1
|
Lassé M, Rinschen MM. High Salt Remodels Kidney Metabolism: Metabolite Fuel, Fate, and Signals. FUNCTION 2024; 5:zqae006. [PMID: 38486978 PMCID: PMC10935453 DOI: 10.1093/function/zqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/17/2024] Open
Affiliation(s)
- Moritz Lassé
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20246, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Markus M Rinschen
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg 20246, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
- Department of Biomedicine, Aarhus University, Aarhus 8000, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus 8000, Denmark
| |
Collapse
|
2
|
Li S, Ruan J, Yang Z, Liu L, Jiang T. In silico analysis and verification of critical genes related to vascular calcification in multiple diseases. Cell Biochem Funct 2023; 41:1242-1251. [PMID: 37707349 DOI: 10.1002/cbf.3858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/16/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Identifying a functional molecular therapeutic target of vascular calcification (VC) that will not affect normal osteogenic differentiation is a challenge. To address this aim, we screened the differentially expressed genes (DEGs) in different VC conditions, including endothelial-osteogenic transition (EOT) (GSE167962), chronic kidney disease (CKD), and atherosclerosis (AS) (GSE159832). KEGG pathways, protein-protein interactions, and hub genes were also analyzed. The intersecting DEGs among the EOT, CKD, and AS groups were verified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry in a DOCA-salt hypertension mouse model. The phosphoinositide 3-kinase-protein kinase B signaling pathway, ECM-receptor interaction, chemokine signaling pathway, and focal adhesion were enriched in EOT and AS-induced VC. ECM-receptor interaction, PPAR signaling pathway, apelin signaling pathway, AMPK signaling pathway, adipocytokine signaling pathway, and cholesterol metabolism were enriched in CKD and AS-induced VC. C4b, Cebpa, Lyz2, and Spp1 were also upregulated in EOT, CKD, AS, and hypertension. This study identified promising molecular targets for VC therapy.
Collapse
Affiliation(s)
- Shicheng Li
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Jiangwen Ruan
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Zicong Yang
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Ling Liu
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Institute of Cardiovascular Sciences, Guangxi Academy of Medical Sciences, Nanning, China
| | - Tongmeng Jiang
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, China
| |
Collapse
|
3
|
Li Z, Jiang L, Xu T, Bao X, Wang W, Feng Y, Yang J, Ma J. Preliminary Exploration of Metabolic Mechanisms in Copper-Exposed Sepia esculenta Based on Transcriptome Analysis. Metabolites 2023; 13:metabo13040471. [PMID: 37110131 PMCID: PMC10141105 DOI: 10.3390/metabo13040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
As a common and high-concentration heavy metal in the ocean, Cu can induce metal toxicity and significantly affect the metabolic function of marine organisms. Sepia esculenta is an important economic cephalopod found along the east coast of China, the growth, movement, and reproduction of which are all affected by heavy metals. Hitherto, the specific metabolic mechanism of heavy-metal exposure in S. esculenta is still unclear. In this study, we identified 1131 DEGs through transcriptome analysis of larval S. esculenta within 24 h of Cu exposure. GO and KEGG functional enrichment analysis results indicated that Cu exposure may affect purine metabolism, protein digestion and absorption, cholesterol metabolism, and other metabolic processes in S. esculenta larvae. It is worth noting that in this study we explore metabolic mechanism of Cu-exposed S. esculenta larvae through the comprehensive analysis of protein–protein interaction network and KEGG enrichment analysis for the first time and find 20 identified key and hub genes such as CYP7A1, CYP3A11, and ABCA1. Based on their expression, we preliminarily speculate that Cu exposure may inhibit multiple metabolic processes and induce metabolic disorders. Our results lay a foundation for further understanding the metabolic mechanism of S. esculenta against heavy metals and provide theoretical help for S. esculenta artificial breeding.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lisheng Jiang
- Yantai Laishan District Fisheries and Marine Service Station, Yantai 264003, China
- Shandong Marine Resource and Environment Research Institute, Yantai 265503, China
| | - Tao Xu
- Shandong Fishery Development and Resource Conservation Center, Jinan 250013, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai 264025, China
- Correspondence: (J.Y.); (J.M.)
| | - Jingjun Ma
- Yantai Laishan District Fisheries and Marine Service Station, Yantai 264003, China
- Correspondence: (J.Y.); (J.M.)
| |
Collapse
|
4
|
Najm R, Hachim MY, Kandasamy RK. Divulging a Pleiotropic Role of Succinate Receptor SUCNR1 in Renal Cell Carcinoma Microenvironment. Cancers (Basel) 2022; 14:cancers14246064. [PMID: 36551549 PMCID: PMC9776839 DOI: 10.3390/cancers14246064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The succinate receptor, SUCNR1, has been attributed to tumor progression, metastasis, and immune response modulation upon its activation via the oncometabolite succinate. Nonetheless, little is known about the prognostic relevance of SUCNR1 and its association with tumor immune infiltrates and microbiota in renal cell carcinoma (RCC). Herein, publicly available platforms including Human Protein Atlas, cBioPortal, TIMER2.0, and TISIDB were utilized to depict a divergent implication of SUCNR1 in the immune microenvironment of clear cell RCC (KIRC) and papillary RCC (KIRP); the two major subtypes of RCC. Our results showed that the SUCNR1 expression level was augmented in RCC compared to other solid cancers, yet with opposite survival rate predictions in RCC subtypes. Consequently, a higher expression level of SUCNR1 was associated with a good disease-specific survival rate (p = 5.797 × 10-5) in KIRC patients albeit a poor prognostic prediction in KIRP patients (p = 1.9282 × 10-3). Intriguingly, SUCNR1 was mainly correlated to immunomodulators and diverse immune infiltrates in KIRP. Additionally, the SUCNR1 was mostly associated with a repertoire of microbes including beneficial bacteria that likely influenced a better disease-specific survival rate in KIRC. Our findings illustrate a significant novel subtype-specific role of SUCNR1 in RCC which potentially modulates tumor immune infiltration and microbiome signature, hence altering the prognosis of cancer patients.
Collapse
Affiliation(s)
- Rania Najm
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: or
| |
Collapse
|
5
|
Wang Y, Zhang X, Yao H, Chen X, Shang L, Li P, Cui X, Zeng J. Peroxisome-generated succinate induces lipid accumulation and oxidative stress in the kidneys of diabetic mice. J Biol Chem 2022; 298:101660. [PMID: 35124006 PMCID: PMC8881667 DOI: 10.1016/j.jbc.2022.101660] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
Diabetes normally causes lipid accumulation and oxidative stress in the kidneys, which plays a critical role in the onset of diabetic nephropathy; however, the mechanism by which dysregulated fatty acid metabolism increases lipid and reactive oxygen species (ROS) formation in the diabetic kidney is not clear. As succinate is remarkably increased in the diabetic kidney, and accumulation of succinate suppresses mitochondrial fatty acid oxidation and increases ROS formation, we hypothesized that succinate might play a role in inducing lipid and ROS accumulation in the diabetic kidney. Here we demonstrate a novel mechanism by which diabetes induces lipid and ROS accumulation in the kidney of diabetic animals. We show that enhanced oxidation of dicarboxylic acids by peroxisomes leads to lipid and ROS accumulation in the kidney of diabetic mice via the metabolite succinate. Furthermore, specific suppression of peroxisomal β-oxidation improved diabetes-induced nephropathy by reducing succinate generation and attenuating lipid and ROS accumulation in the kidneys of the diabetic mice. We suggest that peroxisome-generated succinate acts as a pathological molecule inducing lipid and ROS accumulation in kidney, and that specifically targeting peroxisomal β-oxidation might be an effective strategy in treating diabetic nephropathy and related metabolic disorders.
Collapse
|
6
|
Ma J, Han R, Cui T, Yang C, Wang S. Effects of high serum uric acid levels on oxidative stress levels and semen parameters in male infertile patients. Medicine (Baltimore) 2022; 101:e28442. [PMID: 35060497 PMCID: PMC8772691 DOI: 10.1097/md.0000000000028442] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/05/2021] [Indexed: 01/05/2023] Open
Abstract
This study is to investigate the effect of high serum uric acid (UA) level on oxidative stress and semen quality of male infertility patients.A cohort of 654 male individuals aged between 20 and 45 years old were included in this study, and their semen and venous blood samples were collected. The serum UA, blood glucose, blood lipids, and hormone levels were determined by chemiluminescence method. The changes in inflammatory factors, oxidative stress, adipokines, and biochemical indices in seminal plasma were determined by ELISA. Organic acids in seminal plasma were detected with reversed-phase ultra high performance liquid chromatography.Compared with the control group, the amount of semen and the total number of sperm in the hyperuricemia group significantly reduced (P < .05). Semen volume decreased with the increase of serum UA level, and the total number of sperm also decreased. The level of luteinizing hormone increased and the level of testosterone decreased in the hyperuricemia group. The concentration of superoxide dismutase decreased and the concentration of endothelin increased in the hyperuricemia group (P < .05). The concentration of seminal plasma α-glucosidase and alkaline phosphatase in the hyperuricemia group decreased significantly (P < .05). Compared with the control group, the contents of ascorbic acid, tartaric acid, lactic acid, and UA in the seminal plasma were significantly reduced in the hyperuricemia group (P < .05).Blood UA level may become a new risk predictor of semen quality in infertile men.
Collapse
Affiliation(s)
- Jing Ma
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute For Family Planning Science and Technology, Shijiazhuang, China
| | - Ruiyu Han
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute For Family Planning Science and Technology, Shijiazhuang, China
| | - Tong Cui
- School of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Chaoju Yang
- Clinical Laboratory, Hebei General Hospital, Shijiazhuang, China
| | - Shusong Wang
- NHC Key Laboratory of Family Planning and Healthy, Hebei Key Laboratory of Reproductive Medicine, Hebei Research Institute For Family Planning Science and Technology, Shijiazhuang, China
| |
Collapse
|
7
|
Guerrero A, Visniauskas B, Cárdenas P, Figueroa SM, Vivanco J, Salinas-Parra N, Araos P, Nguyen QM, Kassan M, Amador CA, Prieto MC, Gonzalez AA. α-Ketoglutarate Upregulates Collecting Duct (Pro)renin Receptor Expression, Tubular Angiotensin II Formation, and Na + Reabsorption During High Glucose Conditions. Front Cardiovasc Med 2021; 8:644797. [PMID: 34179130 PMCID: PMC8220822 DOI: 10.3389/fcvm.2021.644797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Diabetes mellitus (DM) causes high glucose (HG) levels in the plasma and urine. The (pro)renin receptor (PRR) is a key regulator of renal Na+ handling. PRR is expressed in intercalated (IC) cells of the collecting duct (CD) and binds renin to promote angiotensin (Ang) II formation, thereby contributing to Na+ reabsorption. In DM, the Kreb's cycle is in a state of suppression in most tissues. However, in the CD, expression of glucose transporters is augmented, boosting the Kreb's cycle and consequently causing α-ketoglutarate (αKG) accumulation. The αKG receptor 1 (OXGR1) is a Gq-coupled receptor expressed on the apical membrane of IC cells of the CD. We hypothesize that HG causes αKG secretion and activation of OXGR1, which increases PRR expression in CD cells. This effect then promotes intratubular AngII formation and Na+ reabsorption. To test this hypothesis, streptozotocin (STZ)-induced diabetic mice were treated with or without montelukast (ML), an OXGR1 antagonist, for 6 days. STZ mice had higher urinary αKG and PRR expression along with augmented urinary AngII levels and Na+ retention. Treatment with ML prevented all these effects. Similarly, primary cultured inner medullary CD cells treated with HG showed increased PRR expression, while OXGR1 antagonist prevented this effect. αKG increases PRR expression, while treatments with ML, PKC inhibition, or intracellular Ca2+ depletion impair this effect. In silico analysis suggested that αKG binds to mouse OXGR1. These results indicate that HG conditions promote increased levels of intratubular αKG and OXGR1-dependent PRR upregulation, which impact AngII formation and Na+ reabsorption.
Collapse
Affiliation(s)
- Aarón Guerrero
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bruna Visniauskas
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Pilar Cárdenas
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Stefanny M. Figueroa
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Jorge Vivanco
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nicolas Salinas-Parra
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Patricio Araos
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Quynh My Nguyen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, United States
| | - Modar Kassan
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Cristián A. Amador
- Laboratory of Renal Physiopathology, Institute of Biomedical Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Minolfa C. Prieto
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, United States
| | - Alexis A. Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
8
|
Yang T, Chakraborty S, Mandal J, Mei X, Joe B. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021; 11:1731-1757. [PMID: 33792901 DOI: 10.1002/cphy.c200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host-commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi-directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731-1757, 2021.
Collapse
Affiliation(s)
- Tao Yang
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Juthika Mandal
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
9
|
Du B, Jia X, Tian W, Yan X, Wang N, Cai D, Li X, Zhang H, Jin M, Wu N, Qiu C, Zhang Q. Associations of SUCNR1, GRK4, CAMK1D gene polymorphisms and the susceptibility of type 2 diabetes mellitus and essential hypertension in a northern Chinese Han population. J Diabetes Complications 2021; 35:107752. [PMID: 33127268 DOI: 10.1016/j.jdiacomp.2020.107752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/11/2023]
Abstract
AIMS Diabetes mellitus and hypertension are both complex diseases that are caused by interactions among multiple genetic and physiological factors. To investigate the association of common single-nucleotide polymorphisms (SNPs) of SUCNR1, GRK4 and CAMK1D genes with the susceptibility of the two diseases in a northern Chinese Han population. METHODS 36 SNPs were genotyped in 2304 clinical patients (1152 type 2 diabetes mellitus, 1152 essential hypertension) and 1152 health controls by Sequenom Mass-ARRAY RS1000. RESULTS In this study, we found that BMI, blood press, pulse pressure, FBG, total cholesterol and triglycerides were associated with an increased risk of type 2 diabetes mellitus (T2DM) and essential hypertension (EH). Three SNPs (SUCNR1: rs73168929; GRK4: rs1557213; CAMK1D: rs17151584) significantly associated with the susceptibility of T2DM and EH at the same time. Also, the susceptibility genotypes of 3 SNPs were significantly correlated with liver and renal function parameters. CONCLUSION To the best of our knowledge, the present study is the first to report that three SNPs (SUCNR1: rs73168929; GRK4: rs1557213; CAMK1D: rs17151584) contributed to the risk of T2DM and EH in a northern Chinese Han population. These results provide a favourable evidence for better understand of the underlying common mechanism of these two diseases.
Collapse
Affiliation(s)
- Bingxin Du
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Xinhui Jia
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Wenqi Tian
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Xueqin Yan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Ningning Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Xueyan Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Hao Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Ming Jin
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Nan Wu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Changchun Qiu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China
| | - Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
10
|
Riquelme SA, Wong Fok Lung T, Prince A. Pulmonary Pathogens Adapt to Immune Signaling Metabolites in the Airway. Front Immunol 2020; 11:385. [PMID: 32231665 PMCID: PMC7082326 DOI: 10.3389/fimmu.2020.00385] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
A limited number of pulmonary pathogens are able to evade normal mucosal defenses to establish acute infection and then adapt to cause chronic pneumonias. Pathogens, such as Pseudomonas aeruginosa or Staphylococcus aureus, are typically associated with infection in patients with underlying pulmonary disease or damage, such as cystic fibrosis (CF) or chronic obstructive pulmonary disease (COPD). To establish infection, bacteria express a well-defined set of so-called virulence factors that facilitate colonization and activate an immune response, gene products that have been identified in murine models. Less well-understood are the adaptive changes that occur over time in vivo, enabling the organisms to evade innate and adaptive immune clearance mechanisms. These colonizers proliferate, generating a population sufficient to provide selection for mutants, such as small colony variants and mucoid variants, that are optimized for long term infection. Such host-adapted strains have evolved in response to selective pressure such as antibiotics and the recruitment of phagocytes at sites of infection and their release of signaling metabolites (e.g., succinate). These metabolites can potentially function as substrates for bacterial growth and but also generate oxidant stress. Whole genome sequencing and quantified expression of selected genes have helped to explain how P. aeruginosa and S. aureus adapt to the presence of these metabolites over the course of in vivo infection. The serial isolation of clonally related strains from patients with cystic fibrosis has provided the opportunity to identify bacterial metabolic pathways that are altered under this immune pressure, such as the anti-oxidant glyoxylate and pentose phosphate pathways, routes contributing to the generation of biofilms. These metabolic pathways and biofilm itself enable the organisms to dissipate oxidant stress, while providing protection from phagocytosis. Stimulation of host immune signaling metabolites by these pathogens drives bacterial adaptation and promotes their persistence in the airways. The inherent metabolic flexibility of P. aeruginosa and S. aureus is a major factor in their success as pulmonary pathogens.
Collapse
Affiliation(s)
- Sebastián A Riquelme
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
11
|
Dando I, Pozza ED, Ambrosini G, Torrens-Mas M, Butera G, Mullappilly N, Pacchiana R, Palmieri M, Donadelli M. Oncometabolites in cancer aggressiveness and tumour repopulation. Biol Rev Camb Philos Soc 2019; 94:1530-1546. [PMID: 30972955 DOI: 10.1111/brv.12513] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Tumour repopulation is recognized as a crucial event in tumour relapse where therapy-sensitive dying cancer cells influence the tumour microenvironment to sustain therapy-resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2-hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2-hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti-cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.
Collapse
Affiliation(s)
- Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Palma de Mallorca, E-07122, Spain.,Instituto de Investigación Sanitaria de las Islas Baleares (IdISBa), Hospital Universitario Son Espases, edificio S, Palma de Mallorca, E-07120, Spain
| | - Giovanna Butera
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Nidula Mullappilly
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| |
Collapse
|
12
|
Keiran N, Ceperuelo-Mallafré V, Calvo E, Hernández-Alvarez MI, Ejarque M, Núñez-Roa C, Horrillo D, Maymó-Masip E, Rodríguez MM, Fradera R, de la Rosa JV, Jorba R, Megia A, Zorzano A, Medina-Gómez G, Serena C, Castrillo A, Vendrell J, Fernández-Veledo S. SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nat Immunol 2019; 20:581-592. [PMID: 30962591 DOI: 10.1038/s41590-019-0372-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/05/2019] [Indexed: 12/14/2022]
Abstract
Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages. Myeloid-specific deficiency in SUCNR1 promoted a local pro-inflammatory phenotype, disrupted glucose homeostasis in mice fed a normal chow diet, exacerbated the metabolic consequences of diet-induced obesity and impaired adipose-tissue browning in response to cold exposure. Activation of SUCNR1 promoted an anti-inflammatory phenotype in macrophages and boosted the response of these cells to type 2 cytokines, including interleukin-4. Succinate decreased the expression of inflammatory markers in adipose tissue from lean human subjects but not that from obese subjects, who had lower expression of SUCNR1 in adipose-tissue-resident macrophages. Our findings highlight the importance of succinate-SUCNR1 signaling in determining macrophage polarization and assign a role to succinate in limiting inflammation.
Collapse
Affiliation(s)
- Noelia Keiran
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria Ceperuelo-Mallafré
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Calvo
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Isabel Hernández-Alvarez
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Catalina Núñez-Roa
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Horrillo
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Biología Molecular, Universidad Rey Juan Carlos, Madrid, Spain
| | - Elsa Maymó-Masip
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - M Mar Rodríguez
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Fradera
- General and Digestive Surgery Service, Hospital St. Pau i Sta Tecla, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Juan Vladimir de la Rosa
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitaria (IUBIS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Rosa Jorba
- General and Digestive Surgery Service, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Ana Megia
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Departament de Bioquímica i Biomedicina Molecular, Facultat de Biología, Barcelona, Spain
| | - Gema Medina-Gómez
- Departamento de Ciencias Básicas de la Salud, Área de Bioquímica y Biología Molecular, Universidad Rey Juan Carlos, Madrid, Spain
| | - Carolina Serena
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Unidad de Biomedicina (Unidad Asociada al CSIC), Instituto Universitario de Investigaciones Biomédicas y Sanitaria (IUBIS), Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain. .,Universitat Rovira i Virgili, Tarragona, Spain.
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari de Tarragona Joan XXIII, Institut d´Investigació Sanitària Pere Virgili, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
13
|
Khamaysi A, Anbtawee-Jomaa S, Fremder M, Eini-Rider H, Shimshilashvili L, Aharon S, Aizenshtein E, Shlomi T, Noguchi A, Springer D, Moe OW, Shcheynikov N, Muallem S, Ohana E. Systemic Succinate Homeostasis and Local Succinate Signaling Affect Blood Pressure and Modify Risks for Calcium Oxalate Lithogenesis. J Am Soc Nephrol 2019; 30:381-392. [PMID: 30728179 PMCID: PMC6405146 DOI: 10.1681/asn.2018030277] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/27/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In the kidney, low urinary citrate increases the risk for developing kidney stones, and elevation of luminal succinate in the juxtaglomerular apparatus increases renin secretion, causing hypertension. Although the association between stone formation and hypertension is well established, the molecular mechanism linking these pathophysiologies has been elusive. METHODS To investigate the relationship between succinate and citrate/oxalate levels, we assessed blood and urine levels of metabolites, renal protein expression, and BP (using 24-hour telemetric monitoring) in male mice lacking slc26a6 (a transporter that inhibits the succinate transporter NaDC-1 to control citrate absorption from the urinary lumen). We also explored the mechanism underlying this metabolic association, using coimmunoprecipitation, electrophysiologic measurements, and flux assays to study protein interaction and transport activity. RESULTS Compared with control mice, slc26a6-/- mice (previously shown to have low urinary citrate and to develop calcium oxalate stones) had a 40% decrease in urinary excretion of succinate, a 35% increase in serum succinate, and elevated plasma renin. Slc26a6-/- mice also showed activity-dependent hypertension that was unaffected by dietary salt intake. Structural modeling, confirmed by mutational analysis, identified slc26a6 and NaDC-1 residues that interact and mediate slc26a6's inhibition of NaDC-1. This interaction is regulated by the scaffolding protein IRBIT, which is released by stimulation of the succinate receptor SUCNR1 and interacts with the NaDC-1/slc26a6 complex to inhibit succinate transport by NaDC-1. CONCLUSIONS These findings reveal a succinate/citrate homeostatic pathway regulated by IRBIT that affects BP and biochemical risk of calcium oxalate stone formation, thus providing a potential molecular link between hypertension and lithogenesis.
Collapse
Affiliation(s)
- Ahlam Khamaysi
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shireen Anbtawee-Jomaa
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadar Eini-Rider
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Liana Shimshilashvili
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sara Aharon
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Tomer Shlomi
- Department of Computer Science and,Department of Biology, Technion, Haifa, Israel
| | - Audrey Noguchi
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, Bethesda, Maryland
| | - Orson W. Moe
- Department of Internal Medicine,,Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, and,Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Nikolay Shcheynikov
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
14
|
Peng X, Jiang L, Chen C, Qin Y, Yuan T, Wang O, Xing X, Li X, Nie M, Chen L. Increased urinary prostaglandin E2 metabolite: A potential therapeutic target of Gitelman syndrome. PLoS One 2017; 12:e0180811. [PMID: 28700713 PMCID: PMC5507263 DOI: 10.1371/journal.pone.0180811] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gitelman syndrome (GS), an inherited autosomal recessive salt-losing renal tubulopathy caused by mutations in SLC12A3 gene, has been associated with normal prostaglandin E2 (PGE2) levels since 1995 by a study involving 11 clinically diagnosed patients. However, it is difficult to explain why cyclooxygenase-2 (COX2) inhibitors, which pharmacologically reduce PGE2 synthesis, are helpful to patients with GS, and few studies performed in the last 20 years have measured PGE2 levels. The relationships between the clinical manifestations and PGE2 levels were never thoroughly analyzed. METHODS This study involved 39 GS patients diagnosed by SLC12A3 gene sequencing. Plasma and 24-h urine samples as well as the clinical data were collected at admission. PGE2 and PGEM levels were detected in plasma and urine samples by enzyme immunoassays. The in vivo function of the sodium-chloride co-transporter (NCC) in GS patients was evaluated using a modified thiazide test. The association among PGE2 levels, clinical manifestations and the function of NCC in GS patients were analyzed. RESULTS Significantly higher levels of urinary and plasma PGEM were observed in GS patients than in the healthy volunteers. Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction estimated by the increase of Cl- clearance. A higher PGEM level was found in male GS patients, who showed earlier onset age and more severe hypokalemia, hypochloremia and metabolic alkalosis than female GS patients. No relationship between renin angiotensin aldosterone system activation and PGEM level was observed. CONCLUSIONS Higher urinary PGEM levels indicated more severe clinical manifestations and NCC dysfunction in GS patients. COX2 inhibition might be a potential therapeutic target in GS patients with elevated PGEM levels.
Collapse
Affiliation(s)
- Xiaoyan Peng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lanping Jiang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Medical Genetics, Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Qin
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Yuan
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ou Wang
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Nie
- Department of Endocrinology & Key Laboratory of Endocrinology, National Health and Family Planning Commission, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Limeng Chen
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
15
|
Geubelle P, Gilissen J, Dilly S, Poma L, Dupuis N, Laschet C, Abboud D, Inoue A, Jouret F, Pirotte B, Hanson J. Identification and pharmacological characterization of succinate receptor agonists. Br J Pharmacol 2017; 174:796-808. [PMID: 28160606 DOI: 10.1111/bph.13738] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The succinate receptor (formerly GPR91 or SUCNR1) is described as a metabolic sensor that may be involved in homeostasis. Notwithstanding its implication in important (patho)physiological processes, the function of succinate receptors has remained ill-defined because no pharmacological tools were available. We report on the discovery of the first family of potent synthetic agonists. EXPERIMENTAL APPROACH We screened a library of succinate analogues and analysed their activity on succinate receptors. Also, we modelled a pharmacophore and a binding site for this receptor. New agonists were identified based on the information provided by these two approaches. Their activity was studied in various bioassays, including measurement of cAMP levels, [Ca2+ ]i mobilization, TGF-α shedding and recruitment of arrestin 3. The in vivo effects of activating succinate receptors with these new agonists was evaluated on rat BP. KEY RESULTS We identified cis-epoxysuccinic acid and cis-1,2-cyclopropanedicarboxylic acid as agonists with an efficacy similar to that of succinic acid. Interestingly, cis-epoxysuccinic acid was 10- to 20-fold more potent than succinic acid on succinate receptors. For example, cis-epoxysuccinic acid reduced cAMP levels with a pEC50 = 5.57 ± 0.02 (EC50 = 2.7 μM), compared with succinate pEC50 = 4.54 ± 0.08 (EC50 = 29 μM). The rank order of potency of the three agonists was the same in all in vitro assays. Both cis-epoxysuccinic and cis-1,2-cyclopropanedicarboxylic acid were as potent as succinate in increasing rat BP. CONCLUSIONS AND IMPLICATIONS We describe new agonists at succinate receptors that should facilitate further research on this understudied receptor.
Collapse
Affiliation(s)
- Pierre Geubelle
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.,Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Julie Gilissen
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.,Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Sébastien Dilly
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium.,Laboratory of Molecular Modelling for (Bio)molecule Engineering, Institute of Chemistry and Biology of Membranes and Nano-objects, University of Bordeaux, Pessac, France
| | - Laurence Poma
- Laboratory of Experimental Surgery, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Nadine Dupuis
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Céline Laschet
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | - François Jouret
- Laboratory of Experimental Surgery, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium.,Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| |
Collapse
|
16
|
Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1086-1101. [PMID: 26971832 DOI: 10.1016/j.bbabio.2016.03.012] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/31/2022]
Abstract
Succinate is an important metabolite at the cross-road of several metabolic pathways, also involved in the formation and elimination of reactive oxygen species. However, it is becoming increasingly apparent that its realm extends to epigenetics, tumorigenesis, signal transduction, endo- and paracrine modulation and inflammation. Here we review the pathways encompassing succinate as a metabolite or a signal and how these may interact in normal and pathological conditions.(1).
Collapse
|
17
|
Abstract
SUCNR1 (or GPR91) belongs to the family of G protein-coupled receptors (GPCR), which represents the largest group of membrane proteins in human genome. The majority of marketed drugs targets GPCRs, directly or indirectly. SUCNR1 has been classified as an orphan receptor until a landmark study paired it with succinate, a citric acid cycle intermediate. According to the current paradigm, succinate triggers SUCNR1 signaling pathways to indicate local stress that may affect cellular metabolism. SUCNR1 implication has been well documented in renin-induced hypertension, ischemia/reperfusion injury, inflammation and immune response, platelet aggregation and retinal angiogenesis. In addition, the SUCNR1-induced increase of blood pressure may contribute to diabetic nephropathy or cardiac hypertrophy. The understanding of SUCNR1 activation, signaling pathways and functions remains largely elusive, which calls for deeper investigations. SUCNR1 shows a high potential as an innovative drug target and is probably an important regulator of basic physiology. In order to achieve the full characterization of this receptor, more specific pharmacological tools such as small-molecules modulators will represent an important asset. In this review, we describe the structural features of SUCNR1, its current ligands and putative binding pocket. We give an exhaustive overview of the known and hypothetical signaling partners of the receptor in different in vitro and in vivo systems. The link between SUCNR1 intracellular pathways and its pathophysiological roles are also extensively discussed.
Collapse
|
18
|
|
19
|
Peti-Peterdi J, Kishore BK, Pluznick JL. Regulation of Vascular and Renal Function by Metabolite Receptors. Annu Rev Physiol 2015; 78:391-414. [PMID: 26667077 DOI: 10.1146/annurev-physiol-021115-105403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To maintain metabolic homeostasis, the body must be able to monitor the concentration of a large number of substances, including metabolites, in real time and to use that information to regulate the activities of different metabolic pathways. Such regulation is achieved by the presence of sensors, termed metabolite receptors, in various tissues and cells of the body, which in turn convey the information to appropriate regulatory or positive or negative feedback systems. In this review, we cover the unique roles of metabolite receptors in renal and vascular function. These receptors play a wide variety of important roles in maintaining various aspects of homeostasis-from salt and water balance to metabolism-by sensing metabolites from a wide variety of sources. We discuss the role of metabolite sensors in sensing metabolites generated locally, metabolites generated at distant tissues or organs, or even metabolites generated by resident microbes. Metabolite receptors are also involved in various pathophysiological conditions and are being recognized as potential targets for new drugs. By highlighting three receptor families-(a) citric acid cycle intermediate receptors, (b) purinergic receptors, and
Collapse
Affiliation(s)
- János Peti-Peterdi
- Department of Physiology and Biophysics and Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| | - Bellamkonda K Kishore
- Department of Internal Medicine and Center on Aging, University of Utah Health Sciences Center, Department of Veterans Affairs Salt Lake City Health Care System, Salt Lake City, Utah 84148;
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
20
|
Majid DSA, Prieto MC, Navar LG. Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms. Curr Hypertens Rev 2015; 11:38-48. [PMID: 26028244 DOI: 10.2174/1573402111666150530203858] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic links between chronic salt intake and the development of hypertension.
Collapse
Affiliation(s)
- Dewan S A Majid
- Department of Physiology, SL39, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
21
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the current knowledge regarding the role of the intrarenal rennin-angiotensin system (RAS) in the regulation of glomerular function including glomerular dynamics and filtration rate, glomerular permeability and structural alterations during chronic increases in intrarenal angiotensin (Ang) II. RECENT FINDINGS Recent studies have continued to delineate the complex interactions among the various RAS components that participate in regulating glomerular function. Although Ang II acting on AT1 receptors remains as the predominant influence on glomerular dynamics, some of these effects are indirectly mediated by Ang II modulating the sensitivity of the macula densa tubuloglomerular feedback mechanism as well as the more recently described feedback mechanism from the connecting tubule. Interestingly, the actions of Ang II on these systems cause opposite effects on glomerular function demonstrating the complexities associated with the influences of Ang II on glomerular function. When chronically elevated, Ang II also stimulates and/or interacts with other factors, including reactive oxygen species, cytokines and growth factors and other hormones or paracrine agents, to elicit structural alterations. SUMMARY Recent studies have provided further evidence for the presence of many components of the RAS in glomerular structures, which supports the importance of locally produced angiotensin peptides to regulate glomerular haemodynamics, filtration rate and macromolecular permeability and contribute to fibrosis and glomerular injury when inappropriately augmented.
Collapse
|
23
|
He X, Liu Y, Usa K, Tian Z, Cowley AW, Liang M. Ultrastructure of mitochondria and the endoplasmic reticulum in renal tubules of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2014; 306:F1190-7. [PMID: 24694587 DOI: 10.1152/ajprenal.00073.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Metabolic and functional abnormalities in the kidney precede or coincide with the initiation of overt hypertension in the Dahl salt-sensitive (SS) rat. However, renal histological injury in SS rats is mild before the development of overt hypertension. We performed electron microscopy analysis in 7-wk-old SS rats and salt-insensitive consomic SS.13(BN) rats and Sprague-Dawley (SD) rats fed a 4% NaCl diet for 7 days. Long mitochondria (>2 μm) accounted for a significantly smaller fraction of mitochondria in medullary thick ascending limbs in SS rats (4% ± 1%) than in SS.13(BN) rats (8% ± 1%, P < 0.05 vs. SS rats) and SD rats (9% ± 1%, P < 0.01 vs. SS rats), consistent with previous findings of mitochondrial functional insufficiency in the medulla of SS rats. Long mitochondria in proximal tubules, however, were more abundant in SS rats than in SS.13(BN) and SD rats. The width of the endoplasmic reticulum, an index of endoplasmic reticulum stress, was significantly greater in medullary thick ascending limbs of SS rats (107 ± 1 nm) than in SS.13(BN) rats (95 ± 2 nm, P < 0.001 vs. SS rats) and SD rats (74 ± 3 nm, P < 0.01 vs. SS or SS.13(BN) rats). The tubules examined were indistinguishable between rat strains under light microscopy. These data indicate that ultrastructural abnormalities occur in the medullary thick ascending limbs of SS rats before the development of histological injury in renal tubules, providing a potential structural basis contributing to the subsequent development of overt hypertension.
Collapse
Affiliation(s)
- Xiaofeng He
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; Department of Nephrology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China; and
| | - Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristie Usa
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
24
|
Ritz E, Tomaschitz A. Aldosterone and the kidney: a rapidly moving frontier (an update). Nephrol Dial Transplant 2013; 29:2012-9. [PMID: 24194611 DOI: 10.1093/ndt/gft035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Beyond the classical effect of aldosterone on sodium reabsorption in the distal nephron, the spectrum of aldosterone-induced effects on the kidney (and the cardiovascular system) continues to expand at a rapid pace. Blockade of this system has become an attractive target for intervention. Major contributions have been reported in the past 2-3 years. By necessity this brief summary addresses only some of the emerging issues of nephrological relevance. In this fast moving field, we try to give a concise discussion of papers with potential nephrological relevance in the past 2-3 years.
Collapse
Affiliation(s)
- Eberhard Ritz
- Nierenzentrum, Im Neuenheimer Feld 162, Heidelberg, Germany
| | - Andreas Tomaschitz
- Department of Cardiology, Medical University Graz, Graz, Austria Specialist Clinic for Rehabilitation PV Bad Aussee, Bad Aussee, Austria
| |
Collapse
|
25
|
Pluznick JL. Renal and cardiovascular sensory receptors and blood pressure regulation. Am J Physiol Renal Physiol 2013; 305:F439-44. [PMID: 23761671 DOI: 10.1152/ajprenal.00252.2013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Studies over the past decade have highlighted important roles played by sensory receptors outside of traditionally sensory tissues; for example, taste receptors participate in pH sensing in the cerebrospinal fluid, bitter taste receptors mediate bronchodilation and ciliary beating in the lung (Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, Sham JS, Liggett SB. Nat Med 16: 1299-1304, 2010; Shah AS, Ben-Shahar Y, Moninger TO, Kline JN, Welsh MJ. Science 325: 1131-1134, 2009), and olfactory receptors play roles in both sperm chemotaxis and muscle cell migration (Griffin CA, Kafadar KA, Pavlath GK. Cell 17: 649-661, 2009). More recently, several studies have shown that sensory receptors also play important roles in the regulation of blood pressure. This review will focus on several recent studies examining the roles that sensory receptors play in blood pressure regulation, with an emphasis on three pathways: the adenylate cyclase 3 (AC3) pathway, the Gpr91-succinate signaling pathway, and the Olfr78/Gpr41 short-chain fatty acid signaling pathway. Together, these pathways demonstrate that sensory receptors play important roles in mediating blood pressure control and that blood pressure regulation is coupled to the metabolism of the host as well as the metabolism of the gut microbiota.
Collapse
Affiliation(s)
- Jennifer L Pluznick
- Dept. of Physiology, Johns Hopkins Univ. School of Medicine, Baltimore, MD 21205.
| |
Collapse
|