling pathways, with possible inhibition of cellular proliferation and cell degeneration. These findings reveal transitory and dynamic process in cell signaling transcription networks in skeletal muscle after acute strenuous exercise.
Collapse
Affiliation(s)
| | | | | | - Christina Pacheco
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Danilo Lopes Martins
- Digital Metropolis Institute, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Juliana Osório Alves
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | - Paula Matias Soares
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| | | | - Tanes Lima
- Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Institute of Biology, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | | | | | | | - Denise P Carvalho
- Carlos Chagas Filho Biophysics Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vania Marilande Ceccatto
- Superior Institute of Biomedic Sciences, Universidade Estadual do Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
5
|
The role of AMPK in regulation of Na +,K +-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 2021; 42:77-97. [PMID: 33398789 DOI: 10.1007/s10974-020-09594-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.
Collapse
|
6
|
Kutz LC, Mukherji ST, Wang X, Bryant A, Larre I, Heiny JA, Lingrel JB, Pierre SV, Xie Z. Isoform-specific role of Na/K-ATPase α1 in skeletal muscle. Am J Physiol Endocrinol Metab 2018; 314:E620-E629. [PMID: 29438630 PMCID: PMC6032065 DOI: 10.1152/ajpendo.00275.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The distribution of Na/K-ATPase α-isoforms in skeletal muscle is unique, with α1 as the minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves this isoform-specific trophic role in the skeletal muscle, we used Na/K-ATPase α1-haploinsufficient (α1+/-) mice. A 30% decrease of Na/K-ATPase α1 protein expression without change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus weights were not significantly affected, likely because of their very low expression level of α1 compared with the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or glycogen metabolism. Serum analytes including K+, fat tissue mass, and exercise capacity were not altered in α1+/- mice. The impact of α1 content on soleus muscle mass is consistent with a Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by α2. The preserved running capacity in α1+/- is in sharp contrast with previously reported consequences of genetic manipulation of α2. Taken together, these results lend further support to the concept of distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle.
Collapse
Affiliation(s)
- Laura C Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Shreya T Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Xiaoliang Wang
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Amber Bryant
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Judith A Heiny
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Jerry B Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine , Cincinnati, Ohio
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia
| |
Collapse
|
7
|
Hostrup M, Bangsbo J. Limitations in intense exercise performance of athletes - effect of speed endurance training on ion handling and fatigue development. J Physiol 2016; 595:2897-2913. [PMID: 27673449 DOI: 10.1113/jp273218] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/21/2016] [Indexed: 01/10/2023] Open
Abstract
Mechanisms underlying fatigue development and limitations for performance during intense exercise have been intensively studied during the past couple of decades. Fatigue development may involve several interacting factors and depends on type of exercise undertaken and training level of the individual. Intense exercise (½-6 min) causes major ionic perturbations (Ca2+ , Cl- , H+ , K+ , lactate- and Na+ ) that may reduce sarcolemmal excitability, Ca2+ release and force production of skeletal muscle. Maintenance of ion homeostasis is thus essential to sustain force production and power output during intense exercise. Regular speed endurance training (SET), i.e. exercise performed at intensities above that corresponding to maximum oxygen consumption (V̇O2, max ), enhances intense exercise performance. However, most of the studies that have provided mechanistic insight into the beneficial effects of SET have been conducted in untrained and recreationally active individuals, making extrapolation towards athletes' performance difficult. Nevertheless, recent studies indicate that only a few weeks of SET enhances intense exercise performance in highly trained individuals. In these studies, the enhanced performance was not associated with changes in V̇O2, max and muscle oxidative capacity, but rather with adaptations in muscle ion handling, including lowered interstitial concentrations of K+ during and in recovery from intense exercise, improved lactate- -H+ transport and H+ regulation, and enhanced Ca2+ release function. The purpose of this Topical Review is to provide an overview of the effect of SET and to discuss potential mechanisms underlying enhancements in performance induced by SET in already well-trained individuals with special emphasis on ion handling in skeletal muscle.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.,Department of Respiratory Research, Bispebjerg University Hospital, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Juel C. Nitric oxide and Na,K-ATPase activity in rat skeletal muscle. Acta Physiol (Oxf) 2016; 216:447-53. [PMID: 26472244 DOI: 10.1111/apha.12617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/23/2015] [Accepted: 10/12/2015] [Indexed: 11/28/2022]
Abstract
AIM It has been suggested that nitric oxide (NO) stimulates the Na,K-ATPase in cardiac myocytes. Therefore, the aims of this study were to investigate whether NO increases Na,K-ATPase activity in skeletal muscle and, if that is the case, to identify the underlying mechanism. METHOD The study used isolated rat muscle, muscle homogenates and purified membranes as model systems. Na,K-ATPase activity was quantified from phosphate release due to ATP hydrolysis. RESULTS Exposure to the NO donor spermine NONOate (10 μm) increased the maximal Na,K-ATPase activity by 27% in isolated glycolytic muscles, but had no effect in oxidative muscles. Spermine NONOate increased the maximal Na,K-ATPase activity by 58% (P < 0.05) in homogenates from glycolytic muscle, but had no effect in oxidative muscle. The stimulatory effect of NONOate was not related to one specific Na,K-ATPase α-isoform. Incubation with cGMP (1 mm) increased the maximal Na,K-ATPase activity in homogenates from glycolytic muscle by 16% (P < 0.05), but had no effect on homogenates from oxidative muscle. cGMP had no effect on phospholemman phosphorylation at serine 68. Spermine NONOate had no effect in muscle membranes in which the ATPase activity was depressed by oxidized glutathione. CONCLUSION NO and cGMP stimulate the Na,K-ATPase in glycolytic skeletal muscle. Direct S-nitrosylation and interference with S-glutathionylation seem to be excluded. In addition, phosphorylation of phospholemman at serine 68 is not involved. Most likely, the NO/cGMP/protein kinase G signalling pathway is involved.
Collapse
Affiliation(s)
- C. Juel
- Department of Biology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
10
|
Juel C, Hostrup M, Bangsbo J. The effect of exercise and beta2-adrenergic stimulation on glutathionylation and function of the Na,K-ATPase in human skeletal muscle. Physiol Rep 2015; 3:3/8/e12515. [PMID: 26296772 PMCID: PMC4562595 DOI: 10.14814/phy2.12515] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Potassium and sodium displacements across the skeletal muscle membrane during exercise may cause fatigue and are in part controlled by the Na,K-ATPase. Regulation of the Na,K-ATPase is therefore important for muscle functioning. We investigated the effect of oxidative stress (glutathionylation) on Na,K-ATPase activity. Ten male subjects performed three bouts of 4-min submaximal exercise followed by intense exercise to exhaustion with and without beta2-adrenergic stimulation with terbutaline. Muscle biopsies were obtained from m. vastus lateralis at rest (Control samples) and at exhaustion. In vitro glutathionylation reduced (P < 0.05) maximal Na,K-ATPase activity in a dose-dependent manner. Na,K-ATPase α subunits, purified by immunoprecipitation and tested by glutathione (GSH) antibodies, had a basal glutathionylation in Control samples and no further glutathionylation with exercise and beta2-adrenergic stimulation. Immunoprecipitation with an anti-GSH antibody and subsequent immunodetection with β1 antibodies showed approximately 20% glutathionylation in Control samples and further glutathionylation after exercise (to 32%) and beta2-adrenergic stimulation (to 38%, P < 0.05). Combining exercise and beta2-adrenergic stimulation raised the β1 glutathionylation to 45% (P < 0.05). In conclusion, both α and β1 subunits of the Na,K-ATPase were glutathionylated in Control samples, which indicates that the maximal Na,K-ATPase activity is overestimated if based on protein density only. β1 subunits are further glutathionylated by exercise and beta2-adrenergic stimulation. Our data suggest that glutathionylation contributes to the complex regulation of Na,K-ATPase function in human skeletal muscle. Glutathionylation of the Na,K-ATPase may explain reductions in maximal Na,K-ATPase activity after exercise, which may be involved in muscle fatigue.
Collapse
Affiliation(s)
- Carsten Juel
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Díaz-Vegas A, Campos CA, Contreras-Ferrat A, Casas M, Buvinic S, Jaimovich E, Espinosa A. ROS Production via P2Y1-PKC-NOX2 Is Triggered by Extracellular ATP after Electrical Stimulation of Skeletal Muscle Cells. PLoS One 2015; 10:e0129882. [PMID: 26053483 PMCID: PMC4460042 DOI: 10.1371/journal.pone.0129882] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/15/2015] [Indexed: 01/15/2023] Open
Abstract
During exercise, skeletal muscle produces reactive oxygen species (ROS) via NADPH oxidase (NOX2) while inducing cellular adaptations associated with contractile activity. The signals involved in this mechanism are still a matter of study. ATP is released from skeletal muscle during electrical stimulation and can autocrinely signal through purinergic receptors; we searched for an influence of this signal in ROS production. The aim of this work was to characterize ROS production induced by electrical stimulation and extracellular ATP. ROS production was measured using two alternative probes; chloromethyl-2,7- dichlorodihydrofluorescein diacetate or electroporation to express the hydrogen peroxide-sensitive protein Hyper. Electrical stimulation (ES) triggered a transient ROS increase in muscle fibers which was mimicked by extracellular ATP and was prevented by both carbenoxolone and suramin; antagonists of pannexin channel and purinergic receptors respectively. In addition, transient ROS increase was prevented by apyrase, an ecto-nucleotidase. MRS2365, a P2Y1 receptor agonist, induced a large signal while UTPyS (P2Y2 agonist) elicited a much smaller signal, similar to the one seen when using ATP plus MRS2179, an antagonist of P2Y1. Protein kinase C (PKC) inhibitors also blocked ES-induced ROS production. Our results indicate that physiological levels of electrical stimulation induce ROS production in skeletal muscle cells through release of extracellular ATP and activation of P2Y1 receptors. Use of selective NOX2 and PKC inhibitors suggests that ROS production induced by ES or extracellular ATP is mediated by NOX2 activated by PKC.
Collapse
Affiliation(s)
- Alexis Díaz-Vegas
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristian A. Campos
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ariel Contreras-Ferrat
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mariana Casas
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sonja Buvinic
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
12
|
Nyberg M, Christensen PM, Mortensen SP, Hellsten Y, Bangsbo J. Infusion of ATP increases leg oxygen delivery but not oxygen uptake in the initial phase of intense knee-extensor exercise in humans. Exp Physiol 2014; 99:1399-408. [PMID: 25085840 DOI: 10.1113/expphysiol.2014.081141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study examined whether an increase in leg blood flow and oxygen delivery at the onset of intense exercise would speed the rate of rise in leg oxygen uptake. Nine healthy men (25 ± 1 years old, mean ± SEM) performed one-leg knee-extensor exercise (62 ± 3 W, 86 ± 3% of incremental test peak power) for 4 min during a control setting (CON) and with infusion of ATP into the femoral artery in order to increase blood flow before and during exercise. In the presence of ATP, femoral arterial blood flow and O2 delivery were higher (P < 0.001) at the onset of exercise and throughout exercise (femoral arterial blood flow after 10 s, 5.1 ± 0.5 versus 2.7 ± 0.3 l min(-1); after 45 s, 6.0 ± 0.5 versus 4.1 ± 0.4 l min(-1); after 90 s, 6.6 ± 0.6 versus 4.5 ± 0.4 l min(-1); and after 240 s, 7.0 ± 0.6 versus 5.1 ± 0.3 l min(-1) in ATP and CON conditions, respectively). Leg oxygen uptake was not different in ATP and CON conditions during the first 20 s of exercise but was lower (P < 0.05) in the ATP compared with CON conditions after 30 s and until the end of exercise (30 s, 436 ± 42 versus 549 ± 45 ml min(-1); and 240 s, 705 ± 31 versus 814 ± 59 ml min(-1) in ATP and CON, respectively). Lactate release was lower after 60, 120 and 180 s of exercise with ATP infusion. These results suggest that O2 delivery is not limiting the rise in skeletal muscle oxygen uptake in the initial phase of intense exercise.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter M Christensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark Team Danmark (Danish elite sport organization), Copenhagen, Denmark
| | - Stefan P Mortensen
- Copenhagen Muscle Research Centre, Copenhagen, Denmark Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Juel C, Nordsborg NB, Bangsbo J. Purinergic effects on Na,K-ATPase activity differ in rat and human skeletal muscle. PLoS One 2014; 9:e91175. [PMID: 24614174 PMCID: PMC3948778 DOI: 10.1371/journal.pone.0091175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/08/2014] [Indexed: 11/18/2022] Open
Abstract
Background P2Y receptor activation may link the effect of purines to increased maximal in vitro activity of the Na,K-ATPase in rat muscle. The hypothesis that a similar mechanism is present in human skeletal muscle was investigated with membranes from rat and human skeletal muscle. Results Membranes purified from rat and human muscles were used in the Na,K-ATPase assay. Incubation with ADP, the stable ADP analogue MeS-ADP and UDP increased the Na+ dependent Na,K-ATPase activity in rat muscle membranes, whereas similar treatments of human muscle membranes lowered the Na,K-ATPase activity. UTP incubation resulted in unchanged Na,K-ATPase activity in humans, but pre-incubation with the antagonist suramin resulted in inhibition with UTP, suggesting that P2Y receptors are involved. The Na,K-ATPase in membranes from both rat and human could be stimulated by protein kinase A and C activation. Thus, protein kinase A and C activation can increase Na,K-ATPase activity in human muscle but not via P2Y receptor stimulation. Conclusion The inhibitory effects of most purines (with the exception of UTP) in human muscle membranes are probably due to mass law inhibition of ATP hydrolysis. This inhibition could be blurred in rat due to receptor mediated activation of the Na,K-ATPase. The different effects could be related to a high density of ADP sensitive P2Y1 and P2Y13 receptors in rat, whereas the UTP sensitive P2Y11 could be more abundant in human. Alternatively, rat could possesses a mechanism for protein-protein interaction between P2Y receptors and the Na,K-ATPase, and this mechanism could be absent in human skeletal muscle (perhaps with the exception of the UTP sensitive P2Y11 receptor). Perspective Rat muscle is not a reliable model for purinergic effects on Na,K-ATPase in human skeletal muscle.
Collapse
Affiliation(s)
- Carsten Juel
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Nikolai B. Nordsborg
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
15
|
Juel C, Nordsborg NB, Bangsbo J. Exercise-induced increase in maximal in vitro Na-K-ATPase activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2013; 304:R1161-5. [DOI: 10.1152/ajpregu.00591.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated whether maximal in vitro Na-K-ATPase activity in human skeletal muscle is changed with exercise and whether it was altered by acute hypoxia. Needle biopsies from 14 subjects were obtained from vastus lateralis before and after 4 min of intense muscle activity. In addition, six subjects exercised also in hypoxia (12.5% oxygen). The Na-K-ATPase assay revealed a 19% increase ( P < 0.05) in maximal velocity ( Vmax) for Na+-dependent Na-K-ATPase activity after exercise and a tendency ( P < 0.1) toward a decrease in Km for Na+ (increased Na+ affinity) in both normoxia and hypoxia. In contrast, the in vitro Na-K-ATPase activity determined with the 3- O-MFPase technique was 11–32% lower after exercise in normoxia ( P < 0.05) and hypoxia ( P < 0.1). Based on the different results obtained with the Na-K-ATPase assay and the 3- O-MFPase technique, it was suggested that the 3- O-MFPase method is insensitive to changes in Na-K-ATPase activity. To test this possibility, changes in Na-K-ATPase activity was induced by protein kinase C activation. The changes quantified with the Na-K-ATPase assay could not be detected with the 3- O-MFPase method. In addition, purines stimulated Na-K-ATPase activity in rat muscle membranes; these changes could not be detected with the 3- O-MFPase method. Therefore, the 3- O-MFPase technique is not sensitive to changes in Na+ sensitivity, and the method is not suited to detecting changes in Na-K-ATPase activity with exercise. In conclusion, muscle activity in humans induces an increased in vitro Na+-dependent Na-K-ATPase activity, which contributes to the upregulation of the Na-K-ATPase in association with exercise both in normoxia and hypoxia.
Collapse
Affiliation(s)
- Carsten Juel
- Department of Biology, University of Copenhagen, Copenhagen, Denmark; and
| | - Nikolai B. Nordsborg
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sport, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Juel C. Maximal Na⁺-K⁺-ATPase activity is upregulated in association with muscle activity. J Appl Physiol (1985) 2012; 112:2121-3. [PMID: 22383510 DOI: 10.1152/japplphysiol.01421.2011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Carsten Juel
- Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|