1
|
Koureas M, Kirgou P, Amoutzias G, Hadjichristodoulou C, Gourgoulianis K, Tsakalof A. Target Analysis of Volatile Organic Compounds in Exhaled Breath for Lung Cancer Discrimination from Other Pulmonary Diseases and Healthy Persons. Metabolites 2020; 10:metabo10080317. [PMID: 32756521 PMCID: PMC7464039 DOI: 10.3390/metabo10080317] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the ability of breath analysis to distinguish lung cancer (LC) patients from patients with other respiratory diseases and healthy people. The population sample consisted of 51 patients with confirmed LC, 38 patients with pathological computed tomography (CT) findings not diagnosed with LC, and 53 healthy controls. The concentrations of 19 volatile organic compounds (VOCs) were quantified in the exhaled breath of study participants by solid phase microextraction (SPME) of the VOCs and subsequent gas chromatography-mass spectrometry (GC-MS) analysis. Kruskal-Wallis and Mann-Whitney tests were used to identify significant differences between subgroups. Machine learning methods were used to determine the discriminant power of the method. Several compounds were found to differ significantly between LC patients and healthy controls. Strong associations were identified for 2-propanol, 1-propanol, toluene, ethylbenzene, and styrene (p-values < 0.001-0.006). These associations remained significant when ambient air concentrations were subtracted from breath concentrations. VOC levels were found to be affected by ambient air concentrations and a few by smoking status. The random forest machine learning algorithm achieved a correct classification of patients of 88.5% (area under the curve-AUC 0.94). However, none of the methods used achieved adequate discrimination between LC patients and patients with abnormal computed tomography (CT) findings. Biomarker sets, consisting mainly of the exogenous monoaromatic compounds and 1- and 2- propanol, adequately discriminated LC patients from healthy controls. The breath concentrations of these compounds may reflect the alterations in patient's physiological and biochemical status and perhaps can be used as probes for the investigation of these statuses or normalization of patient-related factors in breath analysis.
Collapse
Affiliation(s)
- Michalis Koureas
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
| | - Paraskevi Kirgou
- Respiratory Medicine Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (P.K.); (K.G.)
| | - Grigoris Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece;
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
| | - Konstantinos Gourgoulianis
- Respiratory Medicine Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (P.K.); (K.G.)
| | - Andreas Tsakalof
- Department of Hygiene and Epidemiology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222 Larissa, Greece; (M.K.); (C.H.)
- Department of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- Correspondence: ; Tel.: +30-2410685580
| |
Collapse
|
2
|
Ding J, Lu X. Expression of miR-204 in pediatric retinoblastoma and its effects on proliferation and apoptosis of cancer cells. Oncol Lett 2018; 16:7152-7157. [PMID: 30546451 PMCID: PMC6256316 DOI: 10.3892/ol.2018.9519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Expression, clinical significance and molecular mechanism of miR-204 in human retinoblastoma (RB) and para-carcinoma tissues were investigated. A total of 110 cases of RB tissues preserved after ophthalmectomy in the First Affiliated Hospital of Hunan Normal University (People's Hospital of Hunan Province) from April 2013 to June 2017 were collected along with 100 cases of para-carcinoma normal tissues. The expression of miR-204 in RB tissues was detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and its associations with clinicopathological features were analyzed. Y79 cells were transfected with miR-204 mimics. A total of 80 pmol/l miR-204 mimics and 10 µl Lipofectamine 2000 were added into the experimental group. Cell proliferation was detected via methyl thiazolyl tetrazolium (MTT) assay at 24, 48, 72 and 96 h, apoptosis was detected via flow cytometry at 48 h after transfection, and the relative expression levels of B-cell lymphoma 2 (Bcl-2) messenger RNA (mRNA) and Sirt1 mRNA were detected via RT-qPCR. The results of MTT assay revealed that the measured value of the optical density (OD) in the experimental group at 48 h was obviously lower than that in the negative control group (p<0.001). The proportion of apoptotic cells in the experimental group was remarkably higher than that in the negative control group (p<0.001). Compared with those in the negative control group, the relative expression levels of Bcl-2 and Sirt1 mRNAs in the experimental group were significantly decreased (p<0.001). miR-204 may be involved in the occurrence and development of RB, which is significantly associated with clinical tissue differentiation, neural infiltration and lymph node metastasis in patients. miR-204 may inhibit proliferation and promote apoptosis of RB cells through downregulating the expression of Bcl-2 and Sirt1 in RB. Therefore, miR-204 may become a new biological index for early diagnosis, prognosis evaluation and biotherapy of RB.
Collapse
Affiliation(s)
- Jian Ding
- Medical Administration Division, The First Affiliated Hospital of Hunan Normal University (People's Hospital of Hunan Province), Changsha, Hunan 410005, P.R. China
| | - Xiaoyun Lu
- Department of Oncology, The First Affiliated Hospital of Hunan Normal University (People's Hospital of Hunan Province), Changsha, Hunan 410005, P.R. China
| |
Collapse
|
3
|
Elchuri SV, Rajasekaran S, Miles WO. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development. Front Genet 2018; 9:170. [PMID: 29868118 PMCID: PMC5966869 DOI: 10.3389/fgene.2018.00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is rare tumor of the retina caused by the homozygous loss of the Retinoblastoma 1 tumor suppressor gene (RB1). Loss of the RB1 protein, pRB, results in de-regulated activity of the E2F transcription factors, chromatin changes and developmental defects leading to tumor development. Extensive microarray profiles of these tumors have enabled the identification of genes sensitive to pRB disruption, however, this technology has a number of limitations in the RNA profiles that they generate. The advent of RNA-sequencing has enabled the global profiling of all of the RNA within the cell including both coding and non-coding features and the detection of aberrant RNA processing events. In this perspective, we focus on discussing how RNA-sequencing of rare Retinoblastoma tumors will build on existing data and open up new area's to improve our understanding of the biology of these tumors. In particular, we discuss how the RB-research field may be to use this data to determine how RB1 loss results in the expression of; non-coding RNAs, causes aberrant RNA processing events and how a deeper analysis of metabolic RNA changes can be utilized to model tumor specific shifts in metabolism. Each section discusses new opportunities and challenges associated with these types of analyses and aims to provide an honest assessment of how understanding these different processes may contribute to the treatment of Retinoblastoma.
Collapse
Affiliation(s)
- Sailaja V. Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Swetha Rajasekaran
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Wayne O. Miles
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Lee JH, Hou X, Kummari E, Borazjani A, Edelmann MJ, Ross MK. Endocannabinoid hydrolases in avian HD11 macrophages identified by chemoproteomics: inactivation by small-molecule inhibitors and pathogen-induced downregulation of their activity. Mol Cell Biochem 2017; 444:125-141. [DOI: 10.1007/s11010-017-3237-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/24/2017] [Indexed: 12/31/2022]
|
5
|
Ates O. Systems Biology of Microbial Exopolysaccharides Production. Front Bioeng Biotechnol 2015; 3:200. [PMID: 26734603 PMCID: PMC4683990 DOI: 10.3389/fbioe.2015.00200] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/30/2015] [Indexed: 11/23/2022] Open
Abstract
Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran.
Collapse
Affiliation(s)
- Ozlem Ates
- Department of Medical Services and Techniques, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
6
|
Braconi D, Bernardini G, Santucci A. Saccharomyces cerevisiae as a model in ecotoxicological studies: A post-genomics perspective. J Proteomics 2015; 137:19-34. [PMID: 26365628 DOI: 10.1016/j.jprot.2015.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/29/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
Abstract
The budding yeast Saccharomyces cerevisiae represents a well-consolidated and widely used eukaryotic model, with a number of features that make it an ideal organism to carry out functional toxicological studies. Several advantages are permitted by the use of yeast cells, as the possibility to identify molecular biomarkers, unknown mechanisms of action and novel potential targets. Thanks to the evolutionary conservation, yeast can provide also useful clues allowing the prioritization of more complex analyses and toxicity predictions in higher eukaryotes. The last two decades were incredibly fruitful for yeast "omics", but referring to the analysis of the effects of pesticides on yeast much still remains to be done. Furthermore, a deeper knowledge of the effects of environmental pollutants on biotechnological processes associated with the use of yeasts is to be hoped.
Collapse
Affiliation(s)
- Daniela Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, via A. Moro 2, Università degli Studi di Siena, 53100 Siena, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, via A. Moro 2, Università degli Studi di Siena, 53100 Siena, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, via A. Moro 2, Università degli Studi di Siena, 53100 Siena, Italy.
| |
Collapse
|
7
|
Kohnz RA, Nomura DK. Chemical approaches to therapeutically target the metabolism and signaling of the endocannabinoid 2-AG and eicosanoids. Chem Soc Rev 2014; 43:6859-69. [PMID: 24676249 PMCID: PMC4159426 DOI: 10.1039/c4cs00047a] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The endocannabinoid system, most popularly known as the target of the psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), is a signaling network that modulates a diverse range of physiological processes including nociception, behavior, cognitive function, appetite, metabolism, motor control, memory formation, and inflammation. While THC and its derivatives have garnered notoriety in the eyes of the public, the endocannabinoid system consists of two endogenous signaling lipids, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (anandamide), which activate cannabinoid receptors CB1 and CB2 in the nervous system and peripheral tissues. This review will focus on the recent efforts to chemically manipulate 2-AG signaling through the development of inhibitors of the 2-AG-synthesizing enzyme diacylglycerol lipase (DAGL) or the 2-AG-degrading enzyme monoacylglycerol lipase (MAGL), and assessing the therapeutic potential of DAGL and MAGL inhibitors in pain, inflammation, degenerative diseases, tissue injury, and cancer.
Collapse
Affiliation(s)
- Rebecca A Kohnz
- Program in Metabolic Biology, University of California, Berkeley, 127 Morgan Hall, Berkeley, CA 94720, USA.
| | | |
Collapse
|
8
|
Newman RH, Zhang J, Zhu H. Toward a systems-level view of dynamic phosphorylation networks. Front Genet 2014; 5:263. [PMID: 25177341 PMCID: PMC4133750 DOI: 10.3389/fgene.2014.00263] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/16/2014] [Indexed: 11/13/2022] Open
Abstract
To better understand how cells sense and respond to their environment, it is important to understand the organization and regulation of the phosphorylation networks that underlie most cellular signal transduction pathways. These networks, which are composed of protein kinases, protein phosphatases and their respective cellular targets, are highly dynamic. Importantly, to achieve signaling specificity, phosphorylation networks must be regulated at several levels, including at the level of protein expression, substrate recognition, and spatiotemporal modulation of enzymatic activity. Here, we briefly summarize some of the traditional methods used to study the phosphorylation status of cellular proteins before focusing our attention on several recent technological advances, such as protein microarrays, quantitative mass spectrometry, and genetically-targetable fluorescent biosensors, that are offering new insights into the organization and regulation of cellular phosphorylation networks. Together, these approaches promise to lead to a systems-level view of dynamic phosphorylation networks.
Collapse
Affiliation(s)
- Robert H Newman
- Department of Biology, North Carolina Agricultural and Technical State University Greensboro, NC, USA
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Oncology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA ; High-Throughput Biology Center, Institute for Basic Biomedical Sciences, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
9
|
Morris PJ, Medina-Cleghorn D, Heslin A, King SM, Orr J, Mulvihill MM, Krauss RM, Nomura DK. Organophosphorus flame retardants inhibit specific liver carboxylesterases and cause serum hypertriglyceridemia. ACS Chem Biol 2014; 9:1097-103. [PMID: 24597639 PMCID: PMC4027947 DOI: 10.1021/cb500014r] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Humans are prevalently exposed to organophosphorus flame retardants (OPFRs) contained in consumer products and electronics, though their toxicological effects and mechanisms remain poorly understood. We show here that OPFRs inhibit specific liver carboxylesterases (Ces) and cause altered hepatic lipid metabolism. Ablation of the OPFR target Ces1g has been previously linked to dyslipidemia in mice. Consistent with OPFR inhibition of Ces1g, we also observe OPFR-induced serum hypertriglyceridemia in mice. Our findings suggest novel toxicities that may arise from OPFR exposure and highlight the utility of chemoproteomic and metabolomic platforms in the toxicological characterization of environmental chemicals.
Collapse
Affiliation(s)
- Patrick J. Morris
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Daniel Medina-Cleghorn
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Ann Heslin
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Sarah M. King
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Joseph Orr
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Melinda M. Mulvihill
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| | - Ronald M. Krauss
- Children’s Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Daniel K. Nomura
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, 127 Morgan Hall, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Hunerdosse D, Nomura DK. Activity-based proteomic and metabolomic approaches for understanding metabolism. Curr Opin Biotechnol 2014; 28:116-26. [PMID: 24594637 DOI: 10.1016/j.copbio.2014.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
Abstract
There are an increasing number of human pathologies that have been associated with altered metabolism, including obesity, diabetes, atherosclerosis, cancer, and neurodegenerative diseases. Most attention on metabolism has been focused on well-understood metabolic pathways and has largely ignored most of the biochemical pathways that operate in (patho)physiological settings, in part because of the vast landscape of uncharacterized and undiscovered metabolic pathways. One technology that has arisen to meet this challenge is activity-based protein profiling (ABPP) that uses activity-based chemical probes to broadly assess the functional states of both characterized and uncharacterized enzymes. This review will focus on how ABPP, coupled with inhibitor discovery platforms and functional metabolomic technologies, have led to discoveries that have expanded our knowledge of metabolism in health and disease.
Collapse
Affiliation(s)
- Devon Hunerdosse
- Program in Metabolic Biology, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Daniel K Nomura
- Program in Metabolic Biology, University of California, Berkeley, Berkeley, CA 94720, United States.
| |
Collapse
|
11
|
Medina-Cleghorn D, Heslin A, Morris PJ, Mulvihill MM, Nomura DK. Multidimensional profiling platforms reveal metabolic dysregulation caused by organophosphorus pesticides. ACS Chem Biol 2014; 9:423-32. [PMID: 24205821 DOI: 10.1021/cb400796c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We are environmentally exposed to countless synthetic chemicals on a daily basis, with an increasing number of these chemical exposures linked to adverse health effects. However, our understanding of the (patho)physiological effects of these chemicals remains poorly understood, due in part to a general lack of effort to systematically and comprehensively identify the direct interactions of environmental chemicals with biological macromolecules in mammalian systems in vivo. Here, we have used functional chemoproteomic and metabolomic platforms to broadly identify direct enzyme targets that are inhibited by widely used organophosphorus (OP) pesticides in vivo in mice and to determine metabolic alterations that are caused by these chemicals. We find that these pesticides directly inhibit over 20 serine hydrolases in vivo leading to widespread disruptions in lipid metabolism. Through identifying direct biological targets of OP pesticides, we show heretofore unrecognized modes of toxicity that may be associated with these agents and underscore the utility of using multidimensional profiling approaches to obtain a more complete understanding of toxicities associated with environmental chemicals.
Collapse
Affiliation(s)
- Daniel Medina-Cleghorn
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Ann Heslin
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Patrick J. Morris
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Melinda M. Mulvihill
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Department
of Nutritional
Sciences and Toxicology, University of California, Berkeley, 127 Morgan
Hall, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Christensen CE, Karlsson M, Winther JR, Jensen PR, Lerche MH. Non-invasive in-cell determination of free cytosolic [NAD+]/[NADH] ratios using hyperpolarized glucose show large variations in metabolic phenotypes. J Biol Chem 2013; 289:2344-52. [PMID: 24302737 DOI: 10.1074/jbc.m113.498626] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Accumulating evidence suggest that the pyridine nucleotide NAD has far wider biological functions than its classical role in energy metabolism. NAD is used by hundreds of enzymes that catalyze substrate oxidation and, as such, it plays a key role in various biological processes such as aging, cell death, and oxidative stress. It has been suggested that changes in the ratio of free cytosolic [NAD(+)]/[NADH] reflects metabolic alterations leading to, or correlating with, pathological states. We have designed an isotopically labeled metabolic bioprobe of free cytosolic [NAD(+)]/[NADH] by combining a magnetic enhancement technique (hyperpolarization) with cellular glycolytic activity. The bioprobe reports free cytosolic [NAD(+)]/[NADH] ratios based on dynamically measured in-cell [pyruvate]/[lactate] ratios. We demonstrate its utility in breast and prostate cancer cells. The free cytosolic [NAD(+)]/[NADH] ratio determined in prostate cancer cells was 4 times higher than in breast cancer cells. This higher ratio reflects a distinct metabolic phenotype of prostate cancer cells consistent with previously reported alterations in the energy metabolism of these cells. As a reporter on free cytosolic [NAD(+)]/[NADH] ratio, the bioprobe will enable better understanding of the origin of diverse pathological states of the cell as well as monitor cellular consequences of diseases and/or treatments.
Collapse
|
13
|
Louie SM, Roberts LS, Mulvihill MM, Luo K, Nomura DK. Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1566-72. [PMID: 23872477 DOI: 10.1016/j.bbalip.2013.07.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
De novo lipogenesis is considered the primary source of fatty acids for lipid synthesis in cancer cells, even in the presence of exogenous fatty acids. Here, we have used an isotopic fatty acid labeling strategy coupled with metabolomic profiling platforms to comprehensively map palmitic acid incorporation into complex lipids in cancer cells. We show that cancer cells and tumors robustly incorporate and remodel exogenous palmitate into structural and oncogenic glycerophospholipids, sphingolipids, and ether lipids. We also find that fatty acid incorporation into oxidative pathways is reduced in aggressive human cancer cells, and instead shunted into pathways for generating structural and signaling lipids. Our results demonstrate that cancer cells do not solely rely on de novo lipogenesis, but also utilize exogenous fatty acids for generating lipids required for proliferation and protumorigenic lipid signaling. This article is part of a special issue entitled Lipid Metabolism in Cancer.
Collapse
Affiliation(s)
- Sharon M Louie
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Lindsay S Roberts
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Melinda M Mulvihill
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel K Nomura
- Program in Metabolic Biology, Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|