1
|
Dilmen E, Olde Hanhof CJA, Yousef Yengej FA, Ammerlaan CME, Rookmaaker MB, Orhon I, Jansen J, Verhaar MC, Hoenderop JG. A semi-permeable insert culture model for the distal part of the nephron with human and mouse tubuloid epithelial cells. Exp Cell Res 2025; 444:114342. [PMID: 39566879 DOI: 10.1016/j.yexcr.2024.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Tubuloids are advanced in vitro models obtained from adult human or mouse kidney cells with great potential for modelling kidney function in health and disease. Here, we developed a polarized human and mouse tubuloid epithelium on cell culture inserts, namely Transwell™ filters, as a model of the distal nephron with an accessible apical and basolateral side that allow for characterization of epithelial properties such as leak-tightness and epithelial resistance. Tubuloids formed a leak-tight and confluent epithelium on Transwells™ and the human tubuloids were differentiated towards the distal part of the nephron. Differentiation induced a significant upregulation of mRNA and protein expression of crucial segment transporters/channels NKCC2 (thick ascending limb of the loop of Henle), NCC (distal convoluted tubule), AQP2 (connecting tubule and collecting duct) and Na+/K+-ATPase (all segments) in a polarized fashion. In conclusion, this study illustrates the potential of human and mouse tubuloid epithelium on Transwells™ for studies of tubuloid epithelium formation and tubuloid differentiation towards the distal nephron. This approach holds great promise for assisting future research towards kidney (patho)physiology and transport function.
Collapse
Affiliation(s)
- E Dilmen
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - C J A Olde Hanhof
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - F A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C M E Ammerlaan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands; Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - M B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - I Orhon
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J Jansen
- Department of Internal Medicine, Nephrology, and Transplantation, Erasmus Medical Center, Rotterdam, the Netherlands; Department for Renal and Hypertensive Diseases, Rheumatological and Immunological Diseases, Uniklinik RWTH Aachen, Aachen, Germany
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J G Hoenderop
- Department of Medical BioSciences, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
van Megen WH, de Baaij JHF, Churchill GA, Devuyst O, Hoenderop JGJ, Korstanje R. Genetic drivers of age-related changes in urinary magnesium excretion. Physiol Genomics 2024; 56:634-647. [PMID: 39037434 PMCID: PMC11460537 DOI: 10.1152/physiolgenomics.00119.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+ excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared with animals aged 6 mo, an increase in Mg2+ excretion was observed at 12 and 18 mo. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 mo of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. In addition, urinary Mg2+ excretion and the expression of renal magnesiotropic genes were unaltered in Oit3-/- mice. For animals aged 12 and 18 mo, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNA sequencing (RNA-Seq) data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods of life, although OIT3 is unlikely to affect renal Mg2+ handling.NEW & NOTEWORTHY Aging increased urinary magnesium (Mg2+) excretion in mice. We show here that variation in Oit3, a candidate gene for the locus associated with Mg2+ excretion in young mice, is unlikely to be involved as knockout of Oit3 did not affect Mg2+ excretion. Differences in the expression of the renal Mg2+ channel TRPM6 may contribute to the variation in urinary Mg2+ excretion in older mice.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Medical Biosciences, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States
| |
Collapse
|
3
|
Culver SA, Suleman N, Kavuru V, Siragy HM. Renal Hypokalemia: An Endocrine Perspective. J Clin Endocrinol Metab 2024; 109:1694-1706. [PMID: 38546505 DOI: 10.1210/clinem/dgae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 06/18/2024]
Abstract
The majority of disorders that cause renal potassium wasting present with abnormalities in adrenal hormone secretion. While these findings frequently lead patients to seek endocrine evaluation, clinicians often struggle to accurately diagnose these conditions, delaying treatment and adversely impacting patient care. At the same time, growing insight into the genetic and molecular basis of these disorders continues to improve their diagnosis and management. In this review, we outline a practical integrated approach to the evaluation of renal hypokalemia syndromes that are seen in endocrine practice while highlighting recent advances in understanding of the genetics and pathophysiology behind them.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Nawar Suleman
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Varun Kavuru
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Küng CJ, Daryadel A, Fuente R, Haykir B, de Angelis MH, Hernando N, Rubio-Aliaga I, Wagner CA. A novel mouse model for familial hypocalciuric hypercalcemia (FHH1) reveals PTH-dependent and independent CaSR defects. Pflugers Arch 2024; 476:833-845. [PMID: 38386045 PMCID: PMC11033242 DOI: 10.1007/s00424-024-02927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The Calcium-sensing receptor (CaSR) senses extracellular calcium, regulates parathyroid hormone (PTH) secretion, and has additional functions in various organs related to systemic and local calcium and mineral homeostasis. Familial hypocalciuric hypercalcemia type I (FHH1) is caused by heterozygous loss-of-function mutations in the CaSR gene, and is characterized by the combination of hypercalcemia, hypocalciuria, normal to elevated PTH, and facultatively hypermagnesemia and mild bone mineralization defects. To date, only heterozygous Casr null mice have been available as model for FHH1. Here we present a novel mouse FHH1 model identified in a large ENU-screen that carries an c.2579 T > A (p.Ile859Asn) variant in the Casr gene (CasrBCH002 mice). In order to dissect direct effects of the genetic variant from PTH-dependent effects, we crossed CasrBCH002 mice with PTH deficient mice. Heterozygous CasrBCH002 mice were fertile, had normal growth and body weight, were hypercalcemic and hypermagnesemic with inappropriately normal PTH levels and urinary calcium excretion replicating some features of FHH1. Hypercalcemia and hypermagnesemia were independent from PTH and correlated with higher expression of claudin 16 and 19 in kidneys. Likewise, reduced expression of the renal TRPM6 channel in CasrBCH002 mice was not dependent on PTH. In bone, mutations in Casr rescued the bone phenotype observed in Pth null mice by increasing osteoclast numbers and improving the columnar pattern of chondrocytes in the growth zone. In summary, CasrBCH002 mice represent a new model to study FHH1 and our results indicate that only a part of the phenotype is driven by PTH.
Collapse
Affiliation(s)
- Catharina J Küng
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Arezoo Daryadel
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Rocio Fuente
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
- Department of Morphology and Cellular Biology, University of Oviedo, Oviedo, Spain
| | - Betül Haykir
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Martin Hrabĕ de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl Für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- Member of German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Nati Hernando
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| |
Collapse
|
5
|
Gallafassi E, Bezerra M, Rebouças N. Control of sodium and potassium homeostasis by renal distal convoluted tubules. Braz J Med Biol Res 2023; 56:e12392. [PMID: 36790288 PMCID: PMC9925193 DOI: 10.1590/1414-431x2023e12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/17/2022] [Indexed: 02/12/2023] Open
Abstract
Distal convoluted tubules (DCT), which contain the Na-Cl cotransporter (NCC) inhibited by thiazide diuretics, undergo complex modulation to preserve Na+ and K+ homeostasis. The lysine kinases 1 and 4 (WNK1 and WNK4), identified as hyperactive in the hereditary disease pseudohypoaldosteronism type 2, are responsible for activation of NCC and consequent hypokalemia and hypertension. WNK4, highly expressed in DCT, activates the SPAK/OSR1 kinases, which phosphorylate NCC and other regulatory proteins and transporters in the distal nephron. WNK4 works as a chloride sensor through a Cl- binding site, which acts as an on/off switch at this kinase in response to changes of basolateral membrane electrical potential, the driving force of cellular Cl- efflux. High intracellular Cl- in hyperkalemia decreases NCC phosphorylation and low intracellular Cl- in hypokalemia increases NCC phosphorylation and activity, which makes plasma K+ concentration a central modulator of NCC and of K+ secretion. The WNK4 phosphorylation by cSrc or SGK1, activated by angiotensin II or aldosterone, respectively, is another relevant mechanism of NCC, ENaC, and ROMK modulation in states such as volume reduction, hyperkalemia, and hypokalemia. Loss of NCC function induces upregulation of electroneutral NaCl reabsorption by type B intercalated cells through the combined activity of pendrin and NDCBE, as demonstrated in double knockout mice (KO) animal models, Ncc/pendrin or Ncc/NDCBE. The analysis of ks-Nedd-4-2 KO animal models introduced the modulation of NEDD4-2 by intracellular Mg2+ activity as an important regulator of NCC, explaining the thiazide-induced persistent hypokalemia.
Collapse
Affiliation(s)
- E.A. Gallafassi
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - M.B. Bezerra
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| | - N.A. Rebouças
- Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, SP, Brasil
| |
Collapse
|
6
|
van Megen WH, Tan RSG, Alexander RT, Dimke H. Differential parathyroid and kidney Ca 2+-sensing receptor activation in autosomal dominant hypocalcemia 1. EBioMedicine 2022; 78:103947. [PMID: 35313217 PMCID: PMC8935519 DOI: 10.1016/j.ebiom.2022.103947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Parathyroid Ca2+-sensing receptor (CaSR) activation inhibits parathyroid hormone (PTH) release, while activation of renal CaSRs attenuates Ca2+ transport and increases expression of the pore-blocking claudin-14. Patients with autosomal dominant hypocalcemia 1 (ADH1), due to activating CASR mutations, exhibit hypocalcemia but not always hypercalciuria (elevated Ca2+ in urine). The latter promotes nephrocalcinosis and renal insufficiency. Although CaSRs throughout the body including the kidney harbor activating CASR mutations, it is not understood why only some ADH1 patients display hypercalciuria. Methods Activation of the CaSR was studied in mouse models and a ADH1 patient. In vitro CaSR activation was studied in HEK293 cells. Findings Cldn14 showed blood Ca2+ concentration-dependent regulation, which was absent in mice with kidney-specific Casr deletion, indicating Cldn14 is a suitable marker for chronic CaSR activation in the kidney. Mice with a gain-of-function mutation in the Casr (Nuf) were hypocalcemic with low plasma PTH levels. However, renal CaSRs were not activated at baseline but only after normalizing blood Ca2+ levels. Similarly, significant hypercalciuria was not observed in a ADH1 patient until blood Ca2+ was normalized. In vitro experiments indicate that increased CaSR expression in the parathyroid relative to the kidney could contribute to tissue-specific CaSR activation thresholds. Interpretation Our findings suggest that parathyroid CaSR overactivity can reduce plasma Ca2+ to levels insufficient to activate renal CaSRs, even when an activating mutation is present. These findings identify a conceptually new mechanism of CaSR-dependent Ca2+ balance regulation that aid in explaining the spectrum of hypercalciuria in ADH1 patients. Funding Erasmus+ 2018/E+/4458087, the Canadian Institutes for Health research, the Novo Nordisk Foundation, the Beckett Foundation, the Carlsberg Foundation and Independent Research Fund Denmark.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 3rd floor, 5000 Odense C, Denmark; Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rebecca Siu Ga Tan
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada; The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada
| | - R Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada; The Women's and Children's Health Research Institute, Edmonton, Alberta, Canada; Department of Pediatrics, 4-585 Edmonton Clinic Health Academy, University of Alberta, 11405 87th Avenue, Edmonton, Alberta T6G 2R7, Canada.
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21, 3rd floor, 5000 Odense C, Denmark; Department of Nephrology, Odense University Hospital, Denmark.
| |
Collapse
|
7
|
van Megen WH, Beggs MR, An SW, Ferreira PG, Lee JJ, Wolf MT, Alexander RT, Dimke H. Gentamicin Inhibits Ca 2+ Channel TRPV5 and Induces Calciuresis Independent of the Calcium-Sensing Receptor-Claudin-14 Pathway. J Am Soc Nephrol 2022; 33:547-564. [PMID: 35022312 PMCID: PMC8975070 DOI: 10.1681/asn.2021030392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Treatment with the aminoglycoside antibiotic gentamicin can be associated with severe adverse effects, including renal Ca2+ wasting. The underlying mechanism is unknown but it has been proposed to involve activation of the Ca2+-sensing receptor (CaSR) in the thick ascending limb, which would increase expression of claudin-14 (CLDN14) and limit Ca2+ reabsorption. However, no direct evidence for this hypothesis has been presented. METHODS We studied the effect of gentamicin in vivo using mouse models with impaired Ca2+ reabsorption in the proximal tubule and the thick ascending limb. We used a Cldn14 promoter luciferase reporter assay to study CaSR activation and investigated the effect of gentamicin on activity of the distal nephron Ca2+ channel transient receptor potential vanilloid 5 (TRPV5), as determined by patch clamp in HEK293 cells. RESULTS Gentamicin increased urinary Ca2+ excretion in wild-type mice after acute and chronic administration. This calciuretic effect was unaltered in mice with genetic CaSR overactivation and was present in furosemide-treated animals, whereas the calciuretic effect in Cldn14-/- mice and mice with impaired proximal tubular Ca2+ reabsorption (claudin-2 [CLDN2]-deficient Cldn2-/- mice) was equivalent to that of wild-type mice. In vitro, gentamicin failed to activate the CaSR. In contrast, patch clamp analysis revealed that gentamicin strongly inhibited rabbit and human TRPV5 activity and chronic gentamicin administration downregulated distal nephron Ca2+ transporters. CONCLUSIONS Gentamicin does not cause hypercalciuria via activation of the CaSR-CLDN14 pathway or by interfering with proximal tubular CLDN2-dependent Ca2+ reabsorption. Instead, gentamicin blocks distal Ca2+ reabsorption by direct inhibition of the Ca2+ channel TRPV5. These findings offer new insights into Ca2+ wasting in patients treated with gentamicin.
Collapse
Affiliation(s)
- Wouter H. van Megen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Megan R. Beggs
- Department of Physiology, University of Alberta, Canada,Women and Children's Health Institute, Alberta, Canada
| | - Sung-Wan An
- Department of Pediatrics, Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Patrícia G. Ferreira
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Justin J. Lee
- Department of Physiology, University of Alberta, Canada
| | - Matthias T. Wolf
- Department of Pediatrics, Division of Pediatric Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - R. Todd Alexander
- Department of Physiology, University of Alberta, Canada,Women and Children's Health Institute, Alberta, Canada,Department of Pediatrics, University of Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark .,Department of Nephrology, Odense University Hospital, Denmark
| |
Collapse
|
8
|
Ferreira PG, van Megen WH, Tan R, Lee CHL, Svenningsen P, Alexander RT, Dimke H. Renal claudin-14 expression is not required for regulating Mg 2+ balance in mice. Am J Physiol Renal Physiol 2021; 320:F897-F907. [PMID: 33818126 DOI: 10.1152/ajprenal.00590.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidneys play a crucial role in maintaining Ca2+ and Mg2+ homeostasis by regulating these minerals' reabsorption. In the thick ascending limb of Henle's loop (TAL), Ca2+ and Mg2+ are reabsorbed through the tight junctions by a shared paracellular pathway formed by claudin-16 and claudin-19. Hypercalcemia activates the Ca2+-sensing receptor (CaSR) in the TAL, causing upregulation of pore-blocking claudin-14 (CLDN14), which reduces Ca2+ and Mg2+ reabsorption from this segment. In addition, a high-Mg2+ diet is known to increase both urinary Mg2+ and Ca2+ excretion. Since Mg2+ may also activate CaSR, we aimed to investigate whether CaSR-dependent increases in CLDN14 expression also regulate urinary Mg2+ excretion in response to hypermagnesemia. Here, we show that a Mg2+-enriched diet increased urinary Mg2+ and Ca2+ excretion in mice; however, this occurred without detectable changes in renal CLDN14 expression. The administration of a high-Mg2+ diet to Cldn14-/- mice did not cause more pronounced hypermagnesemia or significantly alter urinary Mg2+ excretion. Finally, in vitro evaluation of CaSR-driven Cldn14 promoter activity in response to increasing Mg2+ concentrations revealed that Cldn14 expression only increases at supraphysiological extracellular Mg2+ levels. Together, these results suggest that CLDN14 is not involved in regulating extracellular Mg2+ balance following high dietary Mg2+ intake.NEW & NOTEWORTHY Using transgenic models and in vitro assays, this study examined the effect of Mg2+ on regulating urinary excretion of Ca2+ and Mg2+ via activation of the Ca2+-sensing receptor-claudin 14 (CLDN14) pathway. The study suggests that CLDN14 is unlikely to play a significant role in the compensatory response to hypermagnesemia.
Collapse
Affiliation(s)
- Patrícia G Ferreira
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Wouter H van Megen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rebecca Tan
- Department of Physiology, The University of Alberta, Edmonton, Alberta, Canada
| | - Christy H L Lee
- Department of Physiology, The University of Alberta, Edmonton, Alberta, Canada
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada.,Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
9
|
Olde Hanhof CJA, Yousef Yengej FA, Rookmaaker MB, Verhaar MC, van der Wijst J, Hoenderop JG. Modeling Distal Convoluted Tubule (Patho)Physiology: An Overview of Past Developments and an Outlook Toward the Future. Tissue Eng Part C Methods 2021; 27:200-212. [PMID: 33544049 DOI: 10.1089/ten.tec.2020.0345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The kidneys are essential for maintaining electrolyte homeostasis. Blood electrolyte composition is controlled by active reabsorption and secretion processes in dedicated segments of the kidney tubule. Specifically, the distal convoluted tubule (DCT) and connecting tubule are important for regulating the final excretion of sodium, magnesium, and calcium. Studies unravelling the specific function of these segments have greatly improved our understanding of DCT (patho)physiology. Over the years, experimental models used to study the DCT have changed and the field has advanced from early dissection studies with rats and rabbits to the use of various transgenic mouse models. Developments in dissection techniques and cell culture methods have resulted in immortalized mouse DCT cell lines and made it possible to specifically obtain DCT fragments for ex vivo studies. However, we still do not fully understand the complex (patho)physiology of this segment and there is need for advanced human DCT models. Recently, kidney organoids and tubuloids have emerged as new complex cell models that provide excellent opportunities for physiological studies, disease modeling, drug discovery, and even personalized medicine in the future. This review presents an overview of cell models used to study the DCT and provides an outlook on kidney organoids and tubuloids as model for DCT (patho)physiology. Impact statement This study provides a detailed overview of past and future developments on cell models used to study kidney (patho)physiology and specifically the distal convoluted tubule (DCT) segment. Hereby, we highlight the need for an advanced human cell model of this segment and summarize recent advances in the field of kidney organoids and tubuloids with a focus on DCT properties. The findings reported in this review are significant for future developments toward an advanced human model of the DCT that will help to increase our understanding of DCT (patho)physiology.
Collapse
Affiliation(s)
- Charlotte J A Olde Hanhof
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fjodor A Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Daryadel A, Ruiz PA, Gehring N, Stojanovic D, Ugrica M, Bettoni C, Sabrautzki S, Pastor‐Arroyo E, Frey‐Wagner I, Lorenz‐Depiereux B, Strom TM, Angelis MH, Rogler G, Wagner CA, Rubio‐Aliaga I. Systemic Jak1 activation provokes hepatic inflammation and imbalanced FGF23 production and cleavage. FASEB J 2021; 35:e21302. [DOI: 10.1096/fj.202002113r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| | - Pedro A. Ruiz
- Department of Gastroenterology and Hepatology University Hospital of Zurich, University of Zurich Zurich Switzerland
| | - Nicole Gehring
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| | - Dragana Stojanovic
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| | - Marko Ugrica
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| | - Carla Bettoni
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| | - Sibylle Sabrautzki
- Institute of Experimental Genetics German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) Neuherberg85764Germany
| | - Eva‐Maria Pastor‐Arroyo
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| | - Isabelle Frey‐Wagner
- Department of Gastroenterology and Hepatology University Hospital of Zurich, University of Zurich Zurich Switzerland
| | - Bettina Lorenz‐Depiereux
- Institute of Human Genetics, Helmholtz Zentrum München German Research Center for Environmental Health (GmbH) Neuherberg Germany
| | - Tim M. Strom
- Institut für Humangenetik Klinikum rechts der Isar der Technischen Universität München München Germany
| | - Martin Hrabě Angelis
- Institute of Experimental Genetics German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) Neuherberg85764Germany
- Lehrstuhl für Experimentelle Genetik Technische Universität München Freising‐Weihenstephan Germany
- Member of German Center for Diabetes Research (DZD) Neuherberg Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology University Hospital of Zurich, University of Zurich Zurich Switzerland
| | - Carsten A. Wagner
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| | - Isabel Rubio‐Aliaga
- Institute of Physiology University of Zurich (UZH), and National Center of Competence in Research NCCR Kidney.CH Zurich Switzerland
| |
Collapse
|
11
|
Frische S, Alexander RT, Ferreira P, Tan RSG, Wang W, Svenningsen P, Skjødt K, Dimke H. Localization and regulation of claudin-14 in experimental models of hypercalcemia. Am J Physiol Renal Physiol 2021; 320:F74-F86. [PMID: 33283646 DOI: 10.1152/ajprenal.00397.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Variations in the claudin-14 (CLDN14) gene have been linked to increased risk of hypercalciuria and kidney stone formation. However, the exact cellular localization of CLDN14 and its regulation remain to be fully delineated. To this end, we generated a novel antibody that allowed the detection of CLDN14 in paraffin-embedded renal sections. This showed CLDN14 to be detectable in the kidney only after induction of hypercalcemia in rodent models. Protein expression in the kidney is localized exclusively to the thick ascending limbs (TALs), mainly restricted to the cortical and upper medullary portion of the kidney. However, not all cells in the TALs expressed the tight junction protein. In fact, CLDN14 was primarily expressed in cells also expressing CLDN16 but devoid of CLDN10. CLDN14 appeared in very superficial apical cell domains and near cell junctions in a belt-like formation along the apical cell periphery. In transgenic mice, Cldn14 promotor-driven LacZ activity did not show complete colocalization with CLDN14 protein nor was it increased by hypercalcemia, suggesting that LacZ activity cannot be used as a marker for CLDN14 localization and regulation in this model. In conclusion, CLDN14 showed a restricted localization pattern in the apical domain of select cells of the TAL.
Collapse
Affiliation(s)
| | - R Todd Alexander
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Patrícia Ferreira
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rebecca Siu Ga Tan
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Weidong Wang
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
12
|
Pastor‐Arroyo EM, Knöpfel T, Imenez Silva PH, Schnitzbauer U, Poncet N, Biber J, Wagner CA, Hernando N. Intestinal epithelial ablation of Pit-2/Slc20a2 in mice leads to sustained elevation of vitamin D 3 upon dietary restriction of phosphate. Acta Physiol (Oxf) 2020; 230:e13526. [PMID: 32564464 DOI: 10.1111/apha.13526] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
AIM Several Na+ -dependent phosphate cotransporters, namely NaPi-IIb/SLC34A2, Pit-1/SLC20A1 and Pit-2/SLC20A2, are expressed at the apical membrane of enterocytes but their contribution to active absorption of phosphate is unclear. The aim of this study was to compare their pattern of mRNA expression along the small and large intestine and to analyse the effect of intestinal depletion of Pit-2 on phosphate homeostasis. METHODS Intestinal epithelial Pit-2-deficient mice were generated by crossing floxed Pit-2 with villin-Cre mice. Mice were fed 2 weeks standard or low phosphate diets. Stool, urine, plasma and intestinal and renal tissue were collected. Concentration of electrolytes and hormones, expression of mRNAs and proteins and intestinal transport of tracers were analysed. RESULTS Intestinal mRNA expression of NaPi-IIb and Pit-1 is segment-specific, whereas the abundance of Pit-2 mRNA is more homogeneous. In ileum, NaPi-IIb mRNA expression is restricted to enterocytes, whereas Pit-2 mRNA is found in epithelial and non-epithelial cells. Overall, their mRNA expression is not regulated by dietary phosphate. The absence of Pit-2 from intestinal epithelial cells does not affect systemic phosphate homeostasis under normal dietary conditions. However, in response to dietary phosphate restriction, Pit-2-deficient mice showed exacerbated hypercalciuria and sustained elevation of 1,25(OH)2 vitamin D3 . CONCLUSIONS In mice, the intestinal Na+ /phosphate cotransporters are not coexpressed in all segments. NaPi-IIb but not Pit-2 mRNA is restricted to epithelial cells. Intestinal epithelial Pit-2 does not contribute significantly to absorption of phosphate under normal dietary conditions. However, it may play a more significant role upon dietary phosphate restriction.
Collapse
Affiliation(s)
| | - Thomas Knöpfel
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | | | - Nadège Poncet
- Institute of Physiology University of Zürich Zürich Switzerland
| | - Jürg Biber
- Institute of Physiology University of Zürich Zürich Switzerland
| | | | - Nati Hernando
- Institute of Physiology University of Zürich Zürich Switzerland
| |
Collapse
|
13
|
Moor MB, Ramakrishnan SK, Legrand F, Bachtler M, Koesters R, Hynes NE, Pasch A, Bonny O. Elevated serum magnesium lowers calcification propensity in Memo1-deficient mice. PLoS One 2020; 15:e0236361. [PMID: 32706793 PMCID: PMC7380890 DOI: 10.1371/journal.pone.0236361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/03/2020] [Indexed: 11/18/2022] Open
Abstract
MEdiator of cell MOtility1 (MEMO1) is a ubiquitously expressed redox protein involved in extracellular ligand-induced cell signaling. We previously reported that inducible whole-body Memo1 KO (cKO) mice displayed a syndrome of premature aging and disturbed mineral metabolism partially recapitulating the phenotype observed in Klotho or Fgf23-deficient mouse models. Here, we aimed at delineating the contribution of systemic mineral load on the Memo1 cKO mouse phenotype. We attempted to rescue the Memo1 cKO phenotype by depleting phosphate or vitamin D from the diet, but did not observe any effect on survival. However, we noticed that, by contrast to Klotho or Fgf23-deficient mouse models, Memo1 cKO mice did not present any soft-tissue calcifications and displayed even a decreased serum calcification propensity. We identified higher serum magnesium levels as the main cause of protection against calcifications. Expression of genes encoding intestinal and renal magnesium channels and the regulator epidermal growth factor were increased in Memo1 cKO. In order to check whether magnesium reabsorption in the kidney alone was driving the higher magnesemia, we generated a kidney-specific Memo1 KO (kKO) mouse model. Memo1 kKO mice also displayed higher magnesemia and increased renal magnesium channel gene expression. Collectively, these data identify MEMO1 as a novel regulator of magnesium homeostasis and systemic calcification propensity, by regulating expression of the main magnesium channels.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Suresh K. Ramakrishnan
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
| | - Finola Legrand
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
| | - Matthias Bachtler
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research and University of Basel, Basel, Switzerland
| | - Andreas Pasch
- Calciscon AG, Nidau, Switzerland and Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Olivier Bonny
- Department of Medical Biosciences, University of Lausanne, Lausanne, Switzerland
- The National Centre of Competence in Research (NCCR) "Kidney.CH - Kidney Control of Homeostasis", Zürich, Switzerland
- Department of Medicine, Service of Nephrology, Lausanne University Hospital, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
14
|
Abstract
OBJECTIVE In this review the authors discuss evidence from the literature concerning vitamin D and temporal bone diseases (benign paroxysmal positional vertigo [BPPV], Menière's disease [MD], vestibular neuritis, idiopathic facial paralysis, idiopathic acute hearing loss). Common features shared by Menière's disease, glaucoma, and the possible influence by vitamin D are briefly discussed. DATA SOURCES, STUDY SELECTION Publications from 1970 until recent times have been reviewed according to a keyword search (see above) in PubMed. CONCLUSIONS MD, BPPV, vestibular neuritis, idiopathic facial paralysis, idiopathic acute hearing loss may all have several etiological factors, but a common feature of the current theories is that an initial viral infection and a subsequent autoimmune/autoinflammatory reaction might be involved. Additionally, in some of these entities varying degrees of demyelination have been documented. Given the immunomodulatory effect of vitamin D, we postulate that it may play a role in suppressing an eventual postviral autoimmune reaction. This beneficial effect may be enhanced by the antioxidative activity of vitamin D and its potential in stabilizing endothelial cells. The association of vitamin D deficiency with demyelination has already been established in other entities such as multiple sclerosis and experimental autoimmune encephalitis. Mice without vitamin D receptor show degenerative features in inner ear ganglia, hair cells, as well as otoconia. The authors suggest further studies concerning the role of vitamin D deficiency in diseases of the temporal bone. Additionally, the possible presence and degree of demyelination in these entities will have to be elucidated more systematically in the future.
Collapse
|
15
|
Verschuren EHJ, Castenmiller C, Peters DJM, Arjona FJ, Bindels RJM, Hoenderop JGJ. Sensing of tubular flow and renal electrolyte transport. Nat Rev Nephrol 2020; 16:337-351. [DOI: 10.1038/s41581-020-0259-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
|
16
|
Besouw MTP, Kleta R, Bockenhauer D. Bartter and Gitelman syndromes: Questions of class. Pediatr Nephrol 2020; 35:1815-1824. [PMID: 31664557 PMCID: PMC7501116 DOI: 10.1007/s00467-019-04371-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 12/30/2022]
Abstract
Bartter and Gitelman syndromes are rare inherited tubulopathies characterized by hypokalaemic, hypochloraemic metabolic alkalosis. They are caused by mutations in at least 7 genes involved in the reabsorption of sodium in the thick ascending limb (TAL) of the loop of Henle and/or the distal convoluted tubule (DCT). Different subtypes can be distinguished and various classifications have been proposed based on clinical symptoms and/or the underlying genetic cause. Yet, the clinical phenotype can show remarkable variability, leading to potential divergences between classifications. These problems mostly relate to uncertainties over the role of the basolateral chloride exit channel CLCNKB, expressed in both TAL and DCT and to what degree the closely related paralogue CLCNKA can compensate for the loss of CLCNKB function. Here, we review what is known about the physiology of the transport proteins involved in these disorders. We also review the various proposed classifications and explain why a gene-based classification constitutes a pragmatic solution.
Collapse
Affiliation(s)
- Martine T. P. Besouw
- Department of Pediatric Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert Kleta
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ,Department of Renal Medicine, University College London, London, UK
| | - Detlef Bockenhauer
- Renal Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK ,Department of Renal Medicine, University College London, London, UK
| |
Collapse
|
17
|
Daryadel A, Natale L, Seebeck P, Bettoni C, Schnitzbauer U, Gassmann M, Wagner CA. Elevated FGF23 and disordered renal mineral handling with reduced bone mineralization in chronically erythropoietin over-expressing transgenic mice. Sci Rep 2019; 9:14989. [PMID: 31628396 PMCID: PMC6802194 DOI: 10.1038/s41598-019-51577-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Fibroblast Growth Factor 23 (FGF23) is a phosphaturic factor causing increased renal phosphate excretion as well as suppression of 1,25 (OH)2-vitamin D3. Highly elevated FGF23 can promote development of rickets and osteomalacia. We and others previously reported that acute application of erythropoietin (EPO) stimulates FGF23 production. Considering that EPO is clinically used as chronic treatment against anemia, we used here the Tg6 mouse model that constitutively overexpresses human EPO in an oxygen-independent manner, to examine the consequences of long-term EPO therapy on mineral and bone metabolism. Six to eight weeks old female Tg6 mice showed elevated intact and C-terminal fragment of FGF23 but normal plasma levels of PTH, calcitriol, calcium and phosphate. Renal function showed moderate alterations with higher urea and creatinine clearance and mild albuminuria. Renal phosphate excretion was normal whereas mild hypercalciuria was found. Renal expression of the key proteins TRPV5 and calbindin D28k involved in active calcium reabsorption was reduced in Tg6 mice. Plasma levels of the bone turnover marker osteocalcin were comparable between groups. However, urinary excretion of deoxypyridinoline (DPD) was lower in Tg6 mice. MicroCT analysis showed reduced total, cortical, and trabecular bone mineral density in femora from Tg6 mice. Our data reveal that chronic elevation of EPO is associated with high FGF23 levels and disturbed mineral homeostasis resulting in reduced bone mineral density. These observations imply the need to study the impact of therapeutically applied EPO on bone mineralization in patients, especially those suffering from chronic kidney disease.
Collapse
Affiliation(s)
- Arezoo Daryadel
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Luciano Natale
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland
| | - Max Gassmann
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland. .,National Centre for Competence in Research NCCR "Kidney.CH", Zurich, Switzerland.
| |
Collapse
|
18
|
Moor MB, Haenzi B, Legrand F, Koesters R, Hynes NE, Bonny O. Renal Memo1 Differentially Regulates the Expression of Vitamin D-Dependent Distal Renal Tubular Calcium Transporters. Front Physiol 2018; 9:874. [PMID: 30038585 PMCID: PMC6046545 DOI: 10.3389/fphys.2018.00874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/19/2018] [Indexed: 01/11/2023] Open
Abstract
Ablation of the Mediator of ErbB2-driven Cell Motility 1 (Memo1) in mice altered calcium homeostasis and renal calcium transporter abundance by an unknown mechanism. Here, we investigated the role of intrarenal Memo in renal calcium handling. We have generated a mouse model of inducible kidney-specific Memo1 deletion. The Memo-deficient mice showed normal serum concentration and urinary excretion of calcium and phosphate, but elevated serum FGF23 concentration. They displayed elevated gene expression and protein abundance of the distal renal calcium transporters NCX1, TRPV5, and calbindin D28k. In addition, Claudin 14 gene expression was increased. When the mice were challenged by a vitamin D deficient diet, serum FGF23 concentration and TRPV5 membrane abundance were decreased, but NCX1 abundance remained increased. Collectively, renal distal calcium transport proteins (TRPV5 and Calbindin-D28k) in this model were altered by Memo- and vitamin-D dependent mechanisms, except for NCX1 which was vitamin D-independent. These findings highlight the existence of distinct regulatory mechanisms affecting TRPV5 and NCX1 membrane expression in vivo.
Collapse
Affiliation(s)
- Matthias B. Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Barbara Haenzi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Finola Legrand
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Robert Koesters
- Department of Nephrology, Hôpital Tenon, Université Pierre et Marie Curie, Paris, France
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
- Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
19
|
Fleet JC. The role of vitamin D in the endocrinology controlling calcium homeostasis. Mol Cell Endocrinol 2017; 453:36-45. [PMID: 28400273 PMCID: PMC5529228 DOI: 10.1016/j.mce.2017.04.008] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/07/2017] [Accepted: 04/08/2017] [Indexed: 12/14/2022]
Abstract
Vitamin D and its' metabolites are a crucial part of the endocrine system that controls whole body calcium homeostasis. The goal of this hormonal control is to regulate serum calcium levels so that they are maintained within a very narrow range. To achieve this goal, regulatory events occur in coordination at multiple tissues, e.g. the intestine, kidney, bone, and parathyroid gland. Production of the vitamin D endocrine hormone, 1,25 dihydroxyvitamin D (1,25(OH)2 D) is regulated by habitual dietary calcium intake and physiologic states like growth, aging, and the menopause. The molecular actions of 1,25(OH)2 D on calcium regulating target tissues are mediated predominantly by transcription controlled by the vitamin D receptor. A primary role for 1,25(OH)2 D during growth is to increase intestinal calcium absorption so that sufficient calcium is available for bone mineralization. However, vitamin D also has specific actions on kidney and bone.
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutrition Science, Room G1B Stone Hall, Purdue University, West Lafayette, IN 47907-2059, United States.
| |
Collapse
|
20
|
The intestinal phosphate transporter NaPi-IIb (Slc34a2) is required to protect bone during dietary phosphate restriction. Sci Rep 2017; 7:11018. [PMID: 28887454 PMCID: PMC5591270 DOI: 10.1038/s41598-017-10390-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023] Open
Abstract
NaPi-IIb/Slc34a2 is a Na+-dependent phosphate transporter that accounts for the majority of active phosphate transport into intestinal epithelial cells. Its abundance is regulated by dietary phosphate, being high during dietary phosphate restriction. Intestinal ablation of NaPi-IIb in mice leads to increased fecal excretion of phosphate, which is compensated by enhanced renal reabsorption. Here we compared the adaptation to dietary phosphate of wild type (WT) and NaPi-IIb−/− mice. High phosphate diet (HPD) increased fecal and urinary excretion of phosphate in both groups, though NaPi-IIb−/− mice still showed lower urinary excretion than WT. In both genotypes low dietary phosphate (LDP) resulted in reduced fecal excretion and almost undetectable urinary excretion of phosphate. Consistently, the expression of renal cotransporters after prolonged LDP was similar in both groups. Plasma phosphate declined more rapidly in NaPi-IIb−/− mice upon LDP, though both genotypes had comparable levels of 1,25(OH)2vitamin D3, parathyroid hormone and fibroblast growth factor 23. Instead, NaPi-IIb−/− mice fed LDP had exacerbated hypercalciuria, higher urinary excretion of corticosterone and deoxypyridinoline, lower bone mineral density and higher number of osteoclasts. These data suggest that during dietary phosphate restriction NaPi-IIb-mediated intestinal absorption prevents excessive demineralization of bone as an alternative source of phosphate.
Collapse
|
21
|
Stafford N, Wilson C, Oceandy D, Neyses L, Cartwright EJ. The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease. Physiol Rev 2017; 97:1089-1125. [PMID: 28566538 DOI: 10.1152/physrev.00028.2016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease.
Collapse
Affiliation(s)
- Nicholas Stafford
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Ludwig Neyses
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
22
|
Alexander RT, Dimke H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am J Physiol Renal Physiol 2017; 312:F998-F1015. [DOI: 10.1152/ajprenal.00032.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/07/2023] Open
Abstract
Calcium (Ca2+) and Magnesium (Mg2+) reabsorption along the renal tubule is dependent on distinct trans- and paracellular pathways. Our understanding of the molecular machinery involved is increasing. Ca2+ and Mg2+ reclamation in kidney is dependent on a diverse array of proteins, which are important for both forming divalent cation-permeable pores and channels, but also for generating the necessary driving forces for Ca2+ and Mg2+ transport. Alterations in these molecular constituents can have profound effects on tubular Ca2+ and Mg2+ handling. Diuretics are used to treat a large range of clinical conditions, but most commonly for the management of blood pressure and fluid balance. The pharmacological targets of diuretics generally directly facilitate sodium (Na+) transport, but also indirectly affect renal Ca2+ and Mg2+ handling, i.e., by establishing a prerequisite electrochemical gradient. It is therefore not surprising that substantial alterations in divalent cation handling can be observed following diuretic treatment. The effects of diuretics on renal Ca2+ and Mg2+ handling are reviewed in the context of the present understanding of basal molecular mechanisms of Ca2+ and Mg2+ transport. Acetazolamide, osmotic diuretics, Na+/H+ exchanger (NHE3) inhibitors, and antidiabetic Na+/glucose cotransporter type 2 (SGLT) blocking compounds, target the proximal tubule, where paracellular Ca2+ transport predominates. Loop diuretics and renal outer medullary K+ (ROMK) inhibitors block thick ascending limb transport, a segment with significant paracellular Ca2+ and Mg2+ transport. Thiazides target the distal convoluted tubule; however, their effect on divalent cation transport is not limited to that segment. Finally, potassium-sparing diuretics, which inhibit electrogenic Na+ transport at distal sites, can also affect divalent cation transport.
Collapse
Affiliation(s)
- R. Todd Alexander
- Membrane Protein Disease Research Group, Department of Physiology, University of Alberta, Edmonton, Canada
- Department of Pediatrics, University of Alberta, Edmonton, Canada; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
23
|
Mohammed SG, Arjona FJ, Latta F, Bindels RJM, Roepman R, Hoenderop JGJ. Fluid shear stress increases transepithelial transport of Ca
2+
in ciliated distal convoluted and connecting tubule cells. FASEB J 2017; 31:1796-1806. [DOI: 10.1096/fj.201600687rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sami G. Mohammed
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Francisco J. Arjona
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Femke Latta
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - René J. M. Bindels
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Ronald Roepman
- Department of Human GeneticsRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Joost G. J. Hoenderop
- Department of PhysiologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
24
|
van Loon EPM, Little R, Prehar S, Bindels RJM, Cartwright EJ, Hoenderop JGJ. Calcium Extrusion Pump PMCA4: A New Player in Renal Calcium Handling? PLoS One 2016; 11:e0153483. [PMID: 27101128 PMCID: PMC4839660 DOI: 10.1371/journal.pone.0153483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/17/2016] [Indexed: 11/19/2022] Open
Abstract
Calcium (Ca2+) is vital for multiple processes in the body, and maintenance of the electrolyte concentration is required for everyday physiological function. In the kidney, and more specifically, in the late distal convoluted tubule and connecting tubule, the fine-tuning of Ca2+ reabsorption from the pro-urine takes place. Here, Ca2+ enters the epithelial cell via the transient receptor potential vanilloid receptor type 5 (TRPV5) channel, diffuses to the basolateral side bound to calbindin-D28k and is extruded to the blood compartment via the Na+/Ca2+ exchanger 1 (NCX1) and the plasma membrane Ca2+ ATPase (PMCA). Traditionally, PMCA1 was considered to be the primary Ca2+ pump in this process. However, in recent studies TRPV5-expressing tubules were shown to highly express PMCA4. Therefore, PMCA4 may have a predominant role in renal Ca2+ handling. This study aimed to elucidate the role of PMCA4 in Ca2+ homeostasis by characterizing the Ca2+ balance, and renal and duodenal Ca2+-related gene expression in PMCA4 knockout mice. The daily water intake of PMCA4 knockout mice was significantly lower compared to wild type littermates. There was no significant difference in serum Ca2+ level or urinary Ca2+ excretion between groups. In addition, renal and duodenal mRNA expression levels of Ca2+-related genes, including TRPV5, TRPV6, calbindin-D28k, calbindin-D9k, NCX1 and PMCA1 were similar in wild type and knockout mice. Serum FGF23 levels were significantly increased in PMCA4 knockout mice. In conclusion, PMCA4 has no discernible role in normal renal Ca2+ handling as no urinary Ca2+ wasting was observed. Further investigation of the exact role of PMCA4 in the distal convoluted tubule and connecting tubule is required.
Collapse
Affiliation(s)
- Ellen P. M. van Loon
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Robert Little
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Sukhpal Prehar
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - René J. M. Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Elizabeth J. Cartwright
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Joost G. J. Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
26
|
Abstract
PTH and Vitamin D are two major regulators of mineral metabolism. They play critical roles in the maintenance of calcium and phosphate homeostasis as well as the development and maintenance of bone health. PTH and Vitamin D form a tightly controlled feedback cycle, PTH being a major stimulator of vitamin D synthesis in the kidney while vitamin D exerts negative feedback on PTH secretion. The major function of PTH and major physiologic regulator is circulating ionized calcium. The effects of PTH on gut, kidney, and bone serve to maintain serum calcium within a tight range. PTH has a reciprocal effect on phosphate metabolism. In contrast, vitamin D has a stimulatory effect on both calcium and phosphate homeostasis, playing a key role in providing adequate mineral for normal bone formation. Both hormones act in concert with the more recently discovered FGF23 and klotho, hormones involved predominantly in phosphate metabolism, which also participate in this closely knit feedback circuit. Of great interest are recent studies demonstrating effects of both PTH and vitamin D on the cardiovascular system. Hyperparathyroidism and vitamin D deficiency have been implicated in a variety of cardiovascular disorders including hypertension, atherosclerosis, vascular calcification, and kidney failure. Both hormones have direct effects on the endothelium, heart, and other vascular structures. How these effects of PTH and vitamin D interface with the regulation of bone formation are the subject of intense investigation.
Collapse
Affiliation(s)
- Syed Jalal Khundmiri
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Rebecca D. Murray
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
| | - Eleanor Lederer
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky, USA
- Robley Rex VA Medical Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
27
|
Leunissen EHP, Blanchard MG, Sheedfar F, Lavrijsen M, van der Wijst J, Bindels RJM, Hoenderop JGJ. Urinary β-galactosidase stimulates Ca2+ transport by stabilizing TRPV5 at the plasma membrane. Glycobiology 2016; 26:472-81. [PMID: 26747426 DOI: 10.1093/glycob/cwv172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/28/2015] [Indexed: 01/26/2023] Open
Abstract
Transcellular Ca(2+)transport in the late distal convoluted tubule and connecting tubule (DCT2/CNT) of the kidney is a finely controlled process mediated by the transient receptor potential vanilloid type 5 (TRPV5) channel. A complex-type-N-glycan bound at the extracellular residue Asn358 of TRPV5 through post-translational glycosylation has been postulated to regulate the activity of TRPV5 channels. Using in vitro Ca(2+)transport assays, immunoblot analysis, immunohistochemistry, patch clamp electrophysiology and total internal reflection fluorescence microscopy, it is demonstrated that the glycosidase β-galactosidase (β-gal), an enzyme that hydrolyzes galactose, stimulates TRPV5 channel activity. However, the activity of the non-glycosylated TRPV(N358Q)mutant was not altered in the presence of β-gal, showing that the stimulation is dependent on the presence of the TRPV5N-glycan. In addition, β-gal was found to stimulate transcellular Ca(2+)transport in isolated mouse primary DCT2/CNT cells. β-gal expression was detected in the apical membrane of the proximal tubules, and the protein was found in mouse urine. In summary, β-gal is present in the pro-urine from where it is thought to stimulate TRPV5 activity.
Collapse
Affiliation(s)
- Elizabeth H P Leunissen
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Maxime G Blanchard
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Fareeba Sheedfar
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Marla Lavrijsen
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
28
|
Pulskens WP, Verkaik M, Sheedfar F, van Loon EP, van de Sluis B, Vervloet MG, Hoenderop JG, Bindels RJ. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure. PLoS One 2015; 10:e0142510. [PMID: 26566277 PMCID: PMC4643984 DOI: 10.1371/journal.pone.0142510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022] Open
Abstract
Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.
Collapse
Affiliation(s)
- Wilco P. Pulskens
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Dept. of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Verkaik
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Fareeba Sheedfar
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen P. van Loon
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart van de Sluis
- Dept. of Pediatrics, Molecular Genetics Section, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark G. Vervloet
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joost G. Hoenderop
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. Bindels
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
29
|
Alexander RT, Beggs MR, Zamani R, Marcussen N, Frische S, Dimke H. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia. Am J Physiol Renal Physiol 2015; 309:F604-16. [PMID: 26180241 DOI: 10.1152/ajprenal.00651.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/11/2015] [Indexed: 01/07/2023] Open
Abstract
Plasma membrane Ca(2+)-ATPases (PMCAs) participate in epithelial Ca(2+) transport and intracellular Ca(2+) signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca(2+) channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca(2+) flux and investigated the localization and regulation of Pmca4 in Ca(2+)-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca(2+) channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na(+)-Cl(-) cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca(2+) balance, pointing to a housekeeping function of the pump in Ca(2+)-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca(2+)-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca(2+) transport.
Collapse
Affiliation(s)
- R Todd Alexander
- Department of Pediatrics, The University of Alberta, Edmonton, Alberta, Canada; Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Megan R Beggs
- Membrane Protein Disease Research Group, The University of Alberta, Edmonton, Alberta, Canada
| | - Reza Zamani
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Sebastian Frische
- Department of Biomedicine, University of Aarhus, Aarhus, Denmark; and
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark
| |
Collapse
|