1
|
Wang H, Wang Z, Wu Q, Yang Y, Liu S, Bian J, Bo L. Perioperative oxygen administration for adults undergoing major noncardiac surgery: a narrative review. Med Gas Res 2025; 15:73-84. [PMID: 39436170 DOI: 10.4103/mgr.medgasres-d-24-00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/07/2024] [Indexed: 10/23/2024] Open
Abstract
Perioperative oxygen administration, a topic under continuous research and debate in anesthesiology, strives to optimize tissue oxygenation while minimizing the risks associated with hyperoxia and hypoxia. This review provides a thorough overview of the current evidence on the application of perioperative oxygen in adult patients undergoing major noncardiac surgery. The review begins by describing the physiological reasoning for supplemental oxygen during the perioperative period and its potential benefits while also focusing on potential hyperoxia risks. This review critically appraises the existing literature on perioperative oxygen administration, encompassing recent clinical trials and meta-analyses, to elucidate its effect on postoperative results. Future research should concentrate on illuminating the optimal oxygen administration strategies to improve patient outcomes and fine-tune perioperative care protocols for adults undergoing major noncardiac surgery. By compiling and analyzing available evidence, this review aims to provide clinicians and researchers with comprehensive knowledge on the role of perioperative oxygen administration in major noncardiac surgery, ultimately guiding clinical practice and future research endeavors.
Collapse
Affiliation(s)
- Huixian Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuguang Yang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shanshan Liu
- Department of Anesthesiology, Chenggong Hospital Affiliated to Xiamen University, Xiamen, Fujian Province, China
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Jucht AE, Scholz CC. PHD1-3 oxygen sensors in vivo-lessons learned from gene deletions. Pflugers Arch 2024; 476:1307-1337. [PMID: 38509356 PMCID: PMC11310289 DOI: 10.1007/s00424-024-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Oxygen sensors enable cells to adapt to limited oxygen availability (hypoxia), affecting various cellular and tissue responses. Prolyl-4-hydroxylase domain 1-3 (PHD1-3; also called Egln1-3, HIF-P4H 1-3, HIF-PH 1-3) proteins belong to the Fe2+- and 2-oxoglutarate-dependent dioxygenase superfamily and utilise molecular oxygen (O2) alongside 2-oxoglutarate as co-substrate to hydroxylate two proline residues of α subunits of the dimeric hypoxia inducible factor (HIF) transcription factor. PHD1-3-mediated hydroxylation of HIF-α leads to its degradation and inactivation. Recently, various PHD inhibitors (PHI) have entered the clinics for treatment of renal anaemia. Pre-clinical analyses indicate that PHI treatment may also be beneficial in numerous other hypoxia-associated diseases. Nonetheless, the underlying molecular mechanisms of the observed protective effects of PHIs are only partly understood, currently hindering their translation into the clinics. Moreover, the PHI-mediated increase of Epo levels is not beneficial in all hypoxia-associated diseases and PHD-selective inhibition may be advantageous. Here, we summarise the current knowledge about the relevance and function of each of the three PHD isoforms in vivo, based on the deletion or RNA interference-mediated knockdown of each single corresponding gene in rodents. This information is crucial for our understanding of the physiological relevance and function of the PHDs as well as for elucidating their individual impact on hypoxia-associated diseases. Furthermore, this knowledge highlights which diseases may best be targeted by PHD isoform-selective inhibitors in case such pharmacologic substances become available.
Collapse
Affiliation(s)
- Agnieszka E Jucht
- Institute of Physiology, University of Zurich, Zurich, 8057, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15a, 17475, Greifswald, Germany.
| |
Collapse
|
3
|
Fandrey J. How do cells sense oxygen? Pflugers Arch 2024; 476:1303-1305. [PMID: 39101995 PMCID: PMC11310221 DOI: 10.1007/s00424-024-03000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Hufelandstrasse 55 D, Essen, 45147, Germany.
| |
Collapse
|
4
|
Mialet-Perez J, Belaidi E. Interplay between hypoxia inducible Factor-1 and mitochondria in cardiac diseases. Free Radic Biol Med 2024; 221:13-22. [PMID: 38697490 DOI: 10.1016/j.freeradbiomed.2024.04.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Ischemic heart diseases and cardiomyopathies are characterized by hypoxia, energy starvation and mitochondrial dysfunction. HIF-1 acts as a cellular oxygen sensor, tuning the balance of metabolic and oxidative stress pathways to provide ATP and sustain cell survival. Acting on mitochondria, HIF-1 regulates different processes such as energy substrate utilization, oxidative phosphorylation and mitochondrial dynamics. In turn, mitochondrial homeostasis modifications impact HIF-1 activity. This underlies that HIF-1 and mitochondria are tightly interconnected to maintain cell homeostasis. Despite many evidences linking HIF-1 and mitochondria, the mechanistic insights are far from being understood, particularly in the context of cardiac diseases. Here, we explore the current understanding of how HIF-1, reactive oxygen species and cell metabolism are interconnected, with a specific focus on mitochondrial function and dynamics. We also discuss the divergent roles of HIF in acute and chronic cardiac diseases in order to highlight that HIF-1, mitochondria and oxidative stress interaction deserves to be deeply investigated. While the strategies aiming at stabilizing HIF-1 have provided beneficial effects in acute ischemic injury, some deleterious effects were observed during prolonged HIF-1 activation. Thus, deciphering the link between HIF-1 and mitochondria will help to optimize HIF-1 modulation and provide new therapeutic perspectives for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- Jeanne Mialet-Perez
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, Angers, France
| | - Elise Belaidi
- Univ. Lyon 1, Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, LBTI UMR 5305, 69367, Lyon, France.
| |
Collapse
|
5
|
Rogers ZJ, Colombani T, Khan S, Bhatt K, Nukovic A, Zhou G, Woolston BM, Taylor CT, Gilkes DM, Slavov N, Bencherif SA. Controlling Pericellular Oxygen Tension in Cell Culture Reveals Distinct Breast Cancer Responses to Low Oxygen Tensions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402557. [PMID: 38874400 PMCID: PMC11321643 DOI: 10.1002/advs.202402557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In oxygen (O2)-controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2 tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to cellular O2 consumption. A reaction-diffusion model is developed to predict pericellular O2 tension a priori, demonstrating that the effect of cellular O2 consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2 tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia-inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2 tension in cell culture incubators is insufficient to regulate O2 in cell culture, thus introducing the concept of pericellular O2-controlled cell culture.
Collapse
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Saad Khan
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
| | - Khushbu Bhatt
- Department of Pharmaceutical SciencesNortheastern UniversityBostonMA02115USA
| | - Alexandra Nukovic
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Guanyu Zhou
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of MedicineUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Daniele M. Gilkes
- Department of OncologyThe Sidney Kimmel Comprehensive Cancer CenterThe Johns Hopkins University School of MedicineBaltimoreMD21321USA
- Cellular and Molecular Medicine ProgramThe Johns Hopkins University School of MedicineBaltimoreMD21321USA
- Department of Chemical and Biomolecular EngineeringThe Johns Hopkins UniversityBaltimoreMD21218USA
- Johns Hopkins Institute for NanoBioTechnologyThe Johns Hopkins UniversityBaltimoreMD21218USA
| | - Nikolai Slavov
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
- Departments of BioengineeringBiologyChemistry and Chemical BiologySingle Cell Center and Barnett InstituteNortheastern UniversityBostonMA02115USA
- Parallel Squared Technology InstituteWatertownMA02472USA
| | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Department of BioengineeringNortheastern UniversityBostonMA02115USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Biomechanics and Bioengineering (BMBI)UTC CNRS UMR 7338University of Technology of CompiègneSorbonne UniversityCompiègne60203France
| |
Collapse
|
6
|
Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2024; 23:175-200. [PMID: 38123660 DOI: 10.1038/s41573-023-00848-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
Hypoxia-inducible factors (HIFs) are highly conserved transcription factors that are crucial for adaptation of metazoans to limited oxygen availability. Recently, HIF activation and inhibition have emerged as therapeutic targets in various human diseases. Pharmacologically desirable effects of HIF activation include erythropoiesis stimulation, cellular metabolism optimization during hypoxia and adaptive responses during ischaemia and inflammation. By contrast, HIF inhibition has been explored as a therapy for various cancers, retinal neovascularization and pulmonary hypertension. This Review discusses the biochemical mechanisms that control HIF stabilization and the molecular strategies that can be exploited pharmacologically to activate or inhibit HIFs. In addition, we examine medical conditions that benefit from targeting HIFs, the potential side effects of HIF activation or inhibition and future challenges in this field.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Anaesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bentley Bobrow
- Department of Emergency Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis & Vascular Heterogeneity, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Outcomes Research Consortium, Cleveland, OH, USA.
| |
Collapse
|
7
|
Minutolo R, Liberti ME, Simeon V, Sasso FC, Borrelli S, De Nicola L, Garofalo C. Efficacy and safety of hypoxia-inducible factor prolyl hydroxylase inhibitors in patients with chronic kidney disease: meta-analysis of phase 3 randomized controlled trials. Clin Kidney J 2024; 17:sfad143. [PMID: 38186871 PMCID: PMC10765094 DOI: 10.1093/ckj/sfad143] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Indexed: 01/09/2024] Open
Abstract
Background Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are new therapeutic agents for anaemia in chronic kidney disease (CKD). We evaluated by meta-analysis and meta-regression the efficacy and safety of HIF-PHIs in patients with CKD-related anaemia. Methods We selected phase 3 randomized clinical trials (RCTs) comparing HIF-PHIs and erythropoiesis-stimulating agents (ESAs) in dialysis and non-dialysis patients. Efficacy outcomes were the changes from baseline of haemoglobin, iron parameters (hepcidin, serum iron, TIBC, TSAT, ferritin) and intravenous iron dose; as safety outcomes we considered cancer, adjudicated major adverse cardiovascular events (MACE), MACE+ (MACE plus hospitalization for hearth failure or unstable angina or thromboembolic event), thrombotic events (deep vein thrombosis, pulmonary embolism), arterovenous fistula (AVF) thrombosis and death. Results We included 26 RCTs with 24 387 patients. Random effect meta-analysis of the unstandardized mean difference between HIF-PHIs and ESAs showed a significant change in haemoglobin levels from baseline of 0.10 g/dL (95% CI 0.02 to 0.17). Meta-regression analysis showed a significantly higher haemoglobin change for HIF-PHIs in younger patients and versus short-acting ESA (0.21 g/dL, 95% CI 0.12 to 0.29 versus -0.01, 95% CI -0.09 to 0.07 in studies using long-acting ESA, P < .001). No significant effect on heterogeneity was found for type of HIF-PHIs. In comparison with ESAs, HIF-PHIs induced a significant decline in hepcidin and ferritin and a significant increase in serum iron and TIBC, while TSAT did not change; intravenous iron dose was lower with HIF-PHI (-3.1 mg/week, 95% CI -5.6 to -0.6, P = .020). Rate ratio of cancer (0.93, 95% CI 0.76 to 1.13), MACE (1.00, 95% CI 0.94 to 1.07), MACE+ (1.01, 95% CI 0.95 to 1.06), thrombotic events (1.08, 95% CI 0.84 to 1.38), AVF thrombosis (1.02, 95% CI 0.93 to 1.13) and death (1.02, 95% CI 0.95 to 1.13) did not differ between HIF-PHIs and ESAs. Conclusions HIF-PHIs at the doses selected for the comparisons are effective in correcting anaemia in comparison with ESA therapy with a significant impact on iron metabolism without notable difference among various agents. No safety signals emerge with use of HIF-PHIs.
Collapse
Affiliation(s)
- Roberto Minutolo
- Nephrology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Vittorio Simeon
- Medical Statistic Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ferdinando C Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Silvio Borrelli
- Nephrology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Luca De Nicola
- Nephrology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Carlo Garofalo
- Nephrology Unit, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Shan C, Xia Y, Wu Z, Zhao J. HIF-1α and periodontitis: Novel insights linking host-environment interplay to periodontal phenotypes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:50-78. [PMID: 37769974 DOI: 10.1016/j.pbiomolbio.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Periodontitis, the sixth most prevalent epidemic disease globally, profoundly impacts oral aesthetics and masticatory functionality. Hypoxia-inducible factor-1α (HIF-1α), an oxygen-dependent transcriptional activator, has emerged as a pivotal regulator in periodontal tissue and alveolar bone metabolism, exerts critical functions in angiogenesis, erythropoiesis, energy metabolism, and cell fate determination. Numerous essential phenotypes regulated by HIF are intricately associated with bone metabolism in periodontal tissues. Extensive investigations have highlighted the central role of HIF and its downstream target genes and pathways in the coupling of angiogenesis and osteogenesis. Within this concise perspective, we comprehensively review the cellular phenotypic alterations and microenvironmental dynamics linking HIF to periodontitis. We analyze current research on the HIF pathway, elucidating its impact on bone repair and regeneration, while unraveling the involved cellular and molecular mechanisms. Furthermore, we briefly discuss the potential application of targeted interventions aimed at HIF in the field of bone tissue regeneration engineering. This review expands our biological understanding of the intricate relationship between the HIF gene and bone angiogenesis in periodontitis and offers valuable insights for the development of innovative therapies to expedite bone repair and regeneration.
Collapse
Affiliation(s)
- Chao Shan
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - YuNing Xia
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Zeyu Wu
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China
| | - Jin Zhao
- Department of Dentistry, Xinjiang Medical University, Ürümqi, China; The First Affiliated Hospital of Xinjiang Medical University (Affiliated Stomatology Hospital), Ürümqi, China; Xinjiang Uygur Autonomous Region Institute of Stomatology, Ürümqi, China.
| |
Collapse
|
9
|
Malkov MI, Flood D, Taylor CT. SUMOylation indirectly suppresses activity of the HIF-1α pathway in intestinal epithelial cells. J Biol Chem 2023; 299:105280. [PMID: 37742924 PMCID: PMC10616383 DOI: 10.1016/j.jbc.2023.105280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023] Open
Abstract
The hypoxia-inducible factor (HIF) is a master regulator of the cellular transcriptional response to hypoxia. While the oxygen-sensitive regulation of HIF-1α subunit stability via the ubiquitin-proteasome pathway has been well described, less is known about how other oxygen-independent post-translational modifications impact the HIF pathway. SUMOylation, the attachment of SUMO (small ubiquitin-like modifier) proteins to a target protein, regulates the HIF pathway, although the impact of SUMO on HIF activity remains controversial. Here, we examined the effects of SUMOylation on the expression pattern of HIF-1α in response to pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) in intestinal epithelial cells. We evaluated the effects of SUMO-1, SUMO-2, and SUMO-3 overexpression and inhibition of SUMOylation using a novel selective inhibitor of the SUMO pathway, TAK-981, on the sensitivity of HIF-1α in Caco-2 intestinal epithelial cells. Our findings demonstrate that treatment with TAK-981 decreases global SUMO-1 and SUMO-2/3 modification and enhances HIF-1α protein levels, whereas SUMO-1 and SUMO-2/3 overexpression results in decreased HIF-1α protein levels in response to DMOG. Reporter assay analysis demonstrates reduced HIF-1α transcriptional activity in cells overexpressing SUMO-1 and SUMO-2/3, whereas pretreatment with TAK-981 increased HIF-1α transcriptional activity in response to DMOG. In addition, HIF-1α nuclear accumulation was decreased in cells overexpressing SUMO-1. Importantly, we showed that HIF-1α is not directly SUMOylated, but that SUMOylation affects HIF-1α stability and activity indirectly. Taken together, our results indicate that SUMOylation indirectly suppresses HIF-1α protein stability, transcriptional activity, and nuclear accumulation in intestinal epithelial cells.
Collapse
Affiliation(s)
- Mykyta I Malkov
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Darragh Flood
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland
| | - Cormac T Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Ireland.
| |
Collapse
|
10
|
Su Z, Zhang G, Li X, Zhang H. Inverse correlation between Alzheimer's disease and cancer from the perspective of hypoxia. Neurobiol Aging 2023; 131:59-73. [PMID: 37572528 DOI: 10.1016/j.neurobiolaging.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/02/2023] [Accepted: 07/03/2023] [Indexed: 08/14/2023]
Abstract
Sporadic Alzheimer's disease and cancer remain epidemiologically inversely related, and exploring the reverse pathogenesis is important for our understanding of both. Cognitive dysfunctions in Alzheimer's disease (AD) might result from the depletion of adaptive reserves in the brain. Energy storage in the brain is limited and is dynamically regulated by neurovascular and neurometabolic coupling. The research on neurodegenerative diseases has been dominated by the neurocentric view that neuronal defects cause the diseases. However, the proposal of the 2-hit vascular hypothesis in AD led us to focus on alterations in the vasculature, especially hypoperfusion. Chronic hypoxia is a feature shared by AD and cancer. It is interesting how contradicting chronic hypoxia's effects on both cancer and AD are. In this article, we discuss the potential links between the 2 diseases' etiology, from comparable upstream circumstances to diametrically opposed downstream effects. We suggest opposing potential mechanisms, including upregulation and downregulation of hypoxia-inducible factor-1α, the Warburg and reverse-Warburg effects, lactate-mediated intracellular acidic and alkaline conditions, and VDAC1-mediated apoptosis and antiapoptosis, and search for regulators that may be identified as the crossroads between cancer and AD.
Collapse
Affiliation(s)
- Zhan Su
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Guimei Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Xiangting Li
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China
| | - Haining Zhang
- Department of Neurology and Neuroscience Centre, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Liang Y, Ruan W, Jiang Y, Smalling R, Yuan X, Eltzschig HK. Interplay of hypoxia-inducible factors and oxygen therapy in cardiovascular medicine. Nat Rev Cardiol 2023; 20:723-737. [PMID: 37308571 PMCID: PMC11014460 DOI: 10.1038/s41569-023-00886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/14/2023]
Abstract
Mammals have evolved to adapt to differences in oxygen availability. Although systemic oxygen homeostasis relies on respiratory and circulatory responses, cellular adaptation to hypoxia involves the transcription factor hypoxia-inducible factor (HIF). Given that many cardiovascular diseases involve some degree of systemic or local tissue hypoxia, oxygen therapy has been used liberally over many decades for the treatment of cardiovascular disorders. However, preclinical research has revealed the detrimental effects of excessive use of oxygen therapy, including the generation of toxic oxygen radicals or attenuation of endogenous protection by HIFs. In addition, investigators in clinical trials conducted in the past decade have questioned the excessive use of oxygen therapy and have identified specific cardiovascular diseases in which a more conservative approach to oxygen therapy could be beneficial compared with a more liberal approach. In this Review, we provide numerous perspectives on systemic and molecular oxygen homeostasis and the pathophysiological consequences of excessive oxygen use. In addition, we provide an overview of findings from clinical studies on oxygen therapy for myocardial ischaemia, cardiac arrest, heart failure and cardiac surgery. These clinical studies have prompted a shift from liberal oxygen supplementation to a more conservative and vigilant approach to oxygen therapy. Furthermore, we discuss the alternative therapeutic strategies that target oxygen-sensing pathways, including various preconditioning approaches and pharmacological HIF activators, that can be used regardless of the level of oxygen therapy that a patient is already receiving.
Collapse
Affiliation(s)
- Yafen Liang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Wei Ruan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yandong Jiang
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Richard Smalling
- Department of Cardiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anaesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Outcomes Research Consortium, Cleveland, OH, USA
| |
Collapse
|
12
|
Rogers ZJ, Colombani T, Khan S, Bhatt K, Nukovic A, Zhou G, Woolston BM, Taylor CT, Gilkes DM, Slavov N, Bencherif SA. Controlling pericellular oxygen tension in cell culture reveals distinct breast cancer responses to low oxygen tensions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560369. [PMID: 37873449 PMCID: PMC10592900 DOI: 10.1101/2023.10.02.560369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Oxygen (O2) tension plays a key role in tissue function and pathophysiology. O2-controlled cell culture, in which the O2 concentration in an incubator's gas phase is controlled, is an indispensable tool to study the role of O2 in vivo. For this technique, it is presumed that the incubator setpoint is equal to the O2 tension that cells experience (i.e., pericellular O2). We discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0.0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to anoxic exposure followed by rapid reoxygenation. To better understand the relationship between incubator gas phase and pericellular O2 tensions, we developed a reaction-diffusion model that predicts pericellular O2 tension a priori. This model revealed that the effect of cellular O2 consumption is greatest in smaller volume culture vessels (e.g., 96-well plate). By controlling pericellular O2 tension in cell culture, we discovered that MCF7 cells have stronger glycolytic and glutamine metabolism responses in anoxia vs. hypoxia. MCF7 also expressed higher levels of HIF2A, CD73, NDUFA4L2, etc. and lower levels of HIF1A, CA9, VEGFA, etc. in response to hypoxia vs. anoxia. Proteomics revealed that 4T1 cells had an upregulated epithelial-to-mesenchymal transition (EMT) response and downregulated reactive oxygen species (ROS) management, glycolysis, and fatty acid metabolism pathways in hypoxia vs. anoxia. Collectively, these results reveal that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable to model hypoxia. We demonstrate that controlling atmospheric O2 tension in cell culture incubators is insufficient to control O2 in cell culture and introduce the concept of pericellular O2-controlled cell culture.
Collapse
Affiliation(s)
- Zachary J. Rogers
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Saad Khan
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Khushbu Bhatt
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alexandra Nukovic
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Guanyu Zhou
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Benjamin M. Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Cormac T. Taylor
- Conway Institute of Biomolecular and Biomedical Research and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Daniele M. Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21321, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21321, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Center and Barnett Institute, Northeastern University, Boston, MA 02115 USA
- Parallel Squared Technology Institute, Watertown, MA 02135 USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Biomechanics and Bioengineering (BMBI), UTC CNRS UMR 7338, University of Technology of Compiègne, Sorbonne University, 60203 Compiègne, France
| |
Collapse
|
13
|
Schild Y, Bosserhoff J, Droege F, Littwitz-Salomon E, Fandrey J, Wrobeln A. Hypoxia-Inducible Factor-Prolyl Hydroxylase Inhibitor Improves Leukocyte Energy Metabolism in Hereditary Hemorrhagic Telangiectasia. Life (Basel) 2023; 13:1708. [PMID: 37629565 PMCID: PMC10456096 DOI: 10.3390/life13081708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The interplay between hypoxia-inducible factors (HIFs) and transforming growth factor beta (TGF-β) is critical for both inflammation and angiogenesis. In hereditary hemorrhagic telangiectasia (HHT), we have previously observed that impairment of the TGF-β pathway is associated with downregulation of HIF-1α. HIF-1α accumulation is mandatory in situations of altered energy demand, such as during infection or hypoxia, by adjusting cell metabolism. Leukocytes undergo a HIF-1α-dependent switch from aerobic mitochondrial respiration to anaerobic glycolysis (glycolytic switch) after stimulation and during differentiation. We postulate that the decreased HIF-1α accumulation in HHT leads to a clinically observed immunodeficiency in these patients. Examination of HIF-1α and its target genes in freshly isolated peripheral blood mononuclear cells (PBMCs) from HHT patients revealed decreased gene expression and protein levels of HIF-1α and HIF-1α-regulated glycolytic enzymes. Treatment of these cells with the HIF-prolyl hydroxylase inhibitor, Roxadustat, rescued their ability to accumulate HIF-1α protein. Functional analysis of metabolic flux using a Seahorse FX extracellular flux analyzer showed that the extracellular acidification rate (indicator of glycolytic turnover) after Roxadustat treatment was comparable to non-HHT controls, while oxygen consumption (indicator of mitochondrial respiration) was slightly reduced. HIF stabilization may be a potential therapeutic target in HHT patients suffering from infections.
Collapse
Affiliation(s)
- Yves Schild
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| | - Jonah Bosserhoff
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| | - Freya Droege
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Elisabeth Littwitz-Salomon
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Institute for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Joachim Fandrey
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| | - Anna Wrobeln
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (Y.S.); (J.B.); (J.F.)
| |
Collapse
|
14
|
Huang Q, You M, Huang W, Chen J, Zeng Q, Jiang L, Du X, Liu X, Hong M, Wang J. Comparative effectiveness and acceptability of HIF prolyl-hydroxylase inhibitors versus for anemia patients with chronic kidney disease undergoing dialysis: a systematic review and network meta-analysis. Front Pharmacol 2023; 14:1050412. [PMID: 37521459 PMCID: PMC10374033 DOI: 10.3389/fphar.2023.1050412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Background: The comparative benefits and acceptability of HIF-PHIs for treating anemia have not been well researched to date. We sought to compare the effectiveness of 6 HIF-PHIs and 3 ESAs for the treatment of renal anemia patients undergoing dialysis. Data sources: Cochrane Central Register of Controlled Trials, PubMed, Embase, Cochrane Library, MEDLINE, Web of Science, and clinicaltrials.gov databases. Results: Twenty-five RCTs (involving 17,204 participants) were included, all of which were designed to achieve target Hb levels by adjusting thee dose of HIF-PHIs. Regarding the efficacy in achieving target Hb levels, no significant differences were found between HIF-PHIs and ESAs in Hb response at the dose-adjusted designed RCTs selected for comparison. Intervention with roxadustat showed a significantly lower risk of RBC transfusion than rhEPO, with an OR and 95% CI of 0.76 (0.56-0.93). Roxadustat and vadadustat had higher risks of increasing the discontinuation rate than ESAs; the former had ORs and 95% CIs of 1.58 (95% CI: 1.21-2.06) for rhEPO, 1.66 (1.16-2.38) for DPO (darbepoetin alfa), and 1.76 (1.70-4.49) for MPG-EPO, and the latter had ORs and 95% CIs of 1.71 (1.09-2.67) for rhEPO, 1.79 (1.29-2.49) for DPO, and 2.97 (1.62-5.46) for MPG-EPO. No differences were observed in the AEs and SAEs among patients who received the studied drugs. Results of a meta-analysis of gastrointestinal disorders among AEs revealed that vadadustat was less effect on causing diarrea than DPO, with an OR of 0.97 (95% CI, 0.9-0.99). Included HIF-PHIs, were proven to be more effective than ESAs in reducing hepcidin levels and increasing TIBC and serum iron level with OR of -0.17 (95% CI, -0.21 to -0.12), OR of 0.79 (95% CI, 0.63-0.95), and OR of 0.39 (95% CI, 0.33-0.45), respectively. Conclusion: HIF-PHIs and ESAs have their characteristics and advantages in treating anemia undergoing dialysis. With the selected dose-adjusted mode, some HIF-PHIs appeared to be a potential treatment for DD-CKD patients when ompared with rhEPO, due to its effectiveness in decreasing the risk of RBC transfusion rate or regulating iron or lipid metabolism while achieving target Hb levels. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=306511; Identifier: CRD42022306511.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
- Guangzhou University of Chinese Traditional Medicine, Guangzhou, China
| | - Minling You
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Weijuan Huang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jian Chen
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Qinming Zeng
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Longfeng Jiang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiuben Du
- LuoHu Center for Chronic Disease Control, Shenzhen, China
| | - Xusheng Liu
- Guangzhou University of Chinese Traditional Medicine, Guangzhou, China
| | - Ming Hong
- Institute of Advanced Diagnostic and Clinical Medicine, Zhongshan City People’s Hospital, Affiliated Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Jing Wang
- Department of Nephropathy, Luohu District Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
15
|
Wang J, Zhao B, Che J, Shang P. Hypoxia Pathway in Osteoporosis: Laboratory Data for Clinical Prospects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3129. [PMID: 36833823 PMCID: PMC9963321 DOI: 10.3390/ijerph20043129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 05/29/2023]
Abstract
The hypoxia pathway not only regulates the organism to adapt to the special environment, such as short-term hypoxia in the plateau under normal physiological conditions, but also plays an important role in the occurrence and development of various diseases such as cancer, cardiovascular diseases, osteoporosis. Bone, as a special organ of the body, is in a relatively low oxygen environment, in which the expression of hypoxia-inducible factor (HIF)-related molecules maintains the necessary conditions for bone development. Osteoporosis disease with iron overload endangers individuals, families and society, and bone homeostasis disorder is linked to some extent with hypoxia pathway abnormality, so it is urgent to clarify the hypoxia pathway in osteoporosis to guide clinical medication efficiently. Based on this background, using the keywords "hypoxia/HIF, osteoporosis, osteoblasts, osteoclasts, osteocytes, iron/iron metabolism", a matching search was carried out through the Pubmed and Web Of Science databases, then the papers related to this review were screened, summarized and sorted. This review summarizes the relationship and regulation between the hypoxia pathway and osteoporosis (also including osteoblasts, osteoclasts, osteocytes) by arranging the references on the latest research progress, introduces briefly the application of hyperbaric oxygen therapy in osteoporosis symptoms (mechanical stimulation induces skeletal response to hypoxic signal activation), hypoxic-related drugs used in iron accumulation/osteoporosis model study, and also puts forward the prospects of future research.
Collapse
Affiliation(s)
- Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Bin Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jingmin Che
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Peng Shang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Shenzhen 518057, China
| |
Collapse
|
16
|
Efficacy and safety of vadadustat compared to darbepoetin alfa on anemia in patients with chronic kidney disease: a meta-analysis. Int Urol Nephrol 2023; 55:325-334. [PMID: 35960479 DOI: 10.1007/s11255-022-03316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/27/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE As a novel oral agent in treating anemia of chronic kidney disease (CKD), several clinical trials of vadadustat have been conducted to compare with darbepoetin alfa. This study systematically reviews and investigates the efficacy and safety of vadadustat in the anemia treatment with different duration in both nondialysis-dependent CKD (NDD-CKD) and dialysis-dependent CKD (DD-CKD). METHODS Several main databases were searched for randomized controlled trials (RCTs) reporting vadadustat vs darbepoetin alfa for anemia patients with CKD. The outcome indicators were focused on hemoglobin (Hb), the percentage of patients within the target Hb, the need for RBC (Red Blood Cell) transfusions, and serious adverse events (SAEs). RESULTS Four eligible studies with 8,026 participants were included. The changes of Hb levels from the baseline in the darbepoetin alfa group were significantly higher than that in the vadadustat group with DD-CKD (mean difference (MD) - 0.19, [95% confidence interval (CI), - 0.21 to - 0.17], p < 0.0001). In NDD-CKD patients, the changes of Hb levels in the two groups are not significantly different (MD = - 0.06, [95% CI, - 0.18 to 0.05], p = 0.006), especially, during the treatment duration of 20-36 weeks (MD = 0.02, [95% CI, - 0.04 to 0.08], p = 0.51). The percentage of patients within the target Hb was significantly lower in the vadadustat group than that in the darbepoetin alfa group in DD-CKD patients (MD = 0.9, [95% CI, 0.86 to 0.94], p < 0.00001), while in NDD-CKD patients, there was no significant difference (MD = 1.05, [95% CI, 0.99 to 1.12], p < 0.00001). In terms of safety, the two agents had no significant difference in the incidence of RBC transfusions and SAEs (RR = 1.26 [95% CI, 0.99 to 1.61], p = 0.52; RR = 0.97, [95% CI, 0.94 to 1.01], p = 0.19; respectively). CONCLUSION Compared to darbepoetin alfa, vadadustat had the same effect in raising the hemoglobin level in NDD-CKD patients in the short term. Vadadustat may become an effective and safe alternative for the treatment of patients with anemia and CKD, especially in NDD-CKD patients. As the application of vadadustat is still under exploration, future research should compensate for the limitations of our study to estimate the vadadustat's value.
Collapse
|
17
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Vora M, Pyonteck SM, Popovitchenko T, Matlack TL, Prashar A, Kane NS, Favate J, Shah P, Rongo C. The hypoxia response pathway promotes PEP carboxykinase and gluconeogenesis in C. elegans. Nat Commun 2022; 13:6168. [PMID: 36257965 PMCID: PMC9579151 DOI: 10.1038/s41467-022-33849-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2022] [Indexed: 12/31/2022] Open
Abstract
Actively dividing cells, including some cancers, rely on aerobic glycolysis rather than oxidative phosphorylation to generate energy, a phenomenon termed the Warburg effect. Constitutive activation of the Hypoxia Inducible Factor (HIF-1), a transcription factor known for mediating an adaptive response to oxygen deprivation (hypoxia), is a hallmark of the Warburg effect. HIF-1 is thought to promote glycolysis and suppress oxidative phosphorylation. Here, we instead show that HIF-1 can promote gluconeogenesis. Using a multiomics approach, we reveal the genomic, transcriptomic, and metabolomic landscapes regulated by constitutively active HIF-1 in C. elegans. We use RNA-seq and ChIP-seq under aerobic conditions to analyze mutants lacking EGL-9, a key negative regulator of HIF-1. We integrate these approaches to identify over two hundred genes directly and functionally upregulated by HIF-1, including the PEP carboxykinase PCK-1, a rate-limiting mediator of gluconeogenesis. This activation of PCK-1 by HIF-1 promotes survival in response to both oxidative and hypoxic stress. Our work identifies functional direct targets of HIF-1 in vivo, comprehensively describing the metabolome induced by HIF-1 activation in an organism.
Collapse
Affiliation(s)
- Mehul Vora
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Stephanie M Pyonteck
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tatiana Popovitchenko
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tarmie L Matlack
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Aparna Prashar
- The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Nanci S Kane
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - John Favate
- The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Premal Shah
- The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christopher Rongo
- The Waksman Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA. .,The Department of Genetics, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
19
|
Dengler F, Sternberg F, Grages M, Kästner SBR, Verhaar N. Adaptive mechanisms in no flow vs. low flow ischemia in equine jejunum epithelium: Different paths to the same destination. Front Vet Sci 2022; 9:947482. [PMID: 36157182 PMCID: PMC9493374 DOI: 10.3389/fvets.2022.947482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/17/2022] [Indexed: 01/18/2023] Open
Abstract
Intestinal ischemia reperfusion injury (IRI) is a frequent complication of equine colic. Several mechanisms may be involved in adaptation of the intestinal epithelium to IRI and might infer therapeutic potential, including hypoxia-inducible factor (HIF) 1α, AMP-activated protein kinase (AMPK), nuclear factor-erythroid 2-related factor 2 (NRF2), and induction of autophagy. However, the mechanisms supporting adaptation and thus cellular survival are not completely understood yet. We investigated the activation of specific adaptation mechanisms in both no and low flow ischemia and reperfusion simulated in equine jejunum epithelium in vivo. We found an activation of HIF1α in no and low flow ischemia as indicated by increased levels of HIF1α target genes and phosphorylation of AMPKα tended to increase during ischemia. Furthermore, the protein expression of the autophagy marker LC3B in combination with decreased expression of nuclear-encoded mitochondrial genes indicates an increased rate of mitophagy in equine intestinal IRI, possibly preventing damage by mitochondria-derived reactive oxygen species (ROS). Interestingly, ROS levels were increased only shortly after the onset of low flow ischemia, which may be explained by an increased antioxidative defense, although NFR2 was not activated in this setup. In conclusion, we could demonstrate that a variety of adaptation mechanisms manipulating different aspects of cellular homeostasis are activated in IRI irrespective of the ischemia model, and that mitophagy might be an important factor for epithelial survival following small intestinal ischemia in horses that should be investigated further.
Collapse
Affiliation(s)
- Franziska Dengler
- Department of Biochemical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Franziska Dengler
| | - Felix Sternberg
- Department of Biochemical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Marei Grages
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Sabine BR Kästner
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole Verhaar
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
20
|
Dahl SL, Bapst AM, Khodo SN, Scholz CC, Wenger RH. Fount, fate, features, and function of renal erythropoietin-producing cells. Pflugers Arch 2022; 474:783-797. [PMID: 35750861 PMCID: PMC9338912 DOI: 10.1007/s00424-022-02714-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022]
Abstract
Renal erythropoietin (Epo)-producing (REP) cells represent a rare and incompletely understood cell type. REP cells are fibroblast-like cells located in close proximity to blood vessels and tubules of the corticomedullary border region. Epo mRNA in REP cells is produced in a pronounced "on-off" mode, showing transient transcriptional bursts upon exposure to hypoxia. In contrast to "ordinary" fibroblasts, REP cells do not proliferate ex vivo, cease to produce Epo, and lose their identity following immortalization and prolonged in vitro culture, consistent with the loss of Epo production following REP cell proliferation during tissue remodelling in chronic kidney disease. Because Epo protein is usually not detectable in kidney tissue, and Epo mRNA is only transiently induced under hypoxic conditions, transgenic mouse models have been developed to permanently label REP cell precursors, active Epo producers, and inactive descendants. Future single-cell analyses of the renal stromal compartment will identify novel characteristic markers of tagged REP cells, which will provide novel insights into the regulation of Epo expression in this unique cell type.
Collapse
Affiliation(s)
- Sophie L Dahl
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Andreas M Bapst
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Stellor Nlandu Khodo
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland
- Institute of Physiology, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Roland H Wenger
- Institute of Physiology and National Centre of Competence in Research "Kidney.CH", University of Zürich, CH-8057, Zurich, Switzerland.
| |
Collapse
|
21
|
Yuan X, Mills T, Doursout MF, Evans SE, Vidal Melo MF, Eltzschig HK. Alternative adenosine Receptor activation: The netrin-Adora2b link. Front Pharmacol 2022; 13:944994. [PMID: 35910389 PMCID: PMC9334855 DOI: 10.3389/fphar.2022.944994] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During hypoxia or inflammation, extracellular adenosine levels are elevated. Studies using pharmacologic approaches or genetic animal models pertinent to extracellular adenosine signaling implicate this pathway in attenuating hypoxia-associated inflammation. There are four distinct adenosine receptors. Of these, it is not surprising that the Adora2b adenosine receptor functions as an endogenous feedback loop to control hypoxia-associated inflammation. First, Adora2b activation requires higher adenosine concentrations compared to other adenosine receptors, similar to those achieved during hypoxic inflammation. Second, Adora2b is transcriptionally induced during hypoxia or inflammation by hypoxia-inducible transcription factor HIF1A. Studies seeking an alternative adenosine receptor activation mechanism have linked netrin-1 with Adora2b. Netrin-1 was originally discovered as a neuronal guidance molecule but also functions as an immune-modulatory signaling molecule. Similar to Adora2b, netrin-1 is induced by HIF1A, and has been shown to enhance Adora2b signaling. Studies of acute respiratory distress syndrome (ARDS), intestinal inflammation, myocardial or hepatic ischemia and reperfusion implicate the netrin-Adora2b link in tissue protection. In this review, we will discuss the potential molecular linkage between netrin-1 and Adora2b, and explore studies demonstrating interactions between netrin-1 and Adora2b in attenuating tissue inflammation.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Marie-Francoise Doursout
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Keppner A, Maric D, Orlando IMC, Falquet L, Hummler E, Hoogewijs D. Analysis of the Hypoxic Response in a Mouse Cortical Collecting Duct-Derived Cell Line Suggests That Esrra Is Partially Involved in Hif1α-Mediated Hypoxia-Inducible Gene Expression in mCCD cl1 Cells. Int J Mol Sci 2022; 23:7262. [PMID: 35806266 PMCID: PMC9267015 DOI: 10.3390/ijms23137262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
The kidney is strongly dependent on a continuous oxygen supply, and is conversely highly sensitive to hypoxia. Controlled oxygen gradients are essential for renal control of solutes and urine-concentrating mechanisms, which also depend on various hormones including aldosterone. The cortical collecting duct (CCD) is part of the aldosterone-sensitive distal nephron and possesses a key function in fine-tuned distal salt handling. It is well known that aldosterone is consistently decreased upon hypoxia. Furthermore, a recent study reported a hypoxia-dependent down-regulation of sodium currents within CCD cells. We thus investigated the possibility that cells from the cortical collecting duct are responsive to hypoxia, using the mouse cortical collecting duct cell line mCCDcl1 as a model. By analyzing the hypoxia-dependent transcriptome of mCCDcl1 cells, we found a large number of differentially-expressed genes (3086 in total logFC< −1 or >1) following 24 h of hypoxic conditions (0.2% O2). A gene ontology analysis of the differentially-regulated pathways revealed a strong decrease in oxygen-linked processes such as ATP metabolic functions, oxidative phosphorylation, and cellular and aerobic respiration, while pathways associated with hypoxic responses were robustly increased. The most pronounced regulated genes were confirmed by RT-qPCR. The low expression levels of Epas1 under both normoxic and hypoxic conditions suggest that Hif-1α, rather than Hif-2α, mediates the hypoxic response in mCCDcl1 cells. Accordingly, we generated shRNA-mediated Hif-1α knockdown cells and found Hif-1α to be responsible for the hypoxic induction of established hypoxically-induced genes. Interestingly, we could show that following shRNA-mediated knockdown of Esrra, Hif-1α protein levels were unaffected, but the gene expression levels of Egln3 and Serpine1 were significantly reduced, indicating that Esrra might contribute to the hypoxia-mediated expression of these and possibly other genes. Collectively, mCCDcl1 cells display a broad response to hypoxia and represent an adequate cellular model to study additional factors regulating the response to hypoxia.
Collapse
Affiliation(s)
- Anna Keppner
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System (EMC), Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (A.K.); (D.M.); (I.M.C.O.)
- National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Zurich, CH-8006 Zürich, Switzerland
| | - Darko Maric
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System (EMC), Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (A.K.); (D.M.); (I.M.C.O.)
- National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Zurich, CH-8006 Zürich, Switzerland
| | - Ilaria Maria Christina Orlando
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System (EMC), Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (A.K.); (D.M.); (I.M.C.O.)
| | - Laurent Falquet
- Section of Science, Department of Biology, Faculty of Science and Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Edith Hummler
- Department of Biomedical Sciences, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - David Hoogewijs
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System (EMC), Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland; (A.K.); (D.M.); (I.M.C.O.)
- National Center of Competence in Research Kidney Control of Homeostasis (NCCR Kidney.CH), University of Zurich, CH-8006 Zürich, Switzerland
| |
Collapse
|
23
|
Abstract
Cellular hypoxia occurs when the demand for sufficient molecular oxygen needed to produce the levels of ATP required to perform physiological functions exceeds the vascular supply, thereby leading to a state of oxygen depletion with the associated risk of bioenergetic crisis. To protect against the threat of hypoxia, eukaryotic cells have evolved the capacity to elicit oxygen-sensitive adaptive transcriptional responses driven primarily (although not exclusively) by the hypoxia-inducible factor (HIF) pathway. In addition to the canonical regulation of HIF by oxygen-dependent hydroxylases, multiple other input signals, including gasotransmitters, non-coding RNAs, histone modifiers and post-translational modifications, modulate the nature of the HIF response in discreet cell types and contexts. Activation of HIF induces various effector pathways that mitigate the effects of hypoxia, including metabolic reprogramming and the production of erythropoietin. Drugs that target the HIF pathway to induce erythropoietin production are now approved for the treatment of chronic kidney disease-related anaemia. However, HIF-dependent changes in cell metabolism also have profound implications for functional responses in innate and adaptive immune cells, and thereby heavily influence immunity and the inflammatory response. Preclinical studies indicate a potential use of HIF therapeutics to treat inflammatory diseases, such as inflammatory bowel disease. Understanding the links between HIF, cellular metabolism and immunity is key to unlocking the full therapeutic potential of drugs that target the HIF pathway. Hypoxia-dependent changes in cellular metabolism have important implications for the effective functioning of multiple immune cell subtypes. This Review describes the inputs that shape the hypoxic response in individual cell types and contexts, and the implications of this response for cellular metabolism and associated alterations in immune cell function. Hypoxia is a common feature of particular microenvironments and at sites of immunity and inflammation, resulting in increased activity of the hypoxia-inducible factor (HIF). In addition to hypoxia, multiple inputs modulate the activity of the HIF pathway, allowing nuanced downstream responses in discreet cell types and contexts. HIF-dependent changes in cellular metabolism mitigate the effects of hypoxia and ensure that energy needs are met under conditions in which oxidative phosphorylation is reduced. HIF-dependent changes in metabolism also profoundly affect the phenotype and function of immune cells. The immunometabolic effects of HIF have important implications for targeting the HIF pathway in inflammatory disease.
Collapse
Affiliation(s)
- Cormac T Taylor
- School of Medicine, The Conway Institute & Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Bauer R, Meyer SP, Kloss KA, Guerrero Ruiz VM, Reuscher S, Zhou Y, Fuhrmann DC, Zarnack K, Schmid T, Brüne B. Functional RNA Dynamics Are Progressively Governed by RNA Destabilization during the Adaptation to Chronic Hypoxia. Int J Mol Sci 2022; 23:ijms23105824. [PMID: 35628634 PMCID: PMC9144826 DOI: 10.3390/ijms23105824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Previous studies towards reduced oxygen availability have mostly focused on changes in total mRNA expression, neglecting underlying transcriptional and post-transcriptional events. Therefore, we generated a comprehensive overview of hypoxia-induced changes in total mRNA expression, global de novo transcription, and mRNA stability in monocytic THP-1 cells. Since hypoxic episodes often persist for prolonged periods, we further compared the adaptation to acute and chronic hypoxia. While total mRNA changes correlated well with enhanced transcription during short-term hypoxia, mRNA destabilization gained importance under chronic conditions. Reduced mRNA stability not only added to a compensatory attenuation of immune responses, but also, most notably, to the reduction in nuclear-encoded mRNAs associated with various mitochondrial functions. These changes may prevent the futile production of new mitochondria under conditions where mitochondria cannot exert their full metabolic function and are indeed actively removed by mitophagy. The post-transcriptional mode of regulation might further allow for the rapid recovery of mitochondrial capacities upon reoxygenation. Our results provide a comprehensive resource of functional mRNA expression dynamics and underlying transcriptional and post-transcriptional regulatory principles during the adaptation to hypoxia. Furthermore, we uncover that RNA stability regulation controls mitochondrial functions in the context of hypoxia.
Collapse
Affiliation(s)
- Rebekka Bauer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
| | - Sofie Patrizia Meyer
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
| | - Karolina Anna Kloss
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
| | - Vanesa Maria Guerrero Ruiz
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
| | - Samira Reuscher
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
| | - You Zhou
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
| | - Dominik Christian Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
| | - Kathi Zarnack
- Faculty of Biological Sciences, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe-University Frankfurt, 60438 Frankfurt, Germany; (K.A.K.); (S.R.); (Y.Z.)
- Correspondence: (K.Z.); (T.S.)
| | - Tobias Schmid
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (K.Z.); (T.S.)
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.B.); (S.P.M.); (V.M.G.R.); (D.C.F.); (B.B.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| |
Collapse
|
25
|
Jägers J, Kirsch M, Cantore M, Karaman O, Ferenz KB. Artificial oxygen carriers in organ preservation: Dose dependency in a rat model of ex-vivo normothermic kidney perfusion. Artif Organs 2022; 46:1783-1793. [PMID: 35435266 DOI: 10.1111/aor.14264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/16/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Organ preservation through ex-vivo normothermic perfusion (EVNP) with albumin-derived perfluorocarbon-based artificial oxygen carriers (A-AOCs) consisting of albumin-derived perfluorodecalin-filled nanocapsules prior to transplantation would be a promising approach to avoid hypoxic tissue injury during organ storage. METHODS The kidneys of 16 rats underwent EVNP for 2 h with plasma-like solution (5% bovine serum albumin, Ringer-Saline, inulin) with or without A-AOCs in different volume fractions (0%, 2%, 4%, or 8%). Cell death was determined using TdT-mediated dUTP-biotin nick end labeling (TUNEL). Aspartate transaminase (AST) activity in both perfusate and urine as well as the glomerular filtration rate (GFR) were determined. The hypoxia inducible factors 1α and 2α (HIF-1α und -2α) were quantified in tissue homogenates. RESULTS GFR was substantially decreased in the presence of 0%, 2%, and 8% A-AOC but not of 4%. In accordance, hypoxia-mediated cell death, as indicated by both AST activity and TUNEL-positive cells, was significantly decreased in the 4% group compared to the control group. The stabilization of HIF-1α and 2α decreased with 4% and 8% but not with 2% A-AOCs. CONCLUSION The dosage of 4% A-AOCs in EVNP was most effective in maintaining the physiological renal function.
Collapse
Affiliation(s)
- Johannes Jägers
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Michael Kirsch
- Institute of Physiological Chemistry, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Miriam Cantore
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ozan Karaman
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,Institute of Physiological Chemistry, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,CeNIDE (Center for Nanointegration Duisburg-Essen) University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
26
|
Eades L, Drozd M, Cubbon RM. Hypoxia signalling in the regulation of innate immune training. Biochem Soc Trans 2022; 50:413-422. [PMID: 35015075 PMCID: PMC9022967 DOI: 10.1042/bst20210857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Innate immune function is shaped by prior exposures in a phenomenon often referred to as 'memory' or 'training'. Diverse stimuli, ranging from pathogen-associated molecules to atherogenic lipoproteins, induce long-lasting training, impacting on future responses, even to distinct stimuli. It is now recognised that epigenetic modifications in innate immune cells, and their progenitors, underpin these sustained behavioural changes, and that rewired cellular metabolism plays a key role in facilitating such epigenetic marks. Oxygen is central to cellular metabolism, and cells exposed to hypoxia undergo profound metabolic rewiring. A central effector of these responses are the hypoxia inducible factors (or HIFs), which drive transcriptional programmes aiming to adapt cellular homeostasis, such as by increasing glycolysis. These metabolic shifts indirectly promote post-translational modification of the DNA-binding histone proteins, and also of DNA itself, which are retained even after cellular oxygen tension and metabolism normalise, chronically altering DNA accessibility and utilisation. Notably, the activity of HIFs can be induced in some normoxic circumstances, indicating their broad importance to cell biology, irrespective of oxygen tension. Some HIFs are implicated in innate immune training and hypoxia is present in many disease states, yet many questions remain about the association between hypoxia and training, both in health and disease. Moreover, it is now appreciated that cellular responses to hypoxia are mediated by non-HIF pathways, suggesting that other mechanisms of training may be possible. This review sets out to define what is already known about the topic, address gaps in our knowledge, and provide recommendations for future research.
Collapse
Affiliation(s)
- Lauren Eades
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Richard M. Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| |
Collapse
|
27
|
Kirschner KM, Kelterborn S, Stehr H, Penzlin JLT, Jacobi CLJ, Endesfelder S, Sieg M, Kruppa J, Dame C, Sciesielski LK. Adaptation of the Oxygen Sensing System during Lung Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9714669. [PMID: 35242281 PMCID: PMC8886745 DOI: 10.1155/2022/9714669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
During gestation, the most drastic change in oxygen supply occurs with the onset of ventilation after birth. As the too early exposure of premature infants to high arterial oxygen pressure leads to characteristic diseases, we studied the adaptation of the oxygen sensing system and its targets, the hypoxia-inducible factor- (HIF-) regulated genes (HRGs) in the developing lung. We draw a detailed picture of the oxygen sensing system by integrating information from qPCR, immunoblotting, in situ hybridization, and single-cell RNA sequencing data in ex vivo and in vivo models. HIF1α protein was completely destabilized with the onset of pulmonary ventilation, but did not coincide with expression changes in bona fide HRGs. We observed a modified composition of the HIF-PHD system from intrauterine to neonatal phases: Phd3 was significantly decreased, while Hif2a showed a strong increase and the Hif3a isoform Ipas exclusively peaked at P0. Colocalization studies point to the Hif1a-Phd1 axis as the main regulator of the HIF-PHD system in mouse lung development, complemented by the Hif3a-Phd3 axis during gestation. Hif3a isoform expression showed a stepwise adaptation during the periods of saccular and alveolar differentiation. With a strong hypoxic stimulus, lung ex vivo organ cultures displayed a functioning HIF system at every developmental stage. Approaches with systemic hypoxia or roxadustat treatment revealed only a limited in vivo response of HRGs. Understanding the interplay of the oxygen sensing system components during the transition from saccular to alveolar phases of lung development might help to counteract prematurity-associated diseases like bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Karin M. Kirschner
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Simon Kelterborn
- Institute of Translational Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Herrmann Stehr
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Johanna L. T. Penzlin
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Charlotte L. J. Jacobi
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Miriam Sieg
- Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Jochen Kruppa
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Christof Dame
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Lina K. Sciesielski
- Department of Neonatology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
28
|
Taylor CT. Hypoxia Hits Glucose Metabolism in the Guts. Cell Mol Gastroenterol Hepatol 2022; 13:1263-1264. [PMID: 35167816 PMCID: PMC9073722 DOI: 10.1016/j.jcmgh.2022.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/10/2022]
Affiliation(s)
- Cormac T Taylor
- School of Medicine, The Conway Institute of Biomolecular & Biomedical Research & Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
29
|
Fandrey J. The Endocrine Kidney: Tampering with oxygen sensors may change your character. J Physiol 2021; 600:425-426. [PMID: 34962664 DOI: 10.1113/jp282675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, D-45147, Germany
| |
Collapse
|
30
|
Hirota K. Hypoxia-dependent signaling in perioperative and critical care medicine. J Anesth 2021; 35:741-756. [PMID: 34003375 PMCID: PMC8128984 DOI: 10.1007/s00540-021-02940-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022]
Abstract
A critical goal of patient management for anesthesiologists and intensivists is to maintain oxygen homeostasis in patients admitted to operation theaters and intensive care units. For this purpose, it is imperative to understand the strategies of the body against oxygen imbalance—especially oxygen deficiency (hypoxia). Adaptation to hypoxia and maintenance of oxygen homeostasis involve a wide range of responses that occur at different organizational levels in the body. These responses are greatly influenced by perioperative patient management including factors such as perioperative drugs. Herein, the influence of perioperative patient management on the body's response to oxygen imbalance was reviewed with a special emphasis on hypoxia-inducible factors (HIFs), transcription factors whose activity are regulated by the perturbation of oxygen metabolism. The 2019 Nobel Prize in Physiology or Medicine was awarded to three researchers who made outstanding achievements in this field. While previous studies have reported the effect of perioperatively used drugs on hypoxia-induced gene expression mediated by HIFs, this review focused on effects of subacute or chronic hypoxia changes in gene expression that are mediated by the transcriptional regulator HIFs. The clinical implications and perspectives of these findings also will be discussed. Understanding the basic biology of the transcription factor HIF can be informative for us since anesthesiologists manage patients during the perioperative period facing the imbalances the oxygen metabolism in organ and tissue. The clinical implications of hypoxia-dependent signaling in critical illness, including Coronavirus disease (COVID-19), in which disturbances in oxygen metabolism play a major role in its pathogenesis will also be discussed.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan.
| |
Collapse
|
31
|
Hirota K. HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050468. [PMID: 33923349 PMCID: PMC8146675 DOI: 10.3390/biomedicines9050468] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
32
|
Phelan DE, Mota C, Lai C, Kierans SJ, Cummins EP. Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus 2021; 11:20200033. [PMID: 33633832 PMCID: PMC7898142 DOI: 10.1098/rsfs.2020.0033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Carbon dioxide (CO2) is a fundamental physiological gas known to profoundly influence the behaviour and health of millions of species within the plant and animal kingdoms in particular. A recent Royal Society meeting on the topic of 'Carbon dioxide detection in biological systems' was extremely revealing in terms of the multitude of roles that different levels of CO2 play in influencing plants and animals alike. While outstanding research has been performed by leading researchers in the area of plant biology, neuronal sensing, cell signalling, gas transport, inflammation, lung function and clinical medicine, there is still much to be learned about CO2-dependent sensing and signalling. Notably, while several key signal transduction pathways and nodes of activity have been identified in plants and animals respectively, the precise wiring and sensitivity of these pathways to CO2 remains to be fully elucidated. In this article, we will give an overview of the literature relating to CO2-dependent signal transduction in mammalian systems. We will highlight the main signal transduction hubs through which CO2-dependent signalling is elicited with a view to better understanding the complex physiological response to CO2 in mammalian systems. The main topics of discussion in this article relate to how changes in CO2 influence cellular function through modulation of signal transduction networks influenced by pH, mitochondrial function, adenylate cyclase, calcium, transcriptional regulators, the adenosine monophosphate-activated protein kinase pathway and direct CO2-dependent protein modifications. While each of these topics will be discussed independently, there is evidence of significant cross-talk between these signal transduction pathways as they respond to changes in CO2. In considering these core hubs of CO2-dependent signal transduction, we hope to delineate common elements and identify areas in which future research could be best directed.
Collapse
Affiliation(s)
- D. E. Phelan
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Mota
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - C. Lai
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - S. J. Kierans
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - E. P. Cummins
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
33
|
Haase VH. Hypoxia-inducible factor-prolyl hydroxylase inhibitors in the treatment of anemia of chronic kidney disease. Kidney Int Suppl (2011) 2021; 11:8-25. [PMID: 33777492 PMCID: PMC7983025 DOI: 10.1016/j.kisu.2020.12.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor-prolyl hydroxylase domain inhibitors (HIF-PHIs) are a promising new class of orally administered drugs currently in late-stage global clinical development for the treatment of anemia of chronic kidney disease (CKD). HIF-PHIs activate the HIF oxygen-sensing pathway and are efficacious in correcting and maintaining hemoglobin levels in patients with non-dialysis- and dialysis-dependent CKD. In addition to promoting erythropoiesis through the increase in endogenous erythropoietin production, HIF-PHIs reduce hepcidin levels and modulate iron metabolism, providing increases in total iron binding capacity and transferrin levels, and potentially reducing the need for i.v. iron supplementation. Furthermore, HIF-activating drugs are predicted to have effects that extend beyond erythropoiesis. This review summarizes clinical data from current HIF-PHI trials in patients with anemia of CKD, discusses mechanisms of action and pharmacologic properties of HIF-PHIs, and deliberates over safety concerns and potential impact on anemia management in patients with CKD.
Collapse
Affiliation(s)
- Volker H. Haase
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Molecular Physiology and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
34
|
Semenza GL. Intratumoral Hypoxia and Mechanisms of Immune Evasion Mediated by Hypoxia-Inducible Factors. Physiology (Bethesda) 2021; 36:73-83. [DOI: 10.1152/physiol.00034.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Activation of the innate and adaptive immune systems represents a promising strategy for defeating cancer. However, during tumor progression, cancer cells battle to shift the balance from immune activation to immunosuppression. Critical sites of this battle are regions of intratumoral hypoxia, and a major driving force for immunosuppression is the activity of hypoxia-inducible factors, which regulate the transcription of large batteries of genes in both cancer and stromal cells that block the infiltration and activity of cytotoxic T lymphocytes and natural killer cells, while stimulating the infiltration and activity of regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. Targeting hypoxia-inducible factors or their target gene products may restore anticancer immunity and improve the response to immunotherapies.
Collapse
Affiliation(s)
- Gregg L. Semenza
- Vascular Program, Institute for Cell Engineering; and Departments of Genetic Medicine, Pediatrics, Oncology, Radiation Oncology, Medicine, and Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
35
|
Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cell Mol Life Sci 2020; 78:1887-1907. [PMID: 33125509 PMCID: PMC7966188 DOI: 10.1007/s00018-020-03684-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/08/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Various factors of the tissue microenvironment such as the oxygen concentration influence the host-pathogen interaction. During the past decade, hypoxia-driven signaling via hypoxia-inducible factors (HIF) has emerged as an important factor that affects both the pathogen and the host. In this chapter, we will review the current knowledge of this complex interplay, with a particular emphasis given to the impact of hypoxia and HIF on the inflammatory and antimicrobial activity of myeloid cells, the bacterial responses to hypoxia and the containment of bacterial infections under oxygen-limited conditions. We will also summarize how low oxygen concentrations influence the metabolism of neutrophils, macrophages and dendritic cells. Finally, we will discuss the consequences of hypoxia and HIFα activation for the invading pathogen, with a focus on Pseudomonas aeruginosa, Mycobacterium tuberculosis, Coxiella burnetii, Salmonella enterica and Staphylococcus aureus. This includes a description of the mechanisms and microbial factors, which the pathogens use to sense and react to hypoxic conditions.
Collapse
|
36
|
Noguchi CT. Erythropoietin regulates metabolic response in mice via receptor expression in adipose tissue, brain, and bone. Exp Hematol 2020; 92:32-42. [PMID: 32950599 DOI: 10.1016/j.exphem.2020.09.190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Erythropoietin (EPO) acts by binding to erythroid progenitor cells to regulate red blood cell production. While EPO receptor (Epor) expression is highest on erythroid tissue, animal models exhibit EPO activity in nonhematopoietic tissues, mediated, in part, by tissue-specific Epor expression. This review describes the metabolic response in mice to endogenous EPO and EPO treatment associated with glucose metabolism, fat mass accumulation, and inflammation in white adipose tissue and brain during diet-induced obesity and with bone marrow fat and bone remodeling. During high-fat diet-induced obesity, EPO treatment improves glucose tolerance, decreases fat mass accumulation, and shifts white adipose tissue from a pro-inflammatory to an anti-inflammatory state. Fat mass regulation by EPO is sex dimorphic, apparent in males and abrogated by estrogen in females. Cerebral EPO also regulates fat mass and hypothalamus inflammation associated with diet-induced obesity in males and ovariectomized female mice. In bone, EPO contributes to the balance between adipogenesis and osteogenesis in both male and female mice. EPO treatment promotes bone loss mediated via Epor in osteoblasts and reduces bone marrow adipocytes before and independent of change in white adipose tissue fat mass. EPO regulation of bone loss and fat mass is independent of EPO-stimulated erythropoiesis. EPO nonhematopoietic tissue response may relate to the long-term consequences of EPO treatment of anemia in chronic kidney disease and to the alternative treatment of oral hypoxia-inducible factor prolyl hydroxylase inhibitors that increase endogenous EPO production.
Collapse
Affiliation(s)
- Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
37
|
Günter J, Wenger RH, Scholz CC. Inhibition of firefly luciferase activity by a HIF prolyl hydroxylase inhibitor. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111980. [PMID: 32745950 DOI: 10.1016/j.jphotobiol.2020.111980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
The three hypoxia-inducible factor (HIF) prolyl-4-hydroxylase domain (PHD) 1-3 enzymes confer oxygen sensitivity to the HIF pathway and are novel therapeutic targets for treatment of renal anemia. Inhibition of the PHDs may further be beneficial in other hypoxia-associated diseases, including ischemia and chronic inflammation. Several pharmacologic PHD inhibitors (PHIs) are available, but our understanding of their selectivity and its chemical basis is limited. We here report that the PHI JNJ-42041935 (JNJ-1935) is structurally similar to the firefly luciferase substrate D-luciferin. Our results demonstrate that JNJ-1935 is a novel inhibitor of firefly luciferase enzymatic activity. In contrast, the PHIs FG-4592 (roxadustat) and FG-2216 (ICA, BIQ, IOX3, YM 311) did not affect firefly luciferase. The JNJ-1935 mode of inhibition is competitive with a Ki of 1.36 μM. D-luciferin did not inhibit the PHDs, despite its structural similarity to JNJ-1935. This study provides insights into a previously unknown JNJ-1935 off-target effect as well as into the chemical requirements for firefly luciferase and PHD inhibitors and may inform the development of novel compounds targeting these enzymes.
Collapse
Affiliation(s)
- Julia Günter
- Institute of Physiology, University of Zurich, Zurich, & National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, & National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, & National Centre of Competence in Research 'Kidney.CH', Zurich, Switzerland.
| |
Collapse
|
38
|
Faivre A, Scholz CC, de Seigneux S. Hypoxia in chronic kidney disease: towards a paradigm shift? Nephrol Dial Transplant 2020; 36:1782-1790. [PMID: 33895835 DOI: 10.1093/ndt/gfaa091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/15/2022] Open
Abstract
Chronic kidney disease (CKD) is defined as an alteration of kidney structure and/or function lasting for >3 months [1]. CKD affects 10% of the general adult population and is responsible for large healthcare costs [2]. Since the end of the last century, the role of hypoxia in CKD progression has controversially been discussed. To date, there is evidence of the presence of hypoxia in late-stage renal disease, but we lack time-course evidence, stage correlation and also spatial co-localization with fibrotic lesions to ensure its causative role. The classical view of hypoxia in CKD progression is that it is caused by peritubular capillary alterations, renal anaemia and increased oxygen consumption regardless of the primary injury. In this classical view, hypoxia is assumed to further induce pro-fibrotic and pro-inflammatory responses, as well as oxidative stress, leading to CKD worsening as part of a vicious circle. However, recent investigations tend to question this paradigm, and both the presence of hypoxia and its role in CKD progression are still not clearly demonstrated. Hypoxia-inducible factor (HIF) is the main transcriptional regulator of the hypoxia response. Genetic HIF modulation leads to variable effects on CKD progression in different murine models. In contrast, pharmacological modulation of the HIF pathway [i.e. by HIF hydroxylase inhibitors (HIs)] appears to be generally protective against fibrosis progression experimentally. We here review the existing literature on the role of hypoxia, the HIF pathway and HIF HIs in CKD progression and summarize the evidence that supports or rejects the hypoxia hypothesis, respectively.
Collapse
Affiliation(s)
- Anna Faivre
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Cell physiology and Metabolism, University of Geneva, Geneva, Switzerland.,National Centre of Competence in Research "Kidney.CH", Zurich, Switzerland.,Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
39
|
Bapst AM, Dahl SL, Knöpfel T, Wenger RH. Cre-mediated, loxP independent sequential recombination of a tripartite transcriptional stop cassette allows for partial read-through transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194568. [PMID: 32344203 DOI: 10.1016/j.bbagrm.2020.194568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022]
Abstract
One of the widely used applications of the popular Cre-loxP method for targeted recombination is the permanent activation of marker genes, such as reporter genes or antibiotic resistance genes, by excision of a preceding transcriptional stop signal. The STOP cassette consists of three identical SV40-derived poly(A) signal repeats and is flanked by two loxP sites. We found that in addition to complete loxP-mediated recombination, limiting levels of the Cre recombinase also cause incomplete recombination of the STOP cassette. Partial recombination leads to the loss of only one or two of the three identical poly(A) repeats with recombination breakpoints always precisely matching the end/start of each poly(A) signal repeat without any relevant similarity to the canonical or known cryptic loxP sequences, suggesting that this type of Cre-mediated recombination is loxP-independent. Incomplete deletion of the STOP cassette results in partial read-through transcription, explaining at least some of the variability often observed in marker gene expression from an otherwise identical locus.
Collapse
Affiliation(s)
- Andreas M Bapst
- Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Sophie L Dahl
- Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland; National Centre of Competence in Research "Kidney.CH", Switzerland
| | - Thomas Knöpfel
- Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zürich, CH-8057 Zürich, Switzerland; National Centre of Competence in Research "Kidney.CH", Switzerland.
| |
Collapse
|
40
|
Dengler F. Activation of AMPK under Hypoxia: Many Roads Leading to Rome. Int J Mol Sci 2020; 21:ijms21072428. [PMID: 32244507 PMCID: PMC7177550 DOI: 10.3390/ijms21072428] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is known as a pivotal cellular energy sensor, mediating the adaptation to low energy levels by deactivating anabolic processes and activating catabolic processes in order to restore the cellular ATP supply when the cellular AMP/ATP ratio is increased. Besides this well-known role, it has also been shown to exert protective effects under hypoxia. While an insufficient supply with oxygen might easily deplete cellular energy levels, i.e., ATP concentration, manifold other mechanisms have been suggested and are heavily disputed regarding the activation of AMPK under hypoxia independently from cellular AMP concentrations. However, an activation of AMPK preceding energy depletion could induce a timely adaptation reaction preventing more serious damage. A connection between AMPK and the master regulator of hypoxic adaptation via gene transcription, hypoxia-inducible factor (HIF), has also been taken into account, orchestrating their concerted protective action. This review will summarize the current knowledge on mechanisms of AMPK activation under hypoxia and its interrelationship with HIF.
Collapse
Affiliation(s)
- Franziska Dengler
- Institute of Veterinary Physiology, University of Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
41
|
Hirota K. Basic Biology of Hypoxic Responses Mediated by the Transcription Factor HIFs and its Implication for Medicine. Biomedicines 2020; 8:biomedicines8020032. [PMID: 32069878 PMCID: PMC7168341 DOI: 10.3390/biomedicines8020032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Oxygen (O2) is essential for human life. Molecular oxygen is vital for the production of adenosine triphosphate (ATP) in human cells. O2 deficiency leads to a reduction in the energy levels that are required to maintain biological functions. O2 acts as the final acceptor of electrons during oxidative phosphorylation, a series of ATP synthesis reactions that occur in conjunction with the electron transport system in mitochondria. Persistent O2 deficiency may cause death due to malfunctioning biological processes. The above account summarizes the classic view of oxygen. However, this classic view has been reviewed over the last two decades. Although O2 is essential for life, higher organisms such as mammals are unable to biosynthesize molecular O2 in the body. Because the multiple organs of higher organisms are constantly exposed to the risk of “O2 deficiency,” living organisms have evolved elaborate strategies to respond to hypoxia. In this review, I will describe the system that governs oxygen homeostasis in the living body from the point-of-view of the transcription factor hypoxia-inducible factor (HIF).
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|