1
|
Bround MJ, Abay E, Huo J, Havens JR, York AJ, Bers DM, Molkentin JD. MCU-independent Ca 2+ uptake mediates mitochondrial Ca 2+ overload and necrotic cell death in a mouse model of Duchenne muscular dystrophy. Sci Rep 2024; 14:6751. [PMID: 38514795 PMCID: PMC10957967 DOI: 10.1038/s41598-024-57340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Mitochondrial Ca2+ overload can mediate mitochondria-dependent cell death, a major contributor to several human diseases. Indeed, Duchenne muscular dystrophy (MD) is driven by dysfunctional Ca2+ influx across the sarcolemma that causes mitochondrial Ca2+ overload, organelle rupture, and muscle necrosis. The mitochondrial Ca2+ uniporter (MCU) complex is the primary characterized mechanism for acute mitochondrial Ca2+ uptake. One strategy for preventing mitochondrial Ca2+ overload is deletion of the Mcu gene, the pore forming subunit of the MCU-complex. Conversely, enhanced MCU-complex Ca2+ uptake is achieved by deleting the inhibitory Mcub gene. Here we show that myofiber-specific Mcu deletion was not protective in a mouse model of Duchenne MD. Specifically, Mcu gene deletion did not reduce muscle histopathology, did not improve muscle function, and did not prevent mitochondrial Ca2+ overload. Moreover, myofiber specific Mcub gene deletion did not augment Duchenne MD muscle pathology. Interestingly, we observed MCU-independent Ca2+ uptake in dystrophic mitochondria that was sufficient to drive mitochondrial permeability transition pore (MPTP) activation and skeletal muscle necrosis, and this same type of activity was observed in heart, liver, and brain mitochondria. These results demonstrate that mitochondria possess an uncharacterized MCU-independent Ca2+ uptake mechanism that is sufficient to drive MPTP-dependent necrosis in MD in vivo.
Collapse
Affiliation(s)
- Michael J Bround
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Eaman Abay
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Jiuzhou Huo
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Julian R Havens
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Allen J York
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, 95616, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
2
|
Chapa-Dubocq XR, Garcia-Baez JF, Bazil JN, Javadov S. Crosstalk between adenine nucleotide transporter and mitochondrial swelling: experimental and computational approaches. Cell Biol Toxicol 2022:10.1007/s10565-022-09724-2. [PMID: 35606662 DOI: 10.1007/s10565-022-09724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Mitochondrial metabolism and function are modulated by changes in matrix Ca2+. Small increases in the matrix Ca2+ stimulate mitochondrial bioenergetics, whereas excessive Ca2+ leads to cell death by causing massive matrix swelling and impairing the structural and functional integrity of mitochondria. Sustained opening of the non-selective mitochondrial permeability transition pores (PTP) is the main mechanism responsible for mitochondrial Ca2+ overload that leads to mitochondrial dysfunction and cell death. Recent studies suggest the existence of two or more types of PTP, and adenine nucleotide translocator (ANT) and FOF1-ATP synthase were proposed to form the PTP independent of each other. Here, we elucidated the role of ANT in PTP opening by applying both experimental and computational approaches. We first developed and corroborated a detailed model of the ANT transport mechanism including the matrix (ANTM), cytosolic (ANTC), and pore (ANTP) states of the transporter. Then, the ANT model was incorporated into a simple, yet effective, empirical model of mitochondrial bioenergetics to ascertain the point when Ca2+ overload initiates PTP opening via an ANT switch-like mechanism activated by matrix Ca2+ and is inhibited by extra-mitochondrial ADP. We found that encoding a heterogeneous Ca2+ response of at least three types of PTPs, weakly, moderately, and strongly sensitive to Ca2+, enabled the model to simulate Ca2+ release dynamics observed after large boluses were administered to a population of energized cardiac mitochondria. Thus, this study demonstrates the potential role of ANT in PTP gating and proposes a novel mechanism governing the cryptic nature of the PTP phenomenon.
Collapse
Affiliation(s)
- Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Jorge F Garcia-Baez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, 48824-1046, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA.
| |
Collapse
|
3
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Abstract
Mitochondria are responsible for ATP production but are also known as regulators of cell death, and mitochondrial matrix Ca2+ is a key modulator of both ATP production and cell death. Although mitochondrial Ca2+ uptake and efflux have been studied for over 50 years, it is only in the past decade that the proteins responsible for mitochondrial Ca2+ uptake and efflux have been identified. The identification of the mitochondrial Ca2+ uniporter (MCU) led to an explosion of studies identifying regulators of the MCU. The levels of these regulators vary in a tissue- and disease-specific manner, providing new insight into how mitochondrial Ca2+ is regulated. This review focuses on the proteins responsible for mitochondrial transport and what we have learned from mouse studies with genetic alterations in these proteins.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
5
|
Huo J, Lu S, Kwong JQ, Bround MJ, Grimes KM, Sargent MA, Brown ME, Davis ME, Bers DM, Molkentin JD. MCUb Induction Protects the Heart From Postischemic Remodeling. Circ Res 2020; 127:379-390. [PMID: 32299299 PMCID: PMC7367751 DOI: 10.1161/circresaha.119.316369] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
RATIONALE Mitochondrial Ca2+ loading augments oxidative metabolism to match functional demands during times of increased work or injury. However, mitochondrial Ca2+ overload also directly causes mitochondrial rupture and cardiomyocyte death during ischemia-reperfusion injury by inducing mitochondrial permeability transition pore opening. The MCU (mitochondrial Ca2+ uniporter) mediates mitochondrial Ca2+ influx, and its activity is modulated by partner proteins in its molecular complex, including the MCUb subunit. OBJECTIVE Here, we sought to examine the function of the MCUb subunit of the MCU-complex in regulating mitochondria Ca2+ influx dynamics, acute cardiac injury, and long-term adaptation after ischemic injury. METHODS AND RESULTS Cardiomyocyte-specific MCUb overexpressing transgenic mice and Mcub gene-deleted (Mcub-/-) mice were generated to dissect the molecular function of this protein in the heart. We observed that MCUb protein is undetectable in the adult mouse heart at baseline, but mRNA and protein are induced after ischemia-reperfusion injury. MCUb overexpressing mice demonstrated inhibited mitochondrial Ca2+ uptake in cardiomyocytes and partial protection from ischemia-reperfusion injury by reducing mitochondrial permeability transition pore opening. Antithetically, deletion of the Mcub gene exacerbated pathological cardiac remodeling and infarct expansion after ischemic injury in association with greater mitochondrial Ca2+ uptake. Furthermore, hindlimb remote ischemic preconditioning induced MCUb expression in the heart, which was associated with decreased mitochondrial Ca2+ uptake, collectively suggesting that induction of MCUb protein in the heart is protective. Similarly, mouse embryonic fibroblasts from Mcub-/- mice were more sensitive to Ca2+ overload. CONCLUSIONS Our studies suggest that Mcub is a protective cardiac inducible gene that reduces mitochondrial Ca2+ influx and permeability transition pore opening after ischemic injury to reduce ongoing pathological remodeling.
Collapse
Affiliation(s)
- Jiuzhou Huo
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.H., M.J.B., K.M.G., M.A.S., J.D.M.)
| | - Shan Lu
- Department of Pharmacology, University of California, Davis (S.L., D.M.B.)
| | - Jennifer Q Kwong
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA (J.Q.K.)
| | - Michael J Bround
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.H., M.J.B., K.M.G., M.A.S., J.D.M.)
| | - Kelly M Grimes
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.H., M.J.B., K.M.G., M.A.S., J.D.M.)
| | - Michelle A Sargent
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.H., M.J.B., K.M.G., M.A.S., J.D.M.)
| | - Milton E Brown
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA (M.E.B., M.E.D.)
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, GA (M.E.B., M.E.D.)
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis (S.L., D.M.B.)
| | - Jeffery D Molkentin
- From the Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (J.H., M.J.B., K.M.G., M.A.S., J.D.M.)
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, OH (J.D.M.)
| |
Collapse
|
6
|
Chvanov M, Voronina S, Zhang X, Telnova S, Chard R, Ouyang Y, Armstrong J, Tanton H, Awais M, Latawiec D, Sutton R, Criddle DN, Tepikin AV. Knockout of the Mitochondrial Calcium Uniporter Strongly Suppresses Stimulus-Metabolism Coupling in Pancreatic Acinar Cells but Does Not Reduce Severity of Experimental Acute Pancreatitis. Cells 2020; 9:cells9061407. [PMID: 32516955 PMCID: PMC7349284 DOI: 10.3390/cells9061407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis is a frequent disease that lacks specific drug treatment. Unravelling the molecular mechanisms of acute pancreatitis is essential for the development of new therapeutics. Several inducers of acute pancreatitis trigger sustained Ca2+ increases in the cytosol and mitochondria of pancreatic acinar cells. The mitochondrial calcium uniporter (MCU) mediates mitochondrial Ca2+ uptake that regulates bioenergetics and plays an important role in cell survival, damage and death. Aberrant Ca2+ signaling and mitochondrial damage in pancreatic acinar cells have been implicated in the initiation of acute pancreatitis. The primary aim of this study was to assess the involvement of the MCU in experimental acute pancreatitis. We found that pancreatic acinar cells from MCU-/- mice display dramatically reduced mitochondrial Ca2+ uptake. This is consistent with the drastic changes of stimulus-metabolism coupling, manifested by the reduction of mitochondrial NADH/FAD+ responses to cholecystokinin and in the decrease of cholecystokinin-stimulated oxygen consumption. However, in three experimental models of acute pancreatitis (induced by caerulein, taurolithocholic acid 3-sulfate or palmitoleic acid plus ethanol), MCU knockout failed to reduce the biochemical and histological changes characterizing the severity of local and systemic damage. A possible explanation of this surprising finding is the redundancy of damaging mechanisms activated by the inducers of acute pancreatitis.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
- Correspondence: (M.C.); (A.V.T.); Tel.: +44-(0)15-1794-5357 (M.C.); +44-(0)15-1794-5351 (A.V.T.)
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Xiaoying Zhang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Svetlana Telnova
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Robert Chard
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Yulin Ouyang
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Jane Armstrong
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Helen Tanton
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Muhammad Awais
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Diane Latawiec
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK; (X.Z.); (J.A.); (M.A.); (D.L.); (R.S.)
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
| | - Alexei V. Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK; (S.V.); (S.T.); (R.C.); (Y.O.); (H.T.); (D.N.C)
- Correspondence: (M.C.); (A.V.T.); Tel.: +44-(0)15-1794-5357 (M.C.); +44-(0)15-1794-5351 (A.V.T.)
| |
Collapse
|
7
|
Garbincius JF, Luongo TS, Elrod JW. The debate continues - What is the role of MCU and mitochondrial calcium uptake in the heart? J Mol Cell Cardiol 2020; 143:163-174. [PMID: 32353353 DOI: 10.1016/j.yjmcc.2020.04.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Since the identification of the mitochondrial calcium uniporter (MCU) in 2011, several studies utilizing genetic models have attempted to decipher the role of mitochondrial calcium uptake in cardiac physiology. Confounding results in various mutant mouse models have led to an ongoing debate regarding the function of MCU in the heart. In this review, we evaluate and discuss the totality of evidence for mitochondrial calcium uptake in the cardiac stress response and highlight recent reports that implicate MCU in the control of homeostatic cardiac metabolism and function. This review concludes with a discussion of current gaps in knowledge and remaining experiments to define how MCU contributes to contractile function, cell death, metabolic regulation, and heart failure progression.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - Timothy S Luongo
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
8
|
Functional properties and mode of regulation of the mitochondrial Na +/Ca 2+ exchanger, NCLX. Semin Cell Dev Biol 2019; 94:59-65. [PMID: 30658153 DOI: 10.1016/j.semcdb.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/23/2022]
Abstract
Mitochondrial Ca2+ transient is the earliest discovered organellar Ca2+ signaling pathway. It consist of a Ca2+ influx, mediated by mitochondrial Ca2+ uniporter (MCU), and mitochondrial Ca2+ efflux mediated by a Na+/Ca2+ exchanger (NCLX). Mitochondrial Ca2+ signaling machinery plays a fundamental role in linking metabolic activity to cellular Ca2+ signaling, and in controlling local Ca2+ concertation in distinct cellular compartments. Impaired balance between mitochondrial Ca2+ influx and efflux leads to mitochondrial Ca2+ overload, an early and key event in ischemic or neurodegenerative syndromes. Molecular identification of NCLX and MCU happened only recently. Surprisingly, MCU knockout yielded a relatively mild phenotype while conditional knockout of NCLX led to a rapid fatal heart failure. Here we will focus on recent functional and molecular studies on NCLX structure and its mode of regulation. We will describe the unique crosstalk of this exchanger with Na+ and Ca2+ signaling pathways in the cell membrane and the endoplasmic reticulum, and with protein kinases that posttranslationally modulate NCLX activity. We will critically compare selectivity of pharmacological blockers versus molecular control of NCLX expression and activity. Finally we will discuss why this exchanger is essential for survival and can serve as an attractive therapeutic target.
Collapse
|
9
|
Hamilton J, Brustovetsky T, Rysted JE, Lin Z, Usachev YM, Brustovetsky N. Deletion of mitochondrial calcium uniporter incompletely inhibits calcium uptake and induction of the permeability transition pore in brain mitochondria. J Biol Chem 2018; 293:15652-15663. [PMID: 30154242 DOI: 10.1074/jbc.ra118.002926] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/22/2018] [Indexed: 11/06/2022] Open
Abstract
Ca2+ influx into mitochondria is mediated by the mitochondrial calcium uniporter (MCU), whose identity was recently revealed as a 40-kDa protein that along with other proteins forms the mitochondrial Ca2+ uptake machinery. The MCU is a Ca2+-conducting channel spanning the inner mitochondrial membrane. Here, deletion of the MCU completely inhibited Ca2+ uptake in liver, heart, and skeletal muscle mitochondria. However, in brain nonsynaptic and synaptic mitochondria from neuronal somata/glial cells and nerve terminals, respectively, the MCU deletion slowed, but did not completely block, Ca2+ uptake. Under resting conditions, brain MCU-KO mitochondria remained polarized, and in brain MCU-KO mitochondria, the electrophoretic Ca2+ ionophore ETH129 significantly accelerated Ca2+ uptake. The residual Ca2+ uptake in brain MCU-KO mitochondria was insensitive to inhibitors of mitochondrial Na+/Ca2+ exchanger and ryanodine receptor (CGP37157 and dantrolene, respectively), but was blocked by the MCU inhibitor Ru360. Respiration of WT and MCU-KO brain mitochondria was similar except that for mitochondria that oxidized pyruvate and malate, Ca2+ more strongly inhibited respiration in WT than in MCU-KO mitochondria. Of note, the MCU deletion significantly attenuated but did not completely prevent induction of the permeability transition pore (PTP) in brain mitochondria. Expression level of cyclophilin D and ATP content in mitochondria, two factors that modulate PTP induction, were unaffected by MCU-KO, whereas ADP was lower in MCU-KO than in WT brain mitochondria. Our results suggest the presence of an MCU-independent Ca2+ uptake pathway in brain mitochondria that mediates residual Ca2+ influx and induction of PTP in a fraction of the mitochondrial population.
Collapse
Affiliation(s)
| | | | - Jacob E Rysted
- the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Zhihong Lin
- the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Yuriy M Usachev
- the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Nickolay Brustovetsky
- From the Department of Pharmacology and Toxicology and .,the Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202 and
| |
Collapse
|
10
|
Function, regulation and physiological role of the mitochondrial Na + /Ca 2+ exchanger, NCLX. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Paupe V, Prudent J. New insights into the role of mitochondrial calcium homeostasis in cell migration. Biochem Biophys Res Commun 2018; 500:75-86. [PMID: 28495532 PMCID: PMC5930976 DOI: 10.1016/j.bbrc.2017.05.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 01/23/2023]
Abstract
Mitochondria are dynamic organelles involved in numerous physiological functions. Beyond their function in ATP production, mitochondria regulate cell death, reactive oxygen species (ROS) generation, immunity and metabolism. Mitochondria also play a key role in the buffering of cytosolic calcium, and calcium transported into the matrix regulates mitochondrial metabolism. Recently, the identification of the mitochondrial calcium uniporter (MCU) and associated regulators has allowed the characterization of new physiological roles for calcium in both mitochondrial and cellular homeostasis. Indeed, recent work has highlighted the importance of mitochondrial calcium homeostasis in regulating cell migration. Cell migration is a property common to all metazoans and is critical to embryogenesis, cancer progression, wound-healing and immune surveillance. Previous work has established that cytoplasmic calcium is a key regulator of cell migration, as oscillations in cytosolic calcium activate cytoskeletal remodelling, actin contraction and focal adhesion (FA) turnover necessary for cell movement. Recent work using animal models and in cellulo experiments to genetically modulate MCU and partners have shed new light on the role of mitochondrial calcium dynamics in cytoskeletal remodelling through the modulation of ATP and ROS production, as well as intracellular calcium signalling. This review focuses on MCU and its regulators in cell migration during physiological and pathophysiological processes including development and cancer. We also present hypotheses to explain the molecular mechanisms by which MCU may regulate mitochondrial dynamics and motility to drive cell migration.
Collapse
Affiliation(s)
- Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
12
|
Hernández-Morales M, Sobradillo D, Valero RA, Muñoz E, Ubierna D, Moyer MP, Núñez L, Villalobos C. Mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells: reversal by non-steroidal anti-inflammatory drugs. Oncotarget 2017; 8:55332-55352. [PMID: 28903423 PMCID: PMC5589662 DOI: 10.18632/oncotarget.19430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2017] [Indexed: 11/25/2022] Open
Abstract
Tumor cells undergo a critical remodeling of intracellular Ca2+ homeostasis that contribute to important cancer hallmarks. Store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway modulated by mitochondria, is dramatically enhanced in colon cancer cells. In addition, most cancer cells display the Warburg effect, a metabolic switch from mitochondrial metabolism to glycolysis that provides survival advantages. Accordingly, we investigated mitochondria control of store-operated currents (SOCs) in two cell lines previously selected for representing human normal colonic cells and colon cancer cells. We found that, in normal cells, mitochondria are important for SOCs activity but they are unable to prevent current inactivation. In contrast, in colon cancer cells, mitochondria are dispensable for SOCs activation but are able to prevent the slow, Ca2+-dependent inactivation of SOCs. This effect is associated to increased ability of tumor cell mitochondria to take up Ca2+ due to increased mitochondrial potential (ΔΨ) linked to the Warburg effect. Consistently with this view, selected non-steroidal anti-inflammatory drugs (NSAIDs) depolarize mitochondria, inhibit mitochondrial Ca2+ uptake and promote SOC inactivation, leading to inhibition of both SOCE and cancer cell proliferation. Thus, mitochondria sustain store-operated currents in colon cancer cells but not in normal colonic cells and this effect is counteracted by selected NSAIDs providing a mechanism for cancer chemoprevention.
Collapse
Affiliation(s)
- Miriam Hernández-Morales
- Institute of Molecular Biology and Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | - Diego Sobradillo
- Institute of Molecular Biology and Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | - Ruth A Valero
- Institute of Molecular Biology and Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | - Eva Muñoz
- Institute of Molecular Biology and Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | - Daniel Ubierna
- Institute of Molecular Biology and Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| | | | - Lucía Núñez
- Institute of Molecular Biology and Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain.,Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain
| | - Carlos Villalobos
- Institute of Molecular Biology and Genetics (IBGM), Spanish National Research Council (CSIC), Valladolid, Spain
| |
Collapse
|
13
|
Larbig R, Reda S, Paar V, Trost A, Leitner J, Weichselbaumer S, Motloch KA, Wernly B, Arrer A, Strauss B, Lichtenauer M, Reitsamer HA, Eckardt L, Seebohm G, Hoppe UC, Motloch LJ. Through modulation of cardiac Ca2+handling, UCP2 affects cardiac electrophysiology and influences the susceptibility for Ca2+-mediated arrhythmias. Exp Physiol 2017; 102:650-662. [DOI: 10.1113/ep086209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Robert Larbig
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Sara Reda
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Vera Paar
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Andrea Trost
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Johannes Leitner
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | | | - Karolina A. Motloch
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Bernhard Wernly
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Andreas Arrer
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Benjamin Strauss
- Cardiovascular Institute; Icahn School of Medicine at Mount Sinai; New York NY USA
| | - Michael Lichtenauer
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Herbert A. Reitsamer
- Research Program for Ophthalmology and Glaucoma Research, University Clinic of Ophthalmology and Optometry; Paracelsus Medical University/SALK; Salzburg Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IFGH), Department of Cardiovascular Medicine; University Hospital Münster; Münster Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| | - Lukas J. Motloch
- Department of Internal Medicine II; Paracelsus Medical University/SALK; Salzburg Austria
| |
Collapse
|
14
|
Direct activation of Ca 2+ and voltage-gated potassium channels of large conductance by anandamide in endothelial cells does not support the presence of endothelial atypical cannabinoid receptor. Eur J Pharmacol 2017; 805:14-24. [PMID: 28327344 DOI: 10.1016/j.ejphar.2017.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022]
Abstract
Endocannabinoid anandamide induces endothelium-dependent relaxation commonly attributed to stimulation of the G-protein coupled endothelial anandamide receptor. The study addressed the receptor-independent effect of anandamide on large conductance Ca2+-dependent K+ channels expressed in endothelial cell line EA.hy926. Under resting conditions, 10µM anandamide did not significantly influence the resting membrane potential. In a Ca2+-free solution the cells were depolarized by ~10mV. Further administration of 10µM anandamide hyperpolarized the cells by ~8mV. In voltage-clamp mode, anandamide elicited the outwardly rectifying whole-cell current sensitive to paxilline but insensitive to GDPβS, a G-protein inhibitor. Administration of 70µM Mn2+, an agent used to promote integrin clustering, reversibly stimulated whole-cell current, but failed to further facilitate the anandamide-stimulated current. In an inside-out configuration, anandamide (0.1-30µM) facilitated single BKCa channel activity in a concentration-dependent manner within a physiological Ca2+ range and a wide range of voltages, mainly by reducing mean closed time. The effect is essentially eliminated following chelation of Ca2+ from the cytosolic face and pre-exposure to cholesterol-reducing agent methyl-β-cyclodextrin. O-1918 (3µM), a cannabidiol analog used as a selective antagonist of endothelial anandamide receptor, reduced BKCa channel activity in inside-out patches. These results do not support the existence of endothelial cannabinoid receptor and indicate that anandamide acts as a direct BKCa opener. The action does not require cell integrity or integrins and is caused by direct modification of BKCa channel activity.
Collapse
|
15
|
Charoensin S, Eroglu E, Opelt M, Bischof H, Madreiter-Sokolowski CT, Kirsch A, Depaoli MR, Frank S, Schrammel A, Mayer B, Waldeck-Weiermair M, Graier WF, Malli R. Intact mitochondrial Ca 2+ uniport is essential for agonist-induced activation of endothelial nitric oxide synthase (eNOS). Free Radic Biol Med 2017; 102:248-259. [PMID: 27923677 PMCID: PMC5381715 DOI: 10.1016/j.freeradbiomed.2016.11.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
Mitochondrial Ca2+ uptake regulates diverse endothelial cell functions and has also been related to nitric oxide (NO•) production. However, it is not entirely clear if the organelles support or counteract NO• biosynthesis by taking up Ca2+. The objective of this study was to verify whether or not mitochondrial Ca2+ uptake influences Ca2+-triggered NO• generation by endothelial NO• synthase (eNOS) in an immortalized endothelial cell line (EA.hy926), respective primary human umbilical vein endothelial cells (HUVECs) and eNOS-RFP (red fluorescent protein) expressing human embryonic kidney (HEK293) cells. We used novel genetically encoded fluorescent NO• probes, the geNOps, and Ca2+ sensors to monitor single cell NO• and Ca2+ dynamics upon cell treatment with ATP, an inositol 1,4,5-trisphosphate (IP3)-generating agonist. Mitochondrial Ca2+ uptake was specifically manipulated by siRNA-mediated knock-down of recently identified key components of the mitochondrial Ca2+ uniporter machinery. In endothelial cells and the eNOS-RFP expressing HEK293 cells we show that reduced mitochondrial Ca2+ uptake upon the knock-down of the mitochondrial calcium uniporter (MCU) protein and the essential MCU regulator (EMRE) yield considerable attenuation of the Ca2+-triggered NO• increase independently of global cytosolic Ca2+ signals. The knock-down of mitochondrial calcium uptake 1 (MICU1), a gatekeeper of the MCU, increased both mitochondrial Ca2+ sequestration and Ca2+-induced NO• signals. The positive correlation between mitochondrial Ca2+ elevation and NO• production was independent of eNOS phosphorylation at serine1177. Our findings emphasize that manipulating mitochondrial Ca2+ uptake may represent a novel strategy to control eNOS-mediated NO• production.
Collapse
Affiliation(s)
- Suphachai Charoensin
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Emrah Eroglu
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Marissa Opelt
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Austria
| | - Helmut Bischof
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | | | - Andrijana Kirsch
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Maria R Depaoli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Astrid Schrammel
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Austria
| | - Markus Waldeck-Weiermair
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria
| | - Roland Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Austria.
| |
Collapse
|
16
|
Malli R, Graier WF. The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca 2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca 2+ Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:297-319. [PMID: 28900921 DOI: 10.1007/978-3-319-57732-6_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most cell types, the depletion of internal Ca2+ stores triggers the activation of Ca2+ entry. This crucial phenomenon is known since the 1980s and referred to as store-operated Ca2+ entry (SOCE). With the discoveries of the stromal-interacting molecules (STIMs) and the Ca2+-permeable Orai channels as the long-awaited molecular constituents of SOCE, the role of mitochondria in controlling the activity of this particular Ca2+ entry pathway is kind of buried in oblivion. However, the capability of mitochondria to locally sequester Ca2+ at sites of Ca2+ release and entry was initially supposed to rule SOCE by facilitating the Ca2+ depletion of the endoplasmic reticulum and removing entering Ca2+ from the Ca2+-inhibitable channels, respectively. Moreover, the central role of these organelles in controlling the cellular energy metabolism has been linked to the activity of SOCE. Nevertheless, the exact molecular mechanisms by which mitochondria actually determine SOCE are still pretty obscure. In this essay we describe the complexity of the mitochondrial Ca2+ uptake machinery and its regulation, molecular components, and properties, which open new ways for scrutinizing the contribution of mitochondria to SOCE. Moreover, data concerning the variability of the morphology and cellular distribution of mitochondria as putative determinants of SOCE activation, maintenance, and termination are summarized.
Collapse
Affiliation(s)
- Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria.
| |
Collapse
|
17
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
18
|
Motloch LJ, Gebing T, Reda S, Schwaiger A, Wolny M, Hoppe UC. UCP3 Regulates Single-Channel Activity of the Cardiac mCa1. J Membr Biol 2016; 249:577-84. [PMID: 27371160 PMCID: PMC4942494 DOI: 10.1007/s00232-016-9913-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/15/2016] [Indexed: 12/14/2022]
Abstract
Mitochondrial Ca(2+) uptake (mCa(2+) uptake) is thought to be mediated by the mitochondrial Ca(2+) uniporter (MCU). UCP2 and UCP3 belong to a superfamily of mitochondrial ion transporters. Both proteins are expressed in the inner mitochondrial membrane of the heart. Recently, UCP2 was reported to modulate the function of the cardiac MCU related channel mCa1. However, the possible role of UCP3 in modulating cardiac mCa(2+) uptake via the MCU remains inconclusive. To understand the role of UCP3, we analyzed cardiac mCa1 single-channel activity in mitoplast-attached single-channel recordings from isolated murine cardiac mitoplasts, from adult wild-type controls (WT), and from UCP3 knockout mice (UCP3(-/-)). Single-channel registrations in UCP3(-/-) confirmed a murine voltage-gated Ca(2+) channel, i.e., mCa1, which was inhibited by Ru360. Compared to WT, mCa1 in UCP3(-/-) revealed similar single-channel characteristics. However, in UCP3(-/-) the channel exhibited decreased single-channel activity, which was insensitive to adenosine triphosphate (ATP) inhibition. Our results suggest that beyond UCP2, UCP3 also exhibits regulatory effects on cardiac mCa1/MCU function. Furthermore, we speculate that UCP3 might modulate previously described inhibitory effects of ATP on mCa1/MCU activity as well.
Collapse
Affiliation(s)
- Lukas J Motloch
- Department of Internal Medicine II, Paracelsus Medical University, Muellner Hauptstr. 48, A-5020, Salzburg, Austria.
| | - Tina Gebing
- Department of Internal Medicine II, Paracelsus Medical University, Muellner Hauptstr. 48, A-5020, Salzburg, Austria
| | - Sara Reda
- Department of Internal Medicine II, Paracelsus Medical University, Muellner Hauptstr. 48, A-5020, Salzburg, Austria
| | - Astrid Schwaiger
- Department of Internal Medicine II, Paracelsus Medical University, Muellner Hauptstr. 48, A-5020, Salzburg, Austria
| | - Martin Wolny
- Department of Internal Medicine II, Paracelsus Medical University, Muellner Hauptstr. 48, A-5020, Salzburg, Austria
| | - Uta C Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, Muellner Hauptstr. 48, A-5020, Salzburg, Austria
| |
Collapse
|
19
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
20
|
Llorente-Folch I, Rueda CB, Pardo B, Szabadkai G, Duchen MR, Satrustegui J. The regulation of neuronal mitochondrial metabolism by calcium. J Physiol 2016; 593:3447-62. [PMID: 25809592 DOI: 10.1113/jp270254] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/18/2015] [Indexed: 12/24/2022] Open
Abstract
Calcium signalling is fundamental to the function of the nervous system, in association with changes in ionic gradients across the membrane. Although restoring ionic gradients is energetically costly, a rise in intracellular Ca(2+) acts through multiple pathways to increase ATP synthesis, matching energy supply to demand. Increasing cytosolic Ca(2+) stimulates metabolite transfer across the inner mitochondrial membrane through activation of Ca(2+) -regulated mitochondrial carriers, whereas an increase in matrix Ca(2+) stimulates the citric acid cycle and ATP synthase. The aspartate-glutamate exchanger Aralar/AGC1 (Slc25a12), a component of the malate-aspartate shuttle (MAS), is stimulated by modest increases in cytosolic Ca(2+) and upregulates respiration in cortical neurons by enhancing pyruvate supply into mitochondria. Failure to increase respiration in response to small (carbachol) and moderate (K(+) -depolarization) workloads and blunted stimulation of respiration in response to high workloads (veratridine) in Aralar/AGC1 knockout neurons reflect impaired MAS activity and limited mitochondrial pyruvate supply. In response to large workloads (veratridine), acute stimulation of respiration occurs in the absence of MAS through Ca(2+) influx through the mitochondrial calcium uniporter (MCU) and a rise in matrix [Ca(2+) ]. Although the physiological importance of the MCU complex in work-induced stimulation of respiration of CNS neurons is not yet clarified, abnormal mitochondrial Ca(2+) signalling causes pathology. Indeed, loss of function mutations in MICU1, a regulator of MCU complex, are associated with neuromuscular disease. In patient-derived MICU1 deficient fibroblasts, resting matrix Ca(2+) is increased and mitochondria fragmented. Thus, the fine tuning of Ca(2+) signals plays a key role in shaping mitochondrial bioenergetics.
Collapse
Affiliation(s)
- I Llorente-Folch
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| | - C B Rueda
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| | - B Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| | - G Szabadkai
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK.,Department of Biomedical Sciences, University of Padua and Consiglio Nazionale delle Ricerche Neuroscience Institute, Padua, Italy
| | - M R Duchen
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - J Satrustegui
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid-(CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, Madrid, Spain
| |
Collapse
|
21
|
Jhun BS, Mishra J, Monaco S, Fu D, Jiang W, Sheu SS, O-Uchi J. The mitochondrial Ca2+ uniporter: regulation by auxiliary subunits and signal transduction pathways. Am J Physiol Cell Physiol 2016; 311:C67-80. [PMID: 27122161 DOI: 10.1152/ajpcell.00319.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondrial Ca(2+) homeostasis, the Ca(2+) influx-efflux balance, is responsible for the control of numerous cellular functions, including energy metabolism, generation of reactive oxygen species, spatiotemporal dynamics of Ca(2+) signaling, and cell growth and death. Recent discovery of the molecular identity of the mitochondrial Ca(2+) uniporter (MCU) provides new possibilities for application of genetic approaches to study the mitochondrial Ca(2+) influx mechanism in various cell types and tissues. In addition, the subsequent discovery of various auxiliary subunits associated with MCU suggests that mitochondrial Ca(2+) uptake is not solely regulated by a single protein (MCU), but likely by a macromolecular protein complex, referred to as the MCU-protein complex (mtCUC). Moreover, recent reports have shown the potential role of MCU posttranslational modifications in the regulation of mitochondrial Ca(2+) uptake through mtCUC. These observations indicate that mtCUCs form a local signaling complex at the inner mitochondrial membrane that could significantly regulate mitochondrial Ca(2+) handling, as well as numerous mitochondrial and cellular functions. In this review we discuss the current literature on mitochondrial Ca(2+) uptake mechanisms, with a particular focus on the structure and function of mtCUC, as well as its regulation by signal transduction pathways, highlighting current controversies and discrepancies.
Collapse
Affiliation(s)
- Bong Sook Jhun
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Jyotsna Mishra
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sarah Monaco
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deming Fu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Wenmin Jiang
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jin O-Uchi
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island; and
| |
Collapse
|
22
|
Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, Leitner J, Wolny M, Eckardt L, Hoppe UC. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+. PLoS One 2016; 11:e0148359. [PMID: 26849136 PMCID: PMC4746117 DOI: 10.1371/journal.pone.0148359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial. Methods Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice. Results Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-. Conclusion Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.
Collapse
Affiliation(s)
- Lukas Jaroslaw Motloch
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| | - Robert Larbig
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Tina Gebing
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Sara Reda
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Astrid Schwaiger
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Leitner
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolny
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
23
|
The Roles of Mitochondrial Cation Channels Under Physiological Conditions and in Cancer. Handb Exp Pharmacol 2016; 240:47-69. [PMID: 27995386 DOI: 10.1007/164_2016_92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms as well as the development of new therapeutic strategies and as a tool for gauging disease progression in neurodegeneration, diabetes, cancer, and cardiovascular disease. The view is emerging that inner mitochondrial membrane (IMM) cation channels have a profound effect on mitochondrial function and, consequently, on the metabolic state and survival of the whole cell. Since disruption of the sustained integrity of mitochondria is strongly linked to human disease, pharmacological intervention offers a new perspective concerning neurodegenerative and cardiovascular diseases as well as cancer. This review summarizes our current knowledge regarding IMM cation channels and their roles under physiological conditions as well as in cancer, with special emphasis on potassium channels and the mammalian mitochondrial calcium uniporter.
Collapse
|
24
|
Santo-Domingo J, Wiederkehr A, De Marchi U. Modulation of the matrix redox signaling by mitochondrial Ca 2+. World J Biol Chem 2015; 6:310-323. [PMID: 26629314 PMCID: PMC4657127 DOI: 10.4331/wjbc.v6.i4.310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
Mitochondria sense, shape and integrate signals, and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance, the molecular nature of the proteins involved in mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and down-stream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio, but at the same time will increase reactive oxygen species (ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state, which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redox-sensitive sensors, real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review, we describe mitochondrial Ca2+ handling, focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings, revealing how mitochondrial Ca2+ influences the matrix redox state. As a result, mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.
Collapse
|
25
|
UCP2 modulates single-channel properties of a MCU-dependent Ca(2+) inward current in mitochondria. Pflugers Arch 2015; 467:2509-18. [PMID: 26275882 PMCID: PMC4646917 DOI: 10.1007/s00424-015-1727-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/14/2023]
Abstract
The mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective protein complex that consists of the pore-forming mitochondrial Ca(2+) uniporter protein (MCU), the scaffolding essential MCU regulator (EMRE), and mitochondrial calcium uptake 1 and 2 (MICU1/2), which negatively regulate mitochondrial Ca(2+) uptake. We have previously reported that uncoupling proteins 2 and 3 (UCP2/3) are also engaged in the activity of mitochondrial Ca(2+) uptake under certain conditions, while the mechanism by which UCP2/3 facilitates mitochondrial Ca(2+) uniport remains elusive. This work was designed to investigate the impact of UCP2 on the three distinct mitochondrial Ca(2+) currents found in mitoplasts isolated from HeLa cells, the intermediate- (i-), burst- (b-) and extra-large (xl-) mitochondrial/mitoplast Ca(2+) currents (MCC). Using the patch clamp technique on mitoplasts from cells with reduced MCU and EMRE unveiled a very high affinity of MCU for xl-MCC that succeeds that for i-MCC, indicating the coexistence of at least two MCU/EMRE-dependent Ca(2+) currents. The manipulation of the expression level of UCP2 by either siRNA-mediated knockdown or overexpression changed exclusively the open probability (NPo) of xl-MCC by approx. 38% decrease or nearly a 3-fold increase, respectively. These findings confirm a regulatory role of UCP2 in mitochondrial Ca(2+) uptake and identify UCP2 as a selective modulator of just one distinct MCU/EMRE-dependent mitochondrial Ca(2+) inward current.
Collapse
|
26
|
Harrington JL, Murphy E. The mitochondrial calcium uniporter: mice can live and die without it. J Mol Cell Cardiol 2014; 78:46-53. [PMID: 25451167 DOI: 10.1016/j.yjmcc.2014.10.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 10/23/2014] [Accepted: 10/26/2014] [Indexed: 01/27/2023]
Abstract
Calcium is of critical importance to mitochondrial and cell function, and calcium signaling is highly localized in the cell. When stimulated, mitochondria are capable of rapidly taking up calcium, affecting both matrix energetics within mitochondria and shaping the amplitude and frequency of cytosolic calcium "waves". During pathological conditions a large increase in mitochondrial calcium levels is thought to activate the mitochondrial permeability transition pore, resulting in cell death. The protein responsible for mitochondrial calcium uptake, the mitochondrial calcium uniporter (MCU), was identified in 2011 and its molecular elucidation has stimulated and invigorated research in this area. MCU knockout mice have been created, a variety of other regulators have been identified, and a disease phenotype in humans has been attributed to the loss of a uniporter regulator. In the three years since its molecular elucidation, further research into the MCU has revealed a complex uniporter, and raised many questions about its physiologic and pathologic cell roles. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".
Collapse
|
27
|
Deak AT, Blass S, Khan MJ, Groschner LN, Waldeck-Weiermair M, Hallström S, Graier WF, Malli R. IP3-mediated STIM1 oligomerization requires intact mitochondrial Ca2+ uptake. J Cell Sci 2014; 127:2944-55. [PMID: 24806964 PMCID: PMC4077590 DOI: 10.1242/jcs.149807] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contribute to cell signaling by controlling store-operated Ca2+ entry (SOCE). SOCE is activated by Ca2+ release from the endoplasmic reticulum (ER), whereupon stromal interacting molecule 1 (STIM1) forms oligomers, redistributes to ER–plasma-membrane junctions and opens plasma membrane Ca2+ channels. The mechanisms by which mitochondria interfere with the complex process of SOCE are insufficiently clarified. In this study, we used an shRNA approach to investigate the direct involvement of mitochondrial Ca2+ buffering in SOCE. We demonstrate that knockdown of either of two proteins that are essential for mitochondrial Ca2+ uptake, the mitochondrial calcium uniporter (MCU) or uncoupling protein 2 (UCP2), results in decelerated STIM1 oligomerization and impaired SOCE following cell stimulation with an inositol-1,4,5-trisphosphate (IP3)-generating agonist. Upon artificially augmented cytosolic Ca2+ buffering or ER Ca2+ depletion by sarcoplasmic or endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitors, STIM1 oligomerization did not rely on intact mitochondrial Ca2+ uptake. However, MCU-dependent mitochondrial sequestration of Ca2+ entering through the SOCE pathway was essential to prevent slow deactivation of SOCE. Our findings show a stimulus-specific contribution of mitochondrial Ca2+ uptake to the SOCE machinery, likely through a role in shaping cytosolic Ca2+ micro-domains.
Collapse
Affiliation(s)
- Andras T Deak
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Sandra Blass
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Muhammad J Khan
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Lukas N Groschner
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Markus Waldeck-Weiermair
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Seth Hallström
- The Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Wolfgang F Graier
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| | - Roland Malli
- The Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010-Graz, Austria
| |
Collapse
|