1
|
Djemai M, Cupelli M, Boutjdir M, Chahine M. Optical Mapping of Cardiomyocytes in Monolayer Derived from Induced Pluripotent Stem Cells. Cells 2023; 12:2168. [PMID: 37681899 PMCID: PMC10487143 DOI: 10.3390/cells12172168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Optical mapping is a powerful imaging technique widely adopted to measure membrane potential changes and intracellular Ca2+ variations in excitable tissues using voltage-sensitive dyes and Ca2+ indicators, respectively. This powerful tool has rapidly become indispensable in the field of cardiac electrophysiology for studying depolarization wave propagation, estimating the conduction velocity of electrical impulses, and measuring Ca2+ dynamics in cardiac cells and tissues. In addition, mapping these electrophysiological parameters is important for understanding cardiac arrhythmia mechanisms. In this review, we delve into the fundamentals of cardiac optical mapping technology and its applications when applied to hiPSC-derived cardiomyocytes and discuss related advantages and challenges. We also provide a detailed description of the processing and analysis of optical mapping data, which is a crucial step in the study of cardiac diseases and arrhythmia mechanisms for extracting and comparing relevant electrophysiological parameters.
Collapse
Affiliation(s)
- Mohammed Djemai
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Cooper BL, Gloschat C, Swift LM, Prudencio T, McCullough D, Jaimes R, Posnack NG. KairoSight: Open-Source Software for the Analysis of Cardiac Optical Data Collected From Multiple Species. Front Physiol 2021; 12:752940. [PMID: 34777017 PMCID: PMC8586513 DOI: 10.3389/fphys.2021.752940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/27/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac optical mapping, also known as optocardiography, employs parameter-sensitive fluorescence dye(s) to image cardiac tissue and resolve the electrical and calcium oscillations that underly cardiac function. This technique is increasingly being used in conjunction with, or even as a replacement for, traditional electrocardiography. Over the last several decades, optical mapping has matured into a “gold standard” for cardiac research applications, yet the analysis of optical signals can be challenging. Despite the refinement of software tools and algorithms, significant programming expertise is often required to analyze large optical data sets, and data analysis can be laborious and time-consuming. To address this challenge, we developed an accessible, open-source software script that is untethered from any subscription-based programming language. The described software, written in python, is aptly named “KairoSight” in reference to the Greek word for “opportune time” (Kairos) and the ability to “see” voltage and calcium signals acquired from cardiac tissue. To demonstrate analysis features and highlight species differences, we employed experimental datasets collected from mammalian hearts (Langendorff-perfused rat, guinea pig, and swine) dyed with RH237 (transmembrane voltage) and Rhod-2, AM (intracellular calcium), as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) dyed with FluoVolt (membrane potential), and Fluo-4, AM (calcium indicator). We also demonstrate cardiac responsiveness to ryanodine (ryanodine receptor modulator) and isoproterenol (beta-adrenergic agonist) and highlight regional differences after an ablation injury. KairoSight can be employed by both basic and clinical scientists to analyze complex cardiac optical mapping datasets without requiring dedicated computer science expertise or proprietary software.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States
| | - Chris Gloschat
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Tomas Prudencio
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC, United States.,Children's National Heart Institute, Children's National Hospital, Washington, DC, United States.,Department of Pharmacology and Physiology, George Washington University, Washington, DC, United States.,Department of Pediatrics, George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Marina-Breysse M, García-Escolano A, Vila-García J, Reale-Nosei G, Alfonso-Almazán JM, Yan P, Quintanilla JG, Loew LM, Lee P, Filgueiras-Rama D. A Complete and Low-Cost Cardiac Optical Mapping System in Translational Animal Models. Front Physiol 2021; 12:696270. [PMID: 34489722 PMCID: PMC8417781 DOI: 10.3389/fphys.2021.696270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Clinicians, biologists, physicists, engineers, and computer scientists are coming together to better understand heart disease, which is currently the leading cause of death globally. Optical mapping, a high-speed fluorescence imaging technique that visualizes and measures key cardiac parameters such as action potentials, cytosolic calcium transients, and fibrillation dynamics, is a core research tool that has arisen from such interdisciplinary collaborations. In an effort to broaden its use, especially among clinical scientists and students, we developed a complete and low-cost optical mapping system, including a constant-flow Langendorff perfusion system, which minimizes the economic threshold to widespread use of this powerful tool in cardiac electrophysiology research. The system described here provides high spatiotemporal resolution data about action potentials, intracellular calcium transients and fibrillation wave dynamics in isolated Langendorff-perfused hearts (pigs and rabbits), relevant for translational research. All system components and software elements are fully disclosed with the aim of increasing the use of this affordable and highly versatile tool among clinicians, basic scientists and students wishing to tackle their own research questions with their own customizable systems.
Collapse
Affiliation(s)
- Manuel Marina-Breysse
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Alba García-Escolano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Joaquín Vila-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - Gabriel Reale-Nosei
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - José M Alfonso-Almazán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain
| | - Ping Yan
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, United States
| | - Jorge G Quintanilla
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| | - Leslie M Loew
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, United States
| | - Peter Lee
- Essel Research and Development Inc., Toronto, ON, Canada
| | - David Filgueiras-Rama
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Myocardial Pathophysiology Area, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Department of Cardiology, Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
4
|
Musa H, Marcou CA, Herron TJ, Makara MA, Tester DJ, O'Connell RP, Rosinski B, Guerrero-Serna G, Milstein ML, Monteiro da Rocha A, Ye D, Crotti L, Nesterenko VV, Castelletti S, Torchio M, Kotta MC, Dagradi F, Antzelevitch C, Mohler PJ, Schwartz PJ, Ackerman MJ, Anumonwo JM. Abnormal myocardial expression of SAP97 is associated with arrhythmogenic risk. Am J Physiol Heart Circ Physiol 2020; 318:H1357-H1370. [PMID: 32196358 DOI: 10.1152/ajpheart.00481.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synapse-associated protein 97 (SAP97) is a scaffolding protein crucial for the functional expression of several cardiac ion channels and therefore proper cardiac excitability. Alterations in the functional expression of SAP97 can modify the ionic currents underlying the cardiac action potential and consequently confer susceptibility for arrhythmogenesis. In this study, we generated a murine model for inducible, cardiac-targeted Sap97 ablation to investigate arrhythmia susceptibility and the underlying molecular mechanisms. Furthermore, we sought to identify human SAP97 (DLG1) variants that were associated with inherited arrhythmogenic disease. The murine model of cardiac-specific Sap97 ablation demonstrated several ECG abnormalities, pronounced action potential prolongation subject to high incidence of arrhythmogenic afterdepolarizations and notable alterations in the activity of the main cardiac ion channels. However, no DLG1 mutations were found in 40 unrelated cases of genetically elusive long QT syndrome (LQTS). Instead, we provide the first evidence implicating a gain of function in human DLG1 mutation resulting in an increase in Kv4.3 current (Ito) as a novel, potentially pathogenic substrate for Brugada syndrome (BrS). In conclusion, DLG1 joins a growing list of genes encoding ion channel interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. Dysfunction in these critical components of cardiac excitability can potentially result in fatal cardiac disease.NEW & NOTEWORTHY The gene encoding SAP97 (DLG1) joins a growing list of genes encoding ion channel-interacting proteins (ChIPs) identified as potential channelopathy-susceptibility genes because of their ability to regulate the trafficking, targeting, and modulation of ion channels that are critical for the generation and propagation of the cardiac electrical impulse. In this study we provide the first data supporting DLG1-encoded SAP97's candidacy as a minor Brugada syndrome susceptibility gene.
Collapse
Affiliation(s)
- Hassan Musa
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Cherisse A Marcou
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Todd J Herron
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan.,Cardiovascular Regeneration Core Laboratory, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
| | - Michael A Makara
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Ryan P O'Connell
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Brad Rosinski
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Guadalupe Guerrero-Serna
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - Michelle L Milstein
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| | - André Monteiro da Rocha
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan.,Cardiovascular Regeneration Core Laboratory, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, Michigan
| | - Dan Ye
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Lia Crotti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, San Luca Hospital, Milan, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | | | - Silvia Castelletti
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Margherita Torchio
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Maria-Christina Kotta
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Federica Dagradi
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | | | - Peter J Mohler
- Departments of Internal Medicine and of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, Ohio.,Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases; Division of Pediatric Cardiology, Department of Pediatrics; and Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Justus M Anumonwo
- Departments of Internal Medicine (Cardiovascular) and of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Physiological phenotyping of the adult zebrafish heart. Mar Genomics 2020; 49:100701. [DOI: 10.1016/j.margen.2019.100701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022]
|
6
|
Abstract
The aim of this chapter is to discuss evidence concerning the many roles of calcium ions, Ca2+, in cell signaling pathways that control heart function. Before considering details of these signaling pathways, the control of contraction in ventricular muscle by Ca2+ transients accompanying cardiac action potentials is first summarized, together with a discussion of how myocytes from the atrial and pacemaker regions of the heart diverge from this basic scheme. Cell signaling pathways regulate the size and timing of the Ca2+ transients in the different heart regions to influence function. The simplest Ca2+ signaling elements involve enzymes that are regulated by cytosolic Ca2+. Particularly important examples to be discussed are those that are stimulated by Ca2+, including Ca2+-calmodulin-dependent kinase (CaMKII), Ca2+ stimulated adenylyl cyclases, Ca2+ stimulated phosphatase and NO synthases. Another major aspect of Ca2+ signaling in the heart concerns actions of the Ca2+ mobilizing agents, inositol trisphosphate (IP3), cADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate, (NAADP). Evidence concerning roles of these Ca2+ mobilizing agents in different regions of the heart is discussed in detail. The focus of the review will be on short term regulation of Ca2+ transients and contractile function, although it is recognized that Ca2+ regulation of gene expression has important long term functional consequences which will also be briefly discussed.
Collapse
|
7
|
Woods C, Shang C, Taghavi F, Downey P, Zalewski A, Rubio GR, Liu J, Homburger JR, Grunwald Z, Qi W, Bollensdorff C, Thanaporn P, Ali A, Riemer K, Kohl P, Mochly-Rosen D, Gerstenfeld E, Large S, Ali Z, Ashley E. In Vivo Post-Cardiac Arrest Myocardial Dysfunction Is Supported by Ca2+/Calmodulin-Dependent Protein Kinase II-Mediated Calcium Long-Term Potentiation and Mitigated by Alda-1, an Agonist of Aldehyde Dehydrogenase Type 2. Circulation 2016; 134:961-977. [PMID: 27582424 DOI: 10.1161/circulationaha.116.021618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Survival after sudden cardiac arrest is limited by postarrest myocardial dysfunction, but understanding of this phenomenon is constrained by a lack of data from a physiological model of disease. In this study, we established an in vivo model of cardiac arrest and resuscitation, characterized the biology of the associated myocardial dysfunction, and tested novel therapeutic strategies. METHODS We developed rodent models of in vivo postarrest myocardial dysfunction using extracorporeal membrane oxygenation resuscitation followed by invasive hemodynamics measurement. In postarrest isolated cardiomyocytes, we assessed mechanical load and Ca(2) (+)-induced Ca(2+) release (CICR) simultaneously using the microcarbon fiber technique and observed reduced function and myofilament calcium sensitivity. We used a novel fiberoptic catheter imaging system and a genetically encoded calcium sensor, GCaMP6f, to image CICR in vivo. RESULTS We found potentiation of CICR in isolated cells from this extracorporeal membrane oxygenation model and in cells isolated from an ischemia/reperfusion Langendorff model perfused with oxygenated blood from an arrested animal but not when reperfused in saline. We established that CICR potentiation begins in vivo. The augmented CICR observed after arrest was mediated by the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Increased phosphorylation of CaMKII, phospholamban, and ryanodine receptor 2 was detected in the postarrest period. Exogenous adrenergic activation in vivo recapitulated Ca(2+) potentiation but was associated with lesser CaMKII activation. Because oxidative stress and aldehydic adduct formation were high after arrest, we tested a small-molecule activator of aldehyde dehydrogenase type 2, Alda-1, which reduced oxidative stress, restored calcium and CaMKII homeostasis, and improved cardiac function and postarrest outcome in vivo. CONCLUSIONS Cardiac arrest and reperfusion lead to CaMKII activation and calcium long-term potentiation, which support cardiomyocyte contractility in the face of impaired postarrest myofilament calcium sensitivity. Alda-1 mitigates these effects, normalizes calcium cycling, and improves outcome.
Collapse
Affiliation(s)
- Christopher Woods
- Division of Cardiology, Arrhythmia Section, Palo Alto Medical Foundation, Burlingame, CA
| | - Ching Shang
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| | - Fouad Taghavi
- Department of Cardiothoracic Surgery, Papworth Hospital, Cambridge, UK
| | - Peter Downey
- Division of Cardiology, Columbia University, New York, NY
| | | | - Gabriel R Rubio
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| | - Jing Liu
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| | | | - Zachary Grunwald
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| | - Wei Qi
- Division of Cardiology, Columbia University, New York, NY
| | | | - Porama Thanaporn
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| | - Ayyaz Ali
- Department of Cardiothoracic Surgery, Papworth Hospital, Cambridge, UK
| | - Kirk Riemer
- Department of Cardiothoracic Surgery, Stanford University, London, UK
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College, London, UK
| | | | | | - Stephen Large
- Department of Cardiothoracic Surgery, Papworth Hospital, Cambridge, UK
| | - Ziad Ali
- Division of Cardiology, Columbia University, New York, NY
| | - Euan Ashley
- Division of Cardiovascular Medicine, Stanford University, Stanford, CA
| |
Collapse
|
8
|
Wang K, Lee P, Mirams GR, Sarathchandra P, Borg TK, Gavaghan DJ, Kohl P, Bollensdorff C. Cardiac tissue slices: preparation, handling, and successful optical mapping. Am J Physiol Heart Circ Physiol 2015; 308:H1112-25. [PMID: 25595366 PMCID: PMC4551126 DOI: 10.1152/ajpheart.00556.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/14/2015] [Indexed: 01/28/2023]
Abstract
Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics.
Collapse
Affiliation(s)
- Ken Wang
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Peter Lee
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
| | - Gary R Mirams
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Padmini Sarathchandra
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
| | - Thomas K Borg
- Department of Regenerative Medicine and Cell Biology, University of South Carolina School of Medicine, Charleston, South Carolina; and
| | - David J Gavaghan
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Peter Kohl
- Department of Computer Science, University of Oxford, Oxford, United Kingdom; Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom
| | - Christian Bollensdorff
- Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Middlesex, United Kingdom; Qatar Cardiovascular Research Center, Qatar Foundation, Doha, Qatar
| |
Collapse
|
9
|
Loew LM. Design and Use of Organic Voltage Sensitive Dyes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:27-53. [PMID: 26238048 DOI: 10.1007/978-3-319-17641-3_2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The chemistry and the physics of voltage sensitive dyes (VSDs) should be understood and appreciated as a prerequisite for their optimal application to problems in neuroscience cardiology. This chapter provides a basic understanding of the properties of the large variety of available organic VSDs. The mechanisms by which the dyes respond to voltage guides the best set up of the optics for recording or imaging electrophysiological activity. The physical and chemical properties of the dyes can be tuned to optimize delivery to and staining of the cells in different experimental preparations. The aim of this chapter is to arm the experimentalists who use the dyes with enough information and data to be able to intelligently choose the best dye for their specific requirements.
Collapse
Affiliation(s)
- Leslie M Loew
- Department of Cell Biology, R. D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT, 06030-6406, USA,
| |
Collapse
|
10
|
Living cardiac tissue slices: an organotypic pseudo two-dimensional model for cardiac biophysics research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:314-27. [PMID: 25124067 DOI: 10.1016/j.pbiomolbio.2014.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/02/2014] [Indexed: 11/24/2022]
Abstract
Living cardiac tissue slices, a pseudo two-dimensional (2D) preparation, have received less attention than isolated single cells, cell cultures, or Langendorff-perfused hearts in cardiac biophysics research. This is, in part, due to difficulties associated with sectioning cardiac tissue to obtain live slices. With moderate complexity, native cell-types, and well-preserved cell-cell electrical and mechanical interconnections, cardiac tissue slices have several advantages for studying cardiac electrophysiology. The trans-membrane potential (Vm) has, thus far, mainly been explored using multi-electrode arrays. Here, we combine tissue slices with optical mapping to monitor Vm and intracellular Ca(2+) concentration ([Ca(2+)]i). This combination opens up the possibility of studying the effects of experimental interventions upon action potential (AP) and calcium transient (CaT) dynamics in 2D, and with relatively high spatio-temporal resolution. As an intervention, we conducted proof-of-principle application of stretch. Mechanical stimulation of cardiac preparations is well-established for membrane patches, single cells and whole heart preparations. For cardiac tissue slices, it is possible to apply stretch perpendicular or parallel to the dominant orientation of cells, while keeping the preparation in a constant focal plane for fluorescent imaging of in-slice functional dynamics. Slice-to-slice comparison furthermore allows one to assess transmural differences in ventricular tissue responses to mechanical challenges. We developed and tested application of axial stretch to cardiac tissue slices, using a manually-controlled stretching device, and recorded Vm and [Ca(2+)]i by optical mapping before, during, and after application of stretch. Living cardiac tissue slices, exposed to axial stretch, show an initial shortening in both AP and CaT duration upon stretch application, followed in most cases by a gradual prolongation of AP and CaT duration during stretch maintained for up to 50 min. After release of sustained stretch, AP duration (APD) and CaT duration reverted to shorter values. Living cardiac tissue slices are a promising experimental model for the study of cardiac mechano-electric interactions. The methodology described here can be refined to achieve more accurate control over stretch amplitude and timing (e.g. using a computer-controlled motorised stage, or by synchronising electrical and mechanical events) and through monitoring of regional tissue deformation (e.g. by adding motion tracking).
Collapse
|